/**
* @license
* Copyright 2018 Google LLC
*
* Use of this source code is governed by an MIT-style
* license that can be found in the LICENSE file or at
* https://opensource.org/licenses/MIT.
* =============================================================================
*/
///
import { io, Optimizer, Scalar, serialization, Tensor } from '@tensorflow/tfjs-core';
import { History } from './base_callbacks';
import { Dataset } from './engine/dataset_stub';
import { Layer } from './engine/topology';
import { LayersModel, ModelCompileArgs, ModelEvaluateArgs } from './engine/training';
import { ModelEvaluateDatasetArgs, ModelFitDatasetArgs } from './engine/training_dataset';
import { ModelFitArgs } from './engine/training_tensors';
import { Shape } from './keras_format/common';
import { PyJsonDict } from './keras_format/types';
import { Kwargs } from './types';
/**
* Parses a JSON model configuration file and returns a model instance.
*
* ```js
* // This example shows how to serialize a model using `toJSON()` and
* // deserialize it as another model using `tf.models.modelFromJSON()`.
* // Note: this example serializes and deserializes only the topology
* // of the model; the weights of the loaded model will be different
* // from those of the the original model, due to random weight
* // initialization.
* // To load the topology and weights of a model, use `tf.loadLayersModel()`.
* const model1 = tf.sequential();
* model1.add(tf.layers.repeatVector({inputShape: [2], n: 4}));
* // Serialize `model1` as a JSON object.
* const model1JSON = model1.toJSON(null, false);
* model1.summary();
*
* const model2 = await tf.models.modelFromJSON(model1JSON);
* model2.summary();
* ```
*
* @param modelAndWeightsConfig JSON object or string encoding a model and
* weights configuration. It can also be only the topology JSON of the
* model, in which case the weights will not be loaded.
* @param custom_objects Optional dictionary mapping names
* (strings) to custom classes or functions to be
* considered during deserialization.
* @returns A TensorFlow.js Layers `tf.LayersModel` instance (uncompiled).
*/
export declare function modelFromJSON(modelAndWeightsConfig: ModelAndWeightsConfig | PyJsonDict, customObjects?: serialization.ConfigDict): Promise;
/**
* Options for loading a saved mode in TensorFlow.js format.
*/
export interface ModelAndWeightsConfig {
/**
* A JSON object or JSON string containing the model config.
*
* This can be either of the following two formats:
* - A model archiecture-only config, i.e., a format consistent with the
* return value of`keras.Model.to_json()`.
* - A full model config, containing not only model architecture, but also
* training options and state, i.e., a format consistent with the return
* value of `keras.models.save_model()`.
*/
modelTopology: PyJsonDict;
/**
* A weights manifest in TensorFlow.js format.
*/
weightsManifest?: io.WeightsManifestConfig;
/**
* Path to prepend to the paths in `weightManifest` before fetching.
*
* The path may optionally end in a slash ('/').
*/
pathPrefix?: string;
}
export interface ModelPredictArgs {
/**
* Optional. Batch size (Integer). If unspecified, it will default to 32.
*/
batchSize?: number;
/**
* Optional. Verbosity mode. Defaults to false.
*/
verbose?: boolean;
}
/**
* Load a model composed of Layer objects, including its topology and optionally
* weights. See the Tutorial named "How to import a Keras Model" for usage
* examples.
*
* This method is applicable to:
*
* 1. Models created with the `tf.layers.*`, `tf.sequential`, and
* `tf.model` APIs of TensorFlow.js and later saved with the
* `tf.LayersModel.save` method.
* 2. Models converted from Keras or TensorFlow tf.keras using the
* [tensorflowjs_converter](https://github.com/tensorflow/tfjs/tree/master/tfjs-converter).
*
* This mode is *not* applicable to TensorFlow `SavedModel`s or their converted
* forms. For those models, use `tf.loadGraphModel`.
*
* Example 1. Load a model from an HTTP server.
*
* ```js
* const model = await tf.loadLayersModel(
* 'https://storage.googleapis.com/tfjs-models/tfjs/iris_v1/model.json');
* model.summary();
* ```
*
* Example 2: Save `model`'s topology and weights to browser [local
* storage](https://developer.mozilla.org/en-US/docs/Web/API/Window/localStorage);
* then load it back.
*
* ```js
* const model = tf.sequential(
* {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
* console.log('Prediction from original model:');
* model.predict(tf.ones([1, 3])).print();
*
* const saveResults = await model.save('localstorage://my-model-1');
*
* const loadedModel = await tf.loadLayersModel('localstorage://my-model-1');
* console.log('Prediction from loaded model:');
* loadedModel.predict(tf.ones([1, 3])).print();
* ```
*
* Example 3. Saving `model`'s topology and weights to browser
* [IndexedDB](https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API);
* then load it back.
*
* ```js
* const model = tf.sequential(
* {layers: [tf.layers.dense({units: 1, inputShape: [3]})]});
* console.log('Prediction from original model:');
* model.predict(tf.ones([1, 3])).print();
*
* const saveResults = await model.save('indexeddb://my-model-1');
*
* const loadedModel = await tf.loadLayersModel('indexeddb://my-model-1');
* console.log('Prediction from loaded model:');
* loadedModel.predict(tf.ones([1, 3])).print();
* ```
*
* Example 4. Load a model from user-selected files from HTML
* [file input
* elements](https://developer.mozilla.org/en-US/docs/Web/HTML/Element/input/file).
*
* ```js
* // Note: this code snippet will not work without the HTML elements in the
* // page
* const jsonUpload = document.getElementById('json-upload');
* const weightsUpload = document.getElementById('weights-upload');
*
* const model = await tf.loadLayersModel(
* tf.io.browserFiles([jsonUpload.files[0], weightsUpload.files[0]]));
* ```
*
* @param pathOrIOHandler Can be either of the two formats
* 1. A string path to the `ModelAndWeightsConfig` JSON describing
* the model in the canonical TensorFlow.js format. For file://
* (tfjs-node-only), http:// and https:// schemas, the path can be
* either absolute or relative. The content of the JSON file is assumed to
* be a JSON object with the following fields and values:
* - 'modelTopology': A JSON object that can be either of:
* 1. a model architecture JSON consistent with the format of the return
* value of `keras.Model.to_json()`
* 2. a full model JSON in the format of `keras.models.save_model()`.
* - 'weightsManifest': A TensorFlow.js weights manifest.
* See the Python converter function `save_model()` for more details.
* It is also assumed that model weights can be accessed from relative
* paths described by the `paths` fields in weights manifest.
* 2. A `tf.io.IOHandler` object that loads model artifacts with its `load`
* method.
* @param options Optional configuration arguments for the model loading,
* including:
* - `strict`: Require that the provided weights exactly match those required
* by the layers. Default true. Passing false means that both extra
* weights and missing weights will be silently ignored.
* - `onProgress`: A progress callback of the form:
* `(fraction: number) => void`. This callback can be used to monitor the
* model-loading process.
* @returns A `Promise` of `tf.LayersModel`, with the topology and weights
* loaded.
*
* @doc {heading: 'Models', subheading: 'Loading'}
*/
export declare function loadLayersModel(pathOrIOHandler: string | io.IOHandler, options?: io.LoadOptions): Promise;
/**
* Load a model and optionally its weights, using an IOHandler object.
*
* @param handler The instance of `IOHandler` to be used during the model
* loading.
* @param customObjects Any optional custom objects to be used during model
* loading.
* @param strict Whether the weight loading will be done in strict mode.
* Default: `true`.
*/
export declare function loadLayersModelFromIOHandler(handler: io.IOHandler, customObjects?: serialization.ConfigDict, options?: io.LoadOptions): Promise;
/**
* Configuration for a Sequential model.
*/
export interface SequentialArgs {
/** Stack of layers for the model. */
layers?: Layer[];
/** The name of this model. */
name?: string;
}
/**
* A model with a stack of layers, feeding linearly from one to the next.
*
* `tf.sequential` is a factory function that creates an instance of
* `tf.Sequential`.
*
* ```js
* // Define a model for linear regression.
* const model = tf.sequential();
* model.add(tf.layers.dense({units: 1, inputShape: [1]}));
*
* // Prepare the model for training: Specify the loss and the optimizer.
* model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
*
* // Generate some synthetic data for training.
* const xs = tf.tensor2d([1, 2, 3, 4], [4, 1]);
* const ys = tf.tensor2d([1, 3, 5, 7], [4, 1]);
*
* // Train the model using the data then do inference on a data point the
* // model hasn't seen:
* await model.fit(xs, ys);
* model.predict(tf.tensor2d([5], [1, 1])).print();
* ```
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
export declare class Sequential extends LayersModel {
/** @nocollapse */
static className: string;
private model;
constructor(args?: SequentialArgs);
private checkShape;
/**
* Adds a layer instance on top of the layer stack.
*
* ```js
* const model = tf.sequential();
* model.add(tf.layers.dense({units: 8, inputShape: [1]}));
* model.add(tf.layers.dense({units: 4, activation: 'relu6'}));
* model.add(tf.layers.dense({units: 1, activation: 'relu6'}));
* // Note that the untrained model is random at this point.
* model.predict(tf.randomNormal([10, 1])).print();
* ```
* @param layer Layer instance.
*
* @exception ValueError In case the `layer` argument does not know its
* input shape.
* @exception ValueError In case the `layer` argument has multiple output
* tensors, or is already connected somewhere else (forbidden in
* `Sequential` models).
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
add(layer: Layer): void;
/**
* Removes the last layer in the model.
*
* @exception TypeError if there are no layers in the model.
*/
pop(): void;
call(inputs: Tensor | Tensor[], kwargs: Kwargs): Tensor | Tensor[];
build(inputShape?: Shape | Shape[]): void;
countParams(): number;
/**
* Print a text summary of the Sequential model's layers.
*
* The summary includes
* - Name and type of all layers that comprise the model.
* - Output shape(s) of the layers
* - Number of weight parameters of each layer
* - The total number of trainable and non-trainable parameters of the
* model.
*
* ```js
* const model = tf.sequential();
* model.add(
* tf.layers.dense({units: 100, inputShape: [10], activation: 'relu'}));
* model.add(tf.layers.dense({units: 1, activation: 'sigmoid'}));
*
* model.summary();
* ```
*
* @param lineLength Custom line length, in number of characters.
* @param positions Custom widths of each of the columns, as either
* fractions of `lineLength` (e.g., `[0.5, 0.75, 1]`) or absolute number
* of characters (e.g., `[30, 50, 65]`). Each number corresponds to
* right-most (i.e., ending) position of a column.
* @param printFn Custom print function. Can be used to replace the default
* `console.log`. For example, you can use `x => {}` to mute the printed
* messages in the console.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
summary(lineLength?: number, positions?: number[], printFn?: (message?: any, ...optionalParams: any[]) => void): void;
/**
* Sets the weights of the model.
*
* @param weights Should be a list of Tensors with shapes and types matching
* the output of `model.getWeights()`.
*/
setWeights(weights: Tensor[]): void;
/**
* Returns the loss value & metrics values for the model in test mode.
*
* Loss and metrics are specified during `compile()`, which needs to happen
* before calls to `evaluate()`.
*
* Computation is done in batches.
*
* ```js
* const model = tf.sequential({
* layers: [tf.layers.dense({units: 1, inputShape: [10]})]
* });
* model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
* const result = model.evaluate(tf.ones([8, 10]), tf.ones([8, 1]), {
* batchSize: 4,
* });
* result.print();
* ```
*
* @param x `tf.Tensor` of test data, or an `Array` of `tf.Tensor`s if the
* model has multiple inputs.
* @param y `tf.Tensor` of target data, or an `Array` of `tf.Tensor`s if the
* model has multiple outputs.
* @param args A `ModelEvaluateConfig`, containing optional fields.
*
* @return `Scalar` test loss (if the model has a single output and no
* metrics) or `Array` of `Scalar`s (if the model has multiple outputs
* and/or metrics). The attribute `model.metricsNames`
* will give you the display labels for the scalar outputs.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
evaluate(x: Tensor | Tensor[], y: Tensor | Tensor[], args?: ModelEvaluateArgs): Scalar | Scalar[];
/**
* Evaluate model using a dataset object.
*
* Note: Unlike `evaluate()`, this method is asynchronous (`async`).
*
* @param dataset A dataset object. Its `iterator()` method is expected
* to generate a dataset iterator object, the `next()` method of which
* is expected to produce data batches for evaluation. The return value
* of the `next()` call ought to contain a boolean `done` field and a
* `value` field. The `value` field is expected to be an array of two
* `tf.Tensor`s or an array of two nested `tf.Tensor` structures. The former
* case is for models with exactly one input and one output (e.g.
* a sequential model). The latter case is for models with multiple
* inputs and/or multiple outputs. Of the two items in the array, the
* first is the input feature(s) and the second is the output target(s).
* @param args A configuration object for the dataset-based evaluation.
* @returns Loss and metric values as an Array of `Scalar` objects.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
evaluateDataset(dataset: Dataset<{}>, args: ModelEvaluateDatasetArgs): Promise;
/**
* Generates output predictions for the input samples.
*
* Computation is done in batches.
*
* Note: the "step" mode of predict() is currently not supported.
* This is because the TensorFlow.js core backend is imperative only.
*
* ```js
* const model = tf.sequential({
* layers: [tf.layers.dense({units: 1, inputShape: [10]})]
* });
* model.predict(tf.ones([2, 10])).print();
* ```
*
* @param x The input data, as a Tensor, or an `Array` of `tf.Tensor`s if
* the model has multiple inputs.
* @param conifg A `ModelPredictConfig` object containing optional fields.
*
* @return `tf.Tensor`(s) of predictions.
*
* @exception ValueError In case of mismatch between the provided input data
* and the model's expectations, or in case a stateful model receives a
* number of samples that is not a multiple of the batch size.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
predict(x: Tensor | Tensor[], args?: ModelPredictArgs): Tensor | Tensor[];
/**
* Returns predictions for a single batch of samples.
*
* @param x: Input samples, as a Tensor, or list of Tensors (if the model
* has multiple inputs).
* @return Tensor(s) of predictions
*/
predictOnBatch(x: Tensor): Tensor | Tensor[];
/**
* See `LayersModel.compile`.
*
* @param args
*/
compile(args: ModelCompileArgs): void;
get optimizer(): Optimizer;
set optimizer(optimizer: Optimizer);
/**
* Trains the model for a fixed number of epochs (iterations on a dataset).
*
* ```js
* const model = tf.sequential({
* layers: [tf.layers.dense({units: 1, inputShape: [10]})]
* });
* model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
* const history = await model.fit(tf.ones([8, 10]), tf.ones([8, 1]), {
* batchSize: 4,
* epochs: 3
* });
* console.log(history.history.loss[0]);
* ```
*
* @param x `tf.Tensor` of training data, or an array of `tf.Tensor`s if the
* model has multiple inputs. If all inputs in the model are named, you can
* also pass a dictionary mapping input names to `tf.Tensor`s.
* @param y `tf.Tensor` of target (label) data, or an array of `tf.Tensor`s if
* the model has multiple outputs. If all outputs in the model are named, you
* can also pass a dictionary mapping output names to `tf.Tensor`s.
* @param args A `ModelFitConfig`, containing optional fields.
*
* @return A `History` instance. Its `history` attribute contains all
* information collected during training.
*
* @exception ValueError In case of mismatch between the provided input data
* and what the model expects.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
fit(x: Tensor | Tensor[] | {
[inputName: string]: Tensor;
}, y: Tensor | Tensor[] | {
[inputName: string]: Tensor;
}, args?: ModelFitArgs): Promise;
/**
* Trains the model using a dataset object.
*
* ```js
* const xArray = [
* [1, 1, 1, 1, 1, 1, 1, 1, 1],
* [1, 1, 1, 1, 1, 1, 1, 1, 1],
* [1, 1, 1, 1, 1, 1, 1, 1, 1],
* [1, 1, 1, 1, 1, 1, 1, 1, 1],
* ];
* const yArray = [1, 1, 1, 1];
* // Create a dataset from the JavaScript array.
* const xDataset = tf.data.array(xArray);
* const yDataset = tf.data.array(yArray);
* // Zip combines the `x` and `y` Datasets into a single Dataset, the
* // iterator of which will return an object containing of two tensors,
* // corresponding to `x` and `y`. The call to `batch(4)` will bundle
* // four such samples into a single object, with the same keys now pointing
* // to tensors that hold 4 examples, organized along the batch dimension.
* // The call to `shuffle(4)` causes each iteration through the dataset to
* // happen in a different order. The size of the shuffle window is 4.
* const xyDataset = tf.data.zip({xs: xDataset, ys: yDataset})
* .batch(4)
* .shuffle(4);
* const model = tf.sequential({
* layers: [tf.layers.dense({units: 1, inputShape: [9]})]
* });
* model.compile({optimizer: 'sgd', loss: 'meanSquaredError'});
* const history = await model.fitDataset(xyDataset, {
* epochs: 4,
* callbacks: {onEpochEnd: (epoch, logs) => console.log(logs.loss)}
* });
* ```
*
* @param dataset A dataset object. Its `iterator()` method is expected to
* generate a dataset iterator object, the `next()` method of which is
* expected to produce data batches for evaluation. The return value of the
* `next()` call ought to contain a boolean `done` field and a `value`
* field.
*
* The `value` field is expected to be an object of with fields
* `xs` and `ys`, which point to the feature tensor and the target tensor,
* respectively. This case is for models with exactly one input and one
* output (e.g. a sequential model). For example:
* ```js
* {value: {xs: xsTensor, ys: ysTensor}, done: false}
* ```
*
* If the model has multiple inputs, the `xs` field of `value` should
* be an object mapping input names to their respective feature tensors.
* For example:
* ```js
* {
* value: {
* xs: {
* input_1: xsTensor1,
* input_2: xsTensor2
* },
* ys: ysTensor
* },
* done: false
* }
* ```
* If the model has multiple outputs, the `ys` field of `value` should
* be an object mapping output names to their respective target tensors.
* For example:
* ```js
* {
* value: {
* xs: xsTensor,
* ys: {
* output_1: ysTensor1,
* output_2: ysTensor2
* },
* },
* done: false
* }
* ```
* @param args A `ModelFitDatasetArgs`, containing optional fields.
*
* @return A `History` instance. Its `history` attribute contains all
* information collected during training.
*
* @doc {heading: 'Models', subheading: 'Classes', ignoreCI: true}
*/
fitDataset(dataset: Dataset, args: ModelFitDatasetArgs): Promise;
/**
* Runs a single gradient update on a single batch of data.
*
* This method differs from `fit()` and `fitDataset()` in the following
* regards:
* - It operates on exactly one batch of data.
* - It returns only the loss and metric values, instead of
* returning the batch-by-batch loss and metric values.
* - It doesn't support fine-grained options such as verbosity and
* callbacks.
*
* @param x Input data. It could be one of the following:
* - A `tf.Tensor`, or an Array of `tf.Tensor`s (in case the model has
* multiple inputs).
* - An Object mapping input names to corresponding `tf.Tensor` (if the
* model has named inputs).
* @param y Target data. It could be either a `tf.Tensor` or multiple
* `tf.Tensor`s. It should be consistent with `x`.
* @returns Training loss or losses (in case the model has
* multiple outputs), along with metrics (if any), as numbers.
*
* @doc {heading: 'Models', subheading: 'Classes'}
*/
trainOnBatch(x: Tensor | Tensor[] | {
[inputName: string]: Tensor;
}, y: Tensor | Tensor[] | {
[inputName: string]: Tensor;
}): Promise;
/** @nocollapse */
static fromConfig(cls: serialization.SerializableConstructor, config: serialization.ConfigDict, customObjects?: serialization.ConfigDict, fastWeightInit?: boolean): T;
/**
* Setter used for force stopping of LayersModel.fit() (i.e., training).
*
* Example:
*
* ```js
* const model = tf.sequential();
* model.add(tf.layers.dense({units: 1, inputShape: [10]}));
* model.compile({loss: 'meanSquaredError', optimizer: 'sgd'});
* const xs = tf.ones([8, 10]);
* const ys = tf.zeros([8, 1]);
*
* const history = await model.fit(xs, ys, {
* epochs: 10,
* callbacks: {
* onEpochEnd: async (epoch, logs) => {
* if (epoch === 2) {
* model.stopTraining = true;
* }
* }
* }
* });
*
* // There should be only 3 values in the loss array, instead of 10 values,
* // due to the stopping after 3 epochs.
* console.log(history.history.loss);
* ```
*/
set stopTraining(stop: boolean);
get stopTraining(): boolean;
getConfig(): any;
}