Report Customer
Ve 0.2 Uniswap

Smart Contract Audit
Uniswap. v4-core

5th September 2024 \/\ ABDK

, Consulting

Contents

Changelog

Introduction

Project scope

Methodology

Our find

ings

Major Issues

CVF-1.
CVF-2.
CVF-3.
CVF-4.
CVF-5.
CVF-6.
CVF-7.
CVF-8.
CVF-9.

CVF-10.
CVF-11.
CVF-12.
CVF-13.
CVF-14.
CVF-15.
CVF-16.
CVF-17.

Reported e e e e e e
Reported e e e e e e
Reported e e e
Reported e e e e e
Reported e e e e e
Reported e e e e e
Reported e e e e
Reported e e e e e e e
Reported e e e e e e e
Reported e e e e
Reported e e
Reported e e e
Reported e e
Reported e e
Reported e e
Reported e e
Reported e e

Moderate Issues

CVF-18.
CVF-19.
CVF-20.
CVF-21.
CVF-22.
CVF-23.
CVF-24.
CVF-25.
CVF-26.
CVF-27.
CVF-28.
CVF-29.
CVF-30.
CVF-31.

Reported e e e
Reported e e e e
Reported e e e
Reported e
Reported e e
Reported e e e
Reported e e e e
Reported e e e
Reported e e e e e e
Reported e e
Reported e e e
Reported e e e
Reported e e
Reported e e e

CVF-32. Reported o i e e e e e e 26
CVF-33. Reported e e e e e 27
CVF-34. Reported o e e e e e e 27
CVF-35. Reported e e e e e 28
CVF-36. Reported e e e e 28
CVF-37. Reported e e e e e 29
CVF-38. Reported e e e 29
CVF-39. Reported o e e e e 29
CVF-40. Reported o e e e e e 30
CVF-41. Reported o e e e e e e e e 30
CVF-42. Reported i e e e e e e e e e 30
CVF-43. Reported e e e e 31
CVF-44. Reported o e e e e e e e 31
CVF-45. Reported o e e e e e e 32
CVF-46. Reported e e e e e 32
CVF-47. Reported e e e e e 33
CVF-48. Reported e e e e e 33
CVF-49. Reported e e e e e 34
CVF-50. Reported e e e e 34
Minor Issues 35
CVF-51. Reported e e e e 35
CVF-52. Reported e e 35
CVF-53. Reported e e e e 35
CVF-54. Reported e e e e e e 36
CVF-55. Reported e e e e 36
CVF-56. Reported e e e 36
CVF-57. Reported e e e e 37
CVF-58. Reported e e e e 37
CVF-59. Reported e e e e e 37
CVF-60. Reported e e e 38
CVF-61. Reported e e e 38
CVF-62. Reported e e e e 38
CVF-63. Reported e e e e e e 39
CVF-64. Reported e e e e 39
CVF-65. Reported o e e e 39
CVF-66. Reported e e e e 40
CVF-67. Reported e e e e 40
CVF-68. Reported i e e e 40
CVF-69. Reported e e e 41
CVF-70. Reported o e e e 41
CVF-71. Reported e e e e e e 41
CVF-72. Reported e e e e e e e 41
CVF-73. Reported e e e 42
CVF-74. Reported i e e e e e e 42
CVF-75. Reported e e e e e 42

CVF-76. Reported e e e e e e 43
CVF-77. Reported e e e e e 43
CVF-78. Reported o e e e e 43
CVF-79. Reported e e e e 43
CVF-80. Reported e e e e 44
CVF-81. Reported i e e e 44
CVF-82. Reported e e e e 44
CVF-83. Reported e e e 45
CVF-84. Reported o e e e e e 45
CVF-85. Reported e e e 45
CVF-86. Reported e e e e e 46
CVF-87. Reported e e e 46
CVF-88. Reported e e e 46
CVF-89. Reported e e e 46
CVF-90. Reported e e e e 47
CVF-91. Reported e e e e 47
CVF-92. Reported e e e 47
CVF-93. Reported e e e e 47
CVF-94. Reported o e e e e e 48
CVF-95. Reported e e e e 48
CVF-96. Reported e e e e 48
CVF-97. Reported e e e e e e e 49
CVF-98. Reported e e e 49
CVF-99. Reported e e e e 49
CVF-100. Reported e e e e e 50
CVF-101. Reported e e e e e e 50
CVF-102. Reported i i e e e e e e e e 50
CVF-103. Reported e e e e e e e e e e e e 51
CVF-104. Reported o i e e e e e e 51
CVF-105. Reported i e e e 51
CVF-106. Reported e e e e 52
CVF-107. Reported i e e e e e e 52
CVF-108. Reported e e e 52
CVF-109. Reported e e e e 53
CVF-110. Reported e e e e e 53
CVF-111. Reported e e e e e e 53
CVF-112. Reported i e e e e e e 54
CVF-113. Reported e e e e e e e 54
CVF-114. Reported e e e e e e e 54
CVF-115. Reported e e e e e 55
CVF-116. Reported e e e e 55
CVF-117. Reported e e e e e e 95
CVF-118. Reported i e e e e e e e 56
CVF-119. Reported e e e e e e e e e e e e 56
CVF-120. Reported e e e e 56
CVF-121. Reported e e e e e 56

CVF-122.
CVF-123.
CVF-124.
CVF-125.
CVF-126.
CVF-127.
CVF-128.
CVF-129.
CVF-130.
CVF-131.
CVF-132.
CVF-133.
CVF-134.
CVF-135.
CVF-136.
CVF-137.
CVF-138.
CVF-139.
CVF-140.
CVF-141.
CVF-142.
CVF-143.
CVF-144.
CVF-145.
CVF-146.
CVF-147.
CVF-148.
CVF-149.
CVF-150.
CVF-151.
CVF-152.
CVF-153.
CVF-154.
CVF-155.
CVF-156.
CVF-157.
CVF-158.
CVF-159.
CVF-160.
CVF-161.
CVF-162.
CVF-163.
CVF-164.
CVF-165.
CVF-166.
CVF-167.

Reported e 57
Reported e e e 57
Reported e 57
Reported e e 58
Reported e e e e 59
Reported e 60
Reported e e e e 60
Reported e e 60
Reported e e e 60
Reported e e e 61
Reported e 61
Reported e e e 61
Reported e 62
Reported e e e 62
Reported e e e e 62
Reported e 63
Reported e e 63
Reported e e e 63
Reported e e e 64
Reported e e 64
Reported e e e 64
Reported e e e 64
Reported e e e 65
Reported e e 65
Reported e e e 65
Reported e e e 66
Reported e 66
Reported e e e e 66
Reported e e 66
Reported e e 67
Reported e e e e 67
Reported e 67
Reported e e 67
Reported e 68
Reported e e 68
Reported e e e 68
Reported e e 69
Reported e e e 69
Reported e e 69
Reported e e 70
Reported e e 70
Reported e 70
Reported e e 71
Reported e e e 71
Reported e e 71
Reported e e 72

CVF-168.
CVF-169.
CVF-170.
CVF-171.
CVF-172.
CVF-173.
CVF-174.
CVF-175.
CVF-176.

Reported e 72
Reported e e e 72
Reported e 73
Reported e e 73
Reported e e e e 73
Reported e 73
Reported e e e e 74
Reported e e 74
Reported e e e 74

1 Changelog

I S

05.09.24 A. Zveryanskaya Initial Draft
0.2 05.09.24 A. Zveryanskaya Minor revision
0.9 05.09.24 A. Zveryanskaya Release

ABDK 7

2 Introduction

The following document provides the result of the audit performed by ABDK Consulting
(Mikhail Vladimirov and Dmitry Khovratovich) at the customer request. The audit goal is a
general review of the smart contracts structure, critical/major bugs detection and issuing
the general recommendations.

Uniswap V4, the latest iteration of the Uniswap protocol, is a significant advancement in
decentralized exchanges (DEXs) and automated market makers (AMMs).

ABDK 8

3 Project scope

We were asked to review:
e Original Code

Files:

ERC6909.sol
Exttload.sol
ProtocolFees.sol

interfaces/callback/
IUnlockCallback.sol

interfaces/external/

IERC20Minimal.sol

interfaces/

|IExtsload.sol

IPoolManager.sol

libraries/

BitMath.sol
UnsafeMath.sol
FullMath.sol

Lock.sol
ParseBytes.sol
ProtocolFeeLibrary.sol
SqrtPriceMath.sol

TickBitmap.sol

ABDK

ERC6909Claims.sol Extsload.sol

NoDelegateCall.sol PoolManager.sol

IERC6909Claims.sol

|Exttload.sol IHooks.sol

GRS R IProtocolFees.sol

troller.sol

CurrencyDelta.sol CustomRevert.sol
FixedPoint96.sol FixedPoint128.sol
Hooks.sol LiquidityMath.sol
LPFeeLibrary.sol NonZeroDeltaCount.sol
Pool.sol Position.sol
Reserves.sol SafeCast.sol
StateLibrary.sol SwapMath.sol
TickMath.sol TransientStateLibrary.sol

https://github.com/Uniswap/v4-core/blob/4caac19fcecbe99e830c93d4022c5acbc22ecea2

types/
BalanceDelta.sol BeforeSwapDelta.sol Currency.sol

Poolld.sol PoolKey.sol Slot0.sol

All found issues were left as is.
After fixing the indicated issues, the smart contracts should be re -audited.

ABDK

10

4

Methodology

The methodology is not a strict formal procedure, but rather a selection of methods and
tactics combined differently and tuned for each particular project, depending on the
project structure and technologies used, as well as on client expectations from the audit.

» General Code Assessment. The code is reviewed for clarity, consistency, style,

and for whether it follows best code practices applicable to the particular
programming language used. We check indentation, naming convention,
commented code blocks, code duplication, confusing names, confusing, irrelevant,
or missing comments etc. At this phase we also understand overall code structure.

Entity Usage Analysis. Usages of various entities defined in the code are analysed.
This includes both: internal usages from other parts of the code as well as potential
external usages. We check that entities are defined in proper places as well as their
visibility scopes and access levels are relevant. At this phase, we understand overall
system architecture and how different parts of the code are related to each other.

Access Control Analysis. For those entities, that could be accessed externally,

access control measures are analysed. We check that access control is relevant
and done properly. At this phase, we understand user roles and permissions, as
well as what assets the system ought to protect.

Code Logic Analysis. The code logic of particular functions is analysed for
correctness and efficiency. We check if code actually does what it is supposed to
do, if that algorithms are optimal and correct, and if proper data types are used. We
also make sure that external libraries used in the code are up to date and relevant to
the tasks they solve in the code. At this phase we also understand data structures
used and the purposes they are used for.

We classify issues by the following severity levels:

Critical issue directly affects the smart contract functionality and may cause a
significant loss.

Major issue is either a solid performance problem or a sign of misuse: a slight code
modification or environment change may lead to loss of funds or data. Sometimes it
is an abuse of unclear code behaviour which should be double checked.

Moderate issue is not an immediate problem, but rather suboptimal performance in
edge cases, an obviously bad code practice, or a situation where the code is
correct only in certain business flows.

Recommendations contain code style, best practices and other suggestions.

ABDK 11

5 Our findings

We found 17 major, and a few less important issues.

Major

ABDK

Info

17

Fixed

12

22

24

36

53

55

59

62

68

6 Majorlssues

CVF -1 Reported

+ Category Flaw » Source TickBitmap.sol
Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of

the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external -
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

sdiv(tick, tickSpacing),
slt(smod(tick, tickSpacing), 0)

wordPos := sar(8, tick)
bitPos := and(tick, Oxff)

if smod(tick, tickSpacing) {

mstore(0x20, tick)
mstore(0x40, tickSpacing)

tick := sdiv(tick, tickSpacing)
mstore(0, sar(8, tick))

sstore(slot, xor(sload(slot), shl(and(tick, Oxff), 1)))

ABDK 13

44

55

59

CVF -2 Reported

+ Category Flaw » Source Position.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

mstore(0x06, tickUpper) // [0x23, 0x26)
mstore(0x03, tickLower) // [0x20, 0x23)
mstore(0, owner) // [0x0c, 0x20)

CVF -3 Reported

+ Category Flaw » Source TickMath.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: “if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

let mask := sar(255, tick)

absTick := xor(mask, add(mask, tick))

ABDK 14

CVF -4 Reported

+ Category Flaw * Source SqrtPriceMath.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

105 if iszero(gt(sqrtPX96, quotient)) {

131 if or(iszero(sqrtPX96), iszero(liquidity)) {
157 if or(iszero(sqrtPX96), iszero(liquidity)) {
187 if iszero(sqrtPriceAX96) {

205 | let diff := sub(a, b)

ABDK 15

29

30

78

CVF -5 Reported

+ Category Flaw + Source SwapMath.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

let nextOrLimit := xor(lt(sqrtPriceNextX96, sqrtPriceLimitX96),
— zeroForOne)
let symDiff := xor(sqrtPriceNextX96, sqrtPriceLimitX96)
sqrtPriceTargetX96 := xor(sqrtPriceLimitX96, mul(symDiff,
— nextOrLimit))

CVF-6 Reported

+ Category Procedural ¢ Source SwapMath.sol
Description Underflow shouldn't be possible here, but the logic that is supposed to

guarantee this is in other files. Relying on it introduces hidden relationship between distant
code parts.

Recommendation Use safe subtraction.

feeAmount = uint256(-amountRemaining) - amountIn;

ABDK 16

CVF -7 Reported

+ Category Flaw + Source ProtocolFeeLibrary.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

27 let isOneForZeroFeeOk := lt(self, FEE 1 THRESHOLD)
38 | let numerator := mul(self, lpFee)

40 swapFee := sub(add(self, lpFee), divRoundingUp)

CVF -8 Reported

o Category Overflow/Underflow e Source Pool.sol

Description Phantom overflow is possible here.

Recommendation Use the “mulDiv" function.

384 uint256 delta = (step.amountIn + step.feeAmount) * protocolFee /
— ProtocolFeelLibrary.PIPS DENOMINATOR;

ABDK 17

552

554

28

19

CVF -9 Reported

+ Category Flaw e Source Pool.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

liquidityGrossAfter,

shl1(128, liquidityNet)

CVF-10 Reported

o Category Overflow/Underflow » Source NonZeroDeltaCount.sol

Description Relying on business-level constraints for preventing low -level problems,
such as underflow is a bid practice, as it introduces hidden relationships in the code.

Recommendation Add proper underflow check.

/// Current usage ensures this will not happen because we call
— decrement with known boundaries (only up to the number of
— times we call increment).

CVF-11 Reported

o Category Unclear behavior + Source Reserves.sol

Description This doesn't allow distinguishing value == 0 and value == ZERO_BALANCE.
Recommendation Explicitly forbid passing “"ZERO_BALANCE" as "value".

if (value == 0) value = ZERO BALANCE;

I

ABDK 18

30

47

12

CVF-12 Reported

+ Category Flaw + Source TransientStatelLibrary.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

mstore(32, currency)

mstore(0, caller)
mstore(32, currency)

CVF-13 Reported

+ Category Flaw + Source CurrencyDelta.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: “if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

mstore(0, caller)
mstore(32, currency)

ABDK 19

12

42

23

CVF-14 Reported

+ Category Flaw + Source LiquidityMath.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

z := add(x, vy)

CVF-15 Reported

+ Category Flaw + Source Extsload.sol

Description This assumes that the copied ABI offset is 0x20 which is not actually guar-
anteed.

Recommendation Explicitly store the 0x20 value at the memory offset zero.

// Copy the abi offset of dynamic array and the length of the array
— to memory.
calldatacopy(0, 0x04, 0x40)

CVF-16 Reported

+ Category Flaw + Source Exttload.sol

Description This assumes that the copied ABI offset is 0x20 which is not actually guar-
anteed.

Recommendation Explicitly store the 0x20 value at the memory offset zero.

// Copy the abi offset of dynamic array and the length of the array
— to memory.
calldatacopy (0, 0x04, 0x40)

I

ABDK 20

CVF-17 Reported

« Category Unclear behavior » Source ProtocolFees.sol

Description As “data” is allowed to be shorter than 32 bytes, this could read after the
“data” contents.

Recommendation Require “data.length” to be exactly 32 bytes.

80 returnData := mload(add(data, 0x20))

ABDK 21

46

64

67

/7 Moderate Issues

CVF-18 Reported

+ Category Procedural + Source Currency.sol

Description Any data returned by the failed call is lost here.

Recommendation Included the data, returned by the failed call, into the error.

mstore(0x00, Oxf4b3blbc) // NativeTransferFailed() .
revert(0xlc, 0x04)

CVF-19 Reported

+ Category Procedural * Source Currency.sol

Description Any data returned by the failed call is lost here.

Recommendation Included the data, returned by the failed call, into the error.

mstore(0x00, Oxf27f64ed4) // "ERC20TransferFailed() .
revert(0xlc, 0x04)

CVF-20 Reported

o Category Documentation + Source Currency.sol

Description The comment is inaccurate, as this line doesn't restore, but rather set to zero
the overwritten part of the free memory pointer. Such technic looks like a dirty hack.

Recommendation Use memory referred by the free memory pointer rather than the first
two memory slots. This would make memory access a bit more expensive, but will make
restoring the free memory pointer unnecessary.

mstore(0x34, 0) // Restore the part of the free memory pointer that
— was overwritten.

ABDK 22

CVF-21 Reported

« Category Unclear behavior » Source Slot0.sol

Description The maximum fee value looks arbitrary.

Recommendation Implement support for the full fees range, i.e. up to 100%.

20 * the maximum is 1000 - meaning the maximum protocol fee is 0.1%

CVF-22 Reported

o Category Suboptimal ¢ Source Slot0.sol

Recommendation The bitwise “and” is redundant, as Solidity permits junk in unused bits
of narrow types.

42 sqrtPriceX96 := and(MASK 160 BITS, packed)
54 | protocolFee := and(MASK 24 BITS, shr(PROTOCOL FEE OFFSET, packed))

60 | 1lpFee := and(MASK 24 BITS, shr(LP_FEE OFFSET, packed))

CVF-23 Reported

» Category Suboptimal » Source Slot0.sol

Recommendation The “signextend” opcode is redundant, as Solidity permits junk in
unused bits of narrow types.

48 tick := signextend(2, shr(TICK OFFSET, packed))

ABDK 23

CVF - 24 Reported

« Category Suboptimal e Source SafeCast.sol

Recommendation This could be simplified as: function toUint160(uint256 x) internal pure
returns (uint160 y) {if ((y = uint160(x)) != x) _revertOverflow(); }

21 | function toUintl60(uint256 x) internal pure returns (uintl60) {
if (x >= 1 << 160) revertOverflow();
return uintl60(x);

CVF-25 Reported

o Category Suboptimal » Source SafeCast.sol

Recommendation This could be simplified as: function toUint128(uint256 x) internal pure
returns (uint128 y) {if ((y = uint128(x)) != x) _revertOverflow(); }

29 | function toUint128(uint256 x) internal pure returns (uintl128) {
30 if (x >= 1 << 128) revertOverflow();
return uintl28(x);

CVF-26 Reported

o Category Suboptimal » Source SafeCast.sol

Recommendation This could be simplified as: function tolnt128(int256 x) internal pure
returns (int128 y) {if ((y = int128(x)) != x) _revertOverflow(); }

37 | function toInt128(int256 x) internal pure returns (intl128) {
unchecked {
if (((1 << 127) + uint256(x)) >> 128 == uint256(0)) return
— 1ntl28(x);
40 _revertOverflow();

ABDK 24

47

50

55

13

CVF-27 Reported

« Category Suboptimal e Source SafeCast.sol

Recommendation This could be simplified as: function tolnt256(uint256 x) internal pure
returns (int256 y) { if ((y = int256(x)) < 0) _revertOverflow(); }

function toInt256(uint256 x) internal pure returns (int256) {

if (int256(x) >= 0) return int256(x);
_revertOverflow();

CVF-28 Reported

o Category Suboptimal » Source SafeCast.sol

Recommendation This could be simplified as: function tolnt128(uint256 x) internal pure
returns (int128 y) { y = int128(int256(x)); if (y <0 || uint128(y) !'= x) _revertOverflow(); }

function toInt128(uint256 x) internal pure returns (intl28) {
if (x >= 1 << 127) revertOverflow();
return intl128(int256(x));

CVF-29 Reported

o Category Suboptimal * Source BitMath.sol

Recommendation This function could be significantly optimized. See this implementation:
https://github.com/Vectorized/solady/blob/main/src/utils/LibBit.sol#L12-1L28

function mostSignificantBit(uint256 x) internal pure returns (uint8
— r) {

ABDK 25

55

14

16

CVF-30 Reported

« Category Suboptimal + Source BitMath.sol

Recommendation This function could be significantly optimized. See this implementation:
https://github.com/Vectorized/solady/blob/main/src/utils/LibBit.sol#L47-L69

function leastSignificantBit(uint256 x) internal pure returns (uint8
— r) {

CVF-31 Reported

o Category Suboptimal + Source FullMath.sol

Description While this function is very efficient in a general case, for specific cases better
approaches do exist. For example, when “a", "b", or “"denominator” is a known power of 2,
multiplication or division could be replace with shift. When “denominator” is known at the
compile time, its modular inverse and shift should be precomputer. Also, if “denominator”
fits into 128 bits, simple math tricks could be used: https://medium.com/coinmonks/math-
in-solidity -part-3-percents-and-proportions-4db014e080b1#4821

Recommendation Implement efficient versions of this function for specific cases.

function mulDiv(uint256 a, uint256 b, uint256 denominator) internal
< pure returns (uint256 result) {

CVF-32 Reported

o Category Suboptimal » Source TickBitmap.sol

Recommendation This function could be simplified by adding (tickSpacing « 24) to the
tick value before the division, and subtracting 224 from the division result. This would
make the division effectively unsigned, so no need to subtract one from the result in case
of a negative tick.

function compress(int24 tick, int24 tickSpacing) internal pure
— returns (int24 compressed) {

ABDK 26

CVF-33 Reported

« Category Unclear behavior * Source TickBitmap.sol

Description This function permits negative tick spacings, which is weird.

Recommendation Make the “tickSpacing” argument unsigned or explicitly forbid negative
“tickSpacing” values.

16 | function compress(int24 tick, int24 tickSpacing) internal pure
— returns (int24 compressed) {

CVF-34 Reported

o Category Unclear behavior » Source TickBitmap.sol

Description This works correctly only when “tick"” is a factor of “tickSpacing”.

Recommendation Explicitly forbid “tick” values that are not factors of “tickSpacing” or do
proper compression here.

59 tick := sdiv(tick, tickSpacing)

ABDK 27

40

49
50

59
60

78

80

CVF-35 Reported

+ Category Flaw » Source CustomRevert.sol

Description Here local variables of a type narrower than 256 bits are accessed
as it they were 256 bit wide. Solidity documentation warns that: "“if you access
variables of a type that spans less than 256 bits (for example uint64, address, or
bytes16), you cannot make any assumptions about bits not part of the encoding of
the type” (https://docs.soliditylang.org/en/v0.8.26/assembly.html#access-to-external-
variables-functions-and-libraries).

Recommendation Properly clean extra bits between using narrow variables as recom-
mended in the documentation: “to be safe, always clear the data properly before you use
it in a context where this is important”.

mstore(0x04, value)

mstore(0x04, valuel)
mstore(0x24, value2)

mstore(0x04, valuel)
mstore(0x24, value?)

CVF-36 Reported

o Category Procedural » Source Position.sol

Description While the "mulDiv” function is very efficient in a generic case, for specific
cases better approaches do exist.

Recommendation Implement and use here the “mulShr” function similar to “mulDiv" but
doing right shift instead of division.

FullMath.mulDiv(feeGrowthInside0X128 - self.feeGrowthInsideOLastX128
— , liquidity, FixedPoint128.Q128);

FullMath.mulDiv(feeGrowthInsidelX128 - self.feeGrowthInsidellLastX128
— , liquidity, FixedPoint128.Q128);

ABDK 28

63

269

51

CVF-37 Reported

« Category Unclear behavior » Source TickMath.sol

Description This assumes MIN_TICK = -MAX_TICK.

Recommendation Do not rely on that assumption and use both, the “MIN_TICK" and the
"MAX_TICK" constants.

if gt(absTick, MAX TICK) {

CVF-38 Reported

« Category Suboptimal + Source TickMath.sol

Description It could make sense to perform a few more iterations estimating the logarithm,
in order to make the "getSqrtPriceAtTick” call more rare.

Recommendation Perform experiments to empirically find the optimal number of iterations.

tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <=
— sqrtPriceX96 ? tickHi : tickLow;

CVF-39 Reported

« Category Unclear behavior » Source SwapMath.sol

Description There is no range check for this argument.

Recommendation Add a check to ensure feePips <= MAX_FEE_PIPS.

uint24 feePips

ABDK 29

38

100

112

118

194

CVF-40 Reported

« Category Unclear behavior + Source ProtocolFeeLibrary.sol
Description It seems that here “self” is not a tightly packed pair of fees, but rather just a

single fee. In other placed, the “uint16" is used for a single fee, while “uint24" is used for
a packed pair of fees.

Recommendation Use the "uint16” type for “self” here.

let numerator := mul(self, 1pFee)

CVF-41 Reported

o Category Unclear behavior + Source Pool.sol

Description There are no range checks for the arguments.

Recommendation Add proper range checks.

function initialize(State storage self, uintl60 sqrtPriceX96, uint24
< protocolFee, uint24 1pFee)

function setProtocolFee(State storage self, uint24 protocolFee)
< internal {

function setlLPFee(State storage self, uint24 1pFee) internal {

CVF-42 Reported

o Category Documentation + Source Pool.sol

Description Despite the comment, this code doesn't actually add fees somewhere, but
rather calculates the amounts that ought to be added.

Recommendation Rephrase the comment.

// Fees earned from LPing are added to the user's currency delta.
feeDelta = toBalanceDelta(feesOwed0.toInt128(), feesOwedl.toInt1l28()
—);

I

ABDK 30

535

12

19

26

CVF-43 Reported

« Category Suboptimal * Source Pool.sol

Description This logic seems redundant, as the initial fee growth values for a tick doesn't
matter.

Recommendation Remove this logic and leave zero initial values.

// by convention, we assume that all growth before a tick was
— initialized happened below the tick

if (tick <= self.slot0O.tick()) {
Reported. feeGrowthOutside0X128
Reported. feeGrowthOutsidelX128

self.feeGrowthGlobal0X128;
self.feeGrowthGloballX128;

CVF-44 Reported

« Category Unclear behavior » Source ParseBytes.sol

Description There is no length check for the “result” array, so data after the array could
be read here.

Recommendation Add proper length check.

selector := mload(add(result, 0x20))
lpFee := mload(add(result, 0x60))

hookReturn := mload(add(result, 0x40))

ABDK 31

CVF-45 Reported

« Category Suboptimal * Source Hooks.sol

Description This way of error reporting doesn't allow distinguishing the following two
situations: i) a call failed with no revert reason, and ii) a call failed with “FailedHookCall"
error.

Recommendation Consider either always bubbling up the unchanged revert reason re-
turned by a call, or (preferred) to always wrap the revert reason, returned by a call, into a
named error.

132 if iszero(returndatasize()) {
// if the call failed without a revert reason, revert with °
— FailedHookCall()"
mstore(0, 0x36bc48c5)
revert(0xlc, 0x04)

}
// bubble up revert

returndatacopy (0, 0, returndatasize())
revert(0, returndatasize())

CVF-46 Reported

» Category Suboptimal e Source Statelibrary.sol

Description This zeros high bits of the free memory counter regardless of what was the
original value of these bits.

Recommendation Properly restore the original bits.

262 'mstore(0x26, 0) // rewrite 0x26 to 0

ABDK 32

CVF-47 Reported

+ Category Bad naming » Source IProtocolFees.sol

Description The semantics of the arguments and returned values is unclear.

Recommendation Give descriptive names to the unnamed arguments and returned values
and/or explain then in documentation comments.

23 [function protocolFeesAccrued(Currency) external view returns (|
| < uint256); |

26 \/function setProtocolFee(PoolKey memory key, uint24) external; ‘

32 \‘/function collectProtocolFees(address, Currency, uint256) external |
\ < returns (uint256); ‘

\

CVF-48 Reported

+ Category Procedural ¢ Source ERC6909.so0l

Description Here a low-level underflow check is used to enforce a business-level con-
straint, which is a bad practice, as it makes code more error-prone and harder to read.

Recommendation Implement explicit balance and allowance checks.

36 ‘:ﬁbalanCGOf[msg.sender] [id] -= amount; ‘

48 \ if (allowed != type(uint256).max) allowance[sender][msg.sender][\
\ — id] = allowed - amount; ‘

51 \/balanceOf[sender] [id] -= amount; \

96 {/balanceOf[sender] [id] -= amount; ‘

ABDK 33

18

53

CVF-49 Reported

« Category Procedural » Source ERC6909Claims.sol

Description Here a low-level underflow check is used to enforce a business-level con-
straint, which is a bad practice, as it makes code more error-prone and harder to read.

Recommendation Implement an explicit allowance check.

allowance[from] [sender][id] = senderAllowance - amount;

CVF-50 Reported

« Category Procedural » Source ProtocolFees.sol

Description Here a low-level underflow check is used to enforce a business-level con-
straint, which is a bad practice, as it makes code more error-prone and harder to read.

Recommendation Implement an explicit balance check.

protocolFeesAccrued[currency] -= amountCollected;

ABDK 34

8 MinorlIssues

CVF-51 Reported

+ Category Procedural + Source Currency.sol

Description This version requirement looks arbitrary.

Recommendation Specify as “*0.8.0" unless there is something special regarding this
particular version. Also relevant for: PoolKey.sol, BalanceDelta.sol, Slot0.sol, Poolld.sol,
BeforeSwapDelta.sol, SafeCast.sol, BitMath.sol, FullMath.sol, FixedPoint128.sol, Tick-
Bitmap.sol, Position.sol, TickMath.sol, UnsafeMath.sol, FixedPoint96.sol, SqrtPrice-
Math.sol, SwapMath.sol, ProtocolFeeLibrary.sol, LPFeeLibrary.sol, Pool.sol, Parse-
Bytes.sol, Hooks.sol, Lock.sol, NonZeroDeltaCount.sol, Reserves.sol, StateLibrary.sol,
TransientStateLibrary.sol, CurrencyDelta.sol, LiquidityMath.sol, IERC20Minimal.sol, IlUn-
lockCallback.sol, IExttload.sol, IHooks.sol, IProtocolFeeController.sol, IProtocolFees.sol,
IPoolManager.sol, Exttload.sol, NoDelegateCall.sol, ProtocolFees.sol, PoolManager.sol.

2 | pragma solidity ~0.8.20;

CVF-52 Reported

+ Category Procedural + Source Currency.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity "0.8.20;

CVF-53 Reported

« Category Procedural + Source Currency.sol

Recommendation This library should be moved into a separate file named “CurrencylLi-
brary.sol".

29 library CurrencylLibrary {

PN

ABDK 35

CVF-54 Reported

« Category Suboptimal + Source Currency.sol

Recommendation This errors could be made more useful by adding certain parameters
into them.

31 error NativeTransferFailed();)

34 \‘/error ERC20TransferFailed(); \

CVF-55 Reported

+ Category Procedural * Source PoolKey.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 {/pragma solidity ~0.8.19;

CVF-56 Reported

o Category Documentation + Source PoolKey.sol

Description Here “the first bit” sounds ambiguous.

Recommendation Rephrase as “the highest bit".

N\

13 \"/// @notice The pool swap fee, capped at 1 000 000. If the first bit |
\ — 1is 1, the pool has a dynamic fee and must be exactly equal to \
| — 0x800000 \

ABDK 36

16

31

45

CVF-57 Reported

« Category Procedural » Source BalanceDelta.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-58 Reported

o Category Suboptimal + Source BalanceDelta.sol

Recommendation This could be simplified as: balanceDelta := or(shl(128, _amount0),
shr(128(shl(128, _amountl))))

balanceDelta := or(shl(128, amount0), and(sub(shl(128, 1), 1),
< _amountl))

CVF-59 Reported

» Category Procedural » Source BalanceDelta.sol

Recommendation The functionality of these calls is quite simple and could be also incor-
porated into the assembly blocks for efficiency.

return toBalanceDelta(res0.toInt128(), resl.toIntl28());

return toBalanceDelta(res0.toInt128(), resl.toIntl128());

ABDK 37

19

24

CVF-60 Reported

« Category Procedural » Source Slot0.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-61 Reported

o Category Suboptimal ¢ Source Slot0.sol

Description So there are actually two fields for protocol fees, rather than one.

Recommendation Reflect this in the “layout” section above.

* Protocol fee, expressed in hundredths of a bip, upper 12 bits are
— for 1->0, and the lower 12 are for 0->1

CVF-62 Reported

o Category Documentation + Source Slot0.sol

Description The number format for thsi value is unclear.

Recommendation Explain in the documentation comment.

* Used for the 1lp fee, either static at initialize or dynamic via
— hook
* uint24 1pFee;

ABDK 38

CVF-63 Reported
« Category Readability * Source Slot0.sol
Recommendation This value could be rendered as “type(uint160).max".

32 |uintl60 internal constant MASK 160 BITS = 0
< XOOFF;

CVF-64 Reported
+ Category Readability » Source Slot0.sol
Recommendation This value could be rendered as “type(uint24).max".

33 'uint24 internal constant MASK 24 BITS = OxFFFFFF;

CVF-65 Reported

o Category Suboptimal » Source Slot0.sol

Description A protocol fee value is actually a pair of numbers, so using the “uint24" type
for it is confusing.

Recommendation Use a user-defined type wrapping “uint24".

52 function protocolFee(Slot0® packed) internal pure returns (uint24
— _protocolFee) {

77 function setProtocolFee(Slot® packed, uint24 protocolFee) internal
— pure returns (Slot@ result) {

ABDK 39

67

73

81

CVF-66 Reported

« Category Suboptimal * Source Slot0.sol

Description The value “not(MAX_160_BITS" is constant.

Recommendation Don't calculate it in run time.

_result := or(and(not(MASK 160 BITS), packed), and(MASK 160 BITS,
— _sqrtPriceX96))

CVF-67 Reported

o Category Suboptimal e Source Slot0.sol

Description The value “not(shl(TICK_OFFSET, MASK_24_BITS))" is constant.

Recommendation Don't calculate it in run time.

_result := or(and(not(shl(TICK OFFSET, MASK 24 BITS)), packed), shl
— (TICK OFFSET, and(MASK 24 BITS, tick)))

CVF-68 Reported

o Category Suboptimal + Source Slot0.sol

Description The value “not(shl(PROTOCOL_FEE_OFFSET, MASK_24_BITS))" is constant.

Recommendation Don't calculate it in run time.

and(not(shl(PROTOCOL FEE OFFSET, MASK 24 BITS)), packed),

ABDK 40

90

13

CVF-69 Reported

« Category Suboptimal * Source Slot0.sol

Description The value “not(shl(LP_FEE_OFFSET, MASK_24_BITS))" is constant.

Recommendation Don't calculate it in run time.

or(and(not(shl(LP_FEE OFFSET, MASK 24 BITS)), packed), shl(
— LP _FEE OFFSET, and(MASK 24 BITS, 1pFee)))

CVF-70 Reported

» Category Procedural e Source Poolld.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "0.8.20;

CVF-71 Reported

o Category Suboptimal + Source Poolld.sol

Description The value "mul(32, 5)" is constant.

Recommendation Don't calculate it in run time.

poolId := keccak256(poolKey, mul(32, 5))

CVF-72 Reported

+ Category Procedural » Source BeforeSwapDelta.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity ~0.8.20;

PN

ABDK 41

16

2

CVF-73 Reported

« Category Suboptimal e Source BeforeSwapDelta.sol

Description As this type actually encapsulates two values, using the "int256" type for
internal representation doesn’'t make much sense.

Recommendation Use "bytes32" instead.
// Upper 128 bits is the delta in specified tokens. Lower 128 bits

< 1s delta in unspecified tokens (to match the afterSwap hook)
type BeforeSwapDelta is int256;

CVF-74 Reported

o Category Suboptimal » Source BeforeSwapDelta.sol

Description The value “sub(shl(128, 1), 1)" is constant.

Recommendation Don't calculate it in run time.

beforeSwapDelta := or(shl(128, deltaSpecified), and(sub(shl(128, 1),
<~ 1), deltaUnspecified))

CVF-75 Reported

« Category Procedural » Source SafeCast.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

ABDK 42

CVF-76 Reported

« Category Procedural » Source BitMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity ~0.8.20;

CVF-77 Reported

+ Category Procedural ¢ Source FullMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity ~0.8.20;

CVF-78 Reported

» Category Suboptimal * Source FullMath.sol

Description The value "mulmod(a, b, denominator)” was already calculated inside the
"mulDiv" function.

Recommendation Reuse the already calculated value.

112 if (mulmod(a, b, denominator) != 0) {

CVF-79 Reported

« Category Procedural » Source FixedPoint128.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity ~0.8.20;

I

ABDK 43

CVF-80 Reported

« Category Procedural » Source FixedPoint128.sol

Description This library consists only of a constant.

Recommendation Move the constant to the top level and remove the library.

6 library FixedPoint128 {

CVF-81 Reported

+ Category Procedural » Source TickBitmap.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity ~0.8.20;

CVF-82 Reported

« Category Suboptimal * Source TickBitmap.sol

Description The subexpression "1 « bitPos” is calculated twice.

Recommendation Calculate once and reuse or calculate like this: unchecked{ mask = (1 «
uint256(bitPos) + 1) - 1;}

92 uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);

ABDK 44

CVF-83 Reported

« Category Procedural * Source TickBitmap.sol

Recommendation Multiplication by “tickSpacing” should be done in one place outside the
ternary operator.

99 ? (compressed - int24(uint24(bitPos - BitMath.mostSignificantBit(
— masked)))) * tickSpacing
100 : (compressed - int24(uint24(bitPos))) * tickSpacing;

112 ? (compressed + int24(uint24(BitMath.leastSignificantBit(masked) -
— bitPos))) * tickSpacing
(compressed + int24(uint24(type(uint8).max - bitPos))) *
— tickSpacing;

CVF -84 Reported

» Category Procedural » Source TickBitmap.sol

Recommendation Subtraction from “compressed” should be done in one place outside
the ternary operator.

99 ? (compressed - int24(uint24(bitPos - BitMath.mostSignificantBit(
— masked)))) * tickSpacing
100 : (compressed - int24(uint24(bitPos))) * tickSpacing;

CVF -85 Reported

« Category Procedural * Source TickBitmap.sol

Recommendation Addition to “compressed” should be done in one place outside the
ternary operator.

112 ? (compressed + int24(uint24(BitMath.leastSignificantBit(masked) -
— bitPos))) * tickSpacing
(compressed + int24(uint24(type(uint8).max - bitPos))) *
— tickSpacing;

I

ABDK 45

16

CVF-86 Reported

« Category Procedural » Source CustomRevert.sol

Description Specifying a compiler version range without upper bound is a bad practice,
as it is impossible to guarantee compatibility with future major releases.

Recommendation Specify as “*0.8.0". Also relevant for: |IERC6909Claims.sol,
IExtsload.sol, |[Exttload.sol, Extsload.sol, Exttload.sol, ERC6909Claims.sol,ERC6909.sol.

pragma solidity >=0.8.4;

CVF-87 Reported

+ Category Procedural ¢ Source CustomRevert.sol

Description This version requirement is inconsistent with other files in this code base.

pragma solidity >=0.8.4;

CVF-88 Reported

« Category Procedural » Source Position.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-89 Reported

o Category Suboptimal » Source Position.sol

Recommendation This error could be made more useful by adding certain parameters
into it.

error CannotUpdateEmptyPosition();

PN

ABDK 46

11

29

34

CVF-90 Reported

« Category Procedural » Source TickMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-91 Reported

o Category Suboptimal » Source TickMath.sol

Recommendation These errors could be made more useful by adding some parameters
into them.

error InvalidTick();

error InvalidSqrtPrice();

CVF-92 Reported

o Category Suboptimal » Source TickMath.sol

Recommendation This expression should use the "“MAX_SQRT_PRICE" and
“"MIN_SQRT_PRICE" constants instead of hardcoded values.

1461446703485210103287273052203988822378723970342 - 4295128739 - 1;

CVF-93 Reported
o Category Suboptimal » Source TickMath.sol

Recommendation This could be simplified as: MAX_TICK - MAX_TICK % tickSpacing

return (MAX TICK / tickSpacing) * tickSpacing;

PN

ABDK 47

CVF-94 Reported
« Category Suboptimal + Source TickMath.sol

Recommendation This could be simplified as: MIN_TICK - MIN_TICK % tickSpacing

41 return (MIN TICK / tickSpacing) * tickSpacing;

CVF-95 Reported

+ Category Procedural » Source TickMath.sol

Description The value “shl(128, 1)" is calculated twice.

Recommendation Calculate once and reuse.

75 price := xor(shl(128, 1), mul(xor(sh1(128, 1), ©
— xTffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))

CVF-96 Reported

o Category Suboptimal » Source TickMath.sol

Description The value "xor(shl(128, 1), Oxfffcb933bd6fad37aa2d162d1a594001)" is
actually a constant.

Recommendation Hardcode it instead of calculating.

75 price := xor(sh1(128, 1), mul(xor(shl1(128, 1), ©
— xfffcb933bd6fad37aa2d162d1a594001), and(absTick, 0x1)))

ABDK 48

CVF-97 Reported

« Category Suboptimal + Source TickMath.sol

Description These error bounds seem to be found analytically and could be too pessimistic.

Recommendation Iterate throw all valid ticks to empirically find the exact error bounds.
266 int24 tickLow = int24((log sqrtl0001 -
— 3402992956809132418596140100660247210) >> 128);

int24 tickHi = int24((log sqrtl0001 +
— 291339464771989622907027621153398088495) >> 128);

CVF-98 Reported

+ Category Procedural » Source UnsafeMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity "0.8.20;

CVF-99 Reported

o Category Procedural » Source FixedPoint96.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 pragma solidity "0.8.20;

ABDK 49

CVF-100 Reported

« Category Procedural » Source FixedPoint96.sol

Description This library consists only of constants.

Recommendation Move the constants to the top level and remove the library.

7 library FixedPoint96 {

CVF-101 Reported

+ Category Procedural » Source SqrtPriceMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity ~0.8.20;

CVF-102 Reported

« Category Suboptimal * Source SqrtPriceMath.sol

Recommendation These errors could be made more useful by adding certain parameters
into them.

15 error InvalidPriceOrLiquidity();
error InvalidPrice();
error NotEnoughLiquidity();
error PriceOverflow();

ABDK 50

CVF-103 Reported

« Category Procedural * Source SqrtPriceMath.sol

Description This line is the same in both branches.

Recommendation Do this calculation in one place before the conditional statement.

42 uint256 product amount * sqrtPX96;

55 'uint256 product

amount * sqrtPX96;

CVF-104 Reported

o Category Suboptimal » Source SqrtPriceMath.sol

Description The “mulDiv" function is very efficient in a generic case, while for particular
cases better approaches could exist.

Recommendation Implement and use here a “shiDiv" function similar to “mulDiv" but
performing left shift instead of multiplication.

92 : FullMath.mulDiv(amount, FixedPoint96.Q96, liquidity)

CVF-105 Reported

+ Category Procedural + Source SwapMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity "0.8.20;

ABDK 51

CVF-106 Reported

« Category Suboptimal + Source SwapMath.sol

Description The value "MAX_FEE_PIPS - _feePips" is calculated twice.

Recommendation Calculate once and reuse.

60 FullMath.mulDiv(uint256(-amountRemaining), MAX FEE PIPS -
— feePips, MAX FEE PIPS);

69 : FullMath.mulDivRoundingUp(amountIn, feePips, MAX FEE PIPS
< - _feePips);

100 feeAmount = FullMath.mulDivRoundingUp(amountIn, feePips,
— MAX FEE PIPS - feePips);

CVF-107 Reported

o Category Suboptimal ¢ Source SwapMath.sol

Description The value “-amountRemaining” is calculated twice.

Recommendation Calculate once and reuse.

60 FullMath.mulDiv(uint256(-amountRemaining), MAX FEE PIPS - feePips,
<> MAX_FEE_PIPS);

78 feeAmount = uint256(-amountRemaining) - amountIn;

CVF-108 Reported

» Category Procedural » Source ProtocolFeeLibrary.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 pragma solidity "0.8.20;

PN

ABDK 52

CVF-109 Reported

« Category Suboptimal + Source ProtocolFeeLibrary.sol

Description This value looks quite arbitrary.

Recommendation Support full fees range up to 100%.

51|// Max protocol fee is 0.1% (1000 pips)
uintl6 public constant MAX PROTOCOL FEE = 1000;

CVF-110 Reported

» Category Suboptimal e Source ProtocolFeeLibrary.sol

Description These values actually depend on the value of the "MAX_PROTOCL_FEE"
constant.

Recommendation Derive these values from the "MAX_PROTOCL_FEE" constant.

9 uint24 internal constant FEE 0 THRESHOLD = 1001;
10 'uint24 internal constant FEE 1 THRESHOLD = 1001 << 12;
CVF-111 Reported
o Category Procedural » Source LPFeelLibrary.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 pragma solidity "0.8.20;

ABDK 53

CVF-112 Reported

« Category Suboptimal o Source LPFeeLibrary.sol

Recommendation This error could be made more useful by adding certain parameters
into it.

12 error FeeToolLarge();

CVF-113 Reported

« Category Procedural » Source Pool.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity ~0.8.20;

CVF-114 Reported

o Category Suboptimal ¢ Source Pool.sol

Description Setting each field individually is suboptimal.

Recommendation Implement a function to pack all the components in a “slot0” value at
once.

108 self.slot@ = SlotO.wrap(bytes32(0)).setSqrtPriceX96(sqrtPriceX96).
— setTick(tick).setProtocolFee(protocolFee)
.setLpFee(1lpFee);

ABDK 54

CVF-115 Reported

« Category Unclear behavior » Source Pool.sol

Recommendation These functions should emit some events.

112 function setProtocolFee(State storage self, uint24 protocolFee)
— internal {

118 | function setlLPFee(State storage self, uint24 1pFee) internal {

CVF-116 Reported

o Category Suboptimal * Source Pool.sol

Description This check does more harm than good. It solves minor problem that apprear
rarely at cost of making the most comnon use case more expensive.

Recommendation Remove this check.

315 if ('!exactInput && (swapFee == LPFeelLibrary.MAX LP FEE)) {
InvalidFeeForExactOut.selector.revertWith();

}

CVF-117 Reported

+ Category Procedural + Source Pool.sol

Recommendation These checks should be done earlier.

325 if (params.sqrtPriceLimitX96 <= TickMath.MIN SQRT PRICE) {
PriceLimitOutOfBounds.selector.revertWith(params.
— sqrtPriceLimitX96);

}

332 if (params.sqrtPriceLimitX96 >= TickMath.MAX SQRT PRICE) {
PriceLimitOutOfBounds.selector.revertWith(params.
— sqrtPriceLimitX96);

ABDK 55

340

366

370

376

CVF-118 Reported

« Category Suboptimal * Source Pool.sol

Recommendation This condition could be simplified as: state.amountSpecifiedRemaining
I= 0 && state.sqrtPriceX96 != params.sqrtPriceLimitX96

CVF-119 Reported

+ Category Readability * Source Pool.sol

Recommendation Removing the logical “not” from this condition and interchanging cor-
responding branches would make code more readable.

if (!exactInput) {

CVF-120 Reported
« Category Readability * Source Pool.sol
Recommendation This line could be simplified using the "“-=" operator.

state.amountCalculated = state.amountCalculated - (step.amountIn +
— step.feeAmount).toInt256();

CVF-121 Reported

+ Category Readability + Source Pool.sol

Recommendation This line could be simplified using the “+=" operator.

state.amountCalculated = state.amountCalculated + step.amountOut.
— toInt256();

ABDK 56

CVF-122 Reported

« Category Suboptimal * Source Pool.sol

Description Setting two fields separately is suboptimal.

Recommendation Implement a function to set both fields at once.

431 self.slotO® = slotO@Start.setTick(state.tick).setSqrtPriceX96(state.
— sqrtPricex96);

CVF-123 Reported

« Category Procedural * Source ParseBytes.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

CVF-124 Reported

+ Category Procedural ¢ Source Hooks.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 pragma solidity "0.8.24;

ABDK 57

CVF-125 Reported

« Category Suboptimal * Source Hooks.sol

Recommendation These errors could be made more useful by adding certain parameters
into them.

70 error InvalidHookResponse();
73 |error FailedHookCall();

76 error HookDeltaExceedsSwapAmount();

ABDK 58

CVF-126 Reported

« Category Suboptimal * Source Hooks.sol

Recommendation It would me more efficient to convert “permissions” into a bit mask and
then compare with the corresponding bits of “self” at once.

84 permissions.beforeInitialize != self.hasPermission(
— BEFORE_INITIALIZE FLAG)

| | permissions.afterInitialize != self.hasPermission(
— AFTER INITIALIZE FLAG)

|| permissions.beforeAddLiquidity != self.hasPermission(
— BEFORE_ADD LIQUIDITY FLAG)

|| permissions.afterAddLiquidity != self.hasPermission(
— AFTER ADD LIQUIDITY FLAG)

|| permissions.beforeRemoveLiquidity != self.hasPermission(
— BEFORE_REMOVE_LIQUIDITY FLAG)

|| permissions.afterRemoveLiquidity !'= self.hasPermission(
— AFTER REMOVE LIQUIDITY FLAG)

90 || permissions.beforeSwap != self.hasPermission(BEFORE SWAP FLAG

—)

|| permissions.afterSwap != self.hasPermission(AFTER SWAP FLAG)

| | permissions.beforeDonate != self.hasPermission(
— BEFORE_DONATE_FLAG)

|| permissions.afterDonate != self.hasPermission(
— AFTER DONATE_FLAG)

|| permissions.beforeSwapReturnDelta != self.hasPermission(
— BEFORE_SWAP_RETURNS DELTA FLAG)

|| permissions.afterSwapReturnDelta !'= self.hasPermission(
— AFTER SWAP RETURNS DELTA FLAG)

|| permissions.afterAddLiquidityReturnDelta != self.

< hasPermission(AFTER ADD LIQUIDITY RETURNS DELTA FLAG)
| | permissions.afterRemoveLiquidityReturnDelta
I= self.hasPermission(
— AFTER REMOVE LIQUIDITY RETURNS DELTA FLAG)

ABDK 59

CVF-127 Reported

« Category Procedural e Source Lock.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-128 Reported

+ Category Procedural + Source Lock.sol

Description This import isn't used.

Recommendation Remove it.

import {IHooks} from "../interfaces/IHooks.sol";

CVF-129 Reported

« Category Procedural e Source NonZeroDeltaCount.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "0.8.20;

CVF-130 Reported

+ Category Procedural + Source NonZeroDeltaCount.sol

Description This import isn't used.

Recommendation Remove it.

import {IHooks} from "../interfaces/IHooks.sol";

I

ABDK 60

58

62

64

96

121

CVF-131 Reported

« Category Procedural » Source Reserves.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

CVF-132 Reported

+ Category Procedural » Source StateLibrary.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "0.8.21;

CVF-133 Reported

« Category Procedural * Source StatelLibrary.sol

Recommendation These bitwise "and” operations are redundant, as Solidity tolerates junk
in unused bits of narrow types.

sqrtPricex96 := and(data, OxFF
—)

protocolFee := and(shr(184, data), OxFFFFFF)

LpFee := and(shr(208, data), OxFFFFFF)

liquidityGross := and(firstWord, ©xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)

liquidityGross := and(value, ©xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)

ABDK 61

60

2

10

13

17

CVF-134 Reported

« Category Procedural * Source StatelLibrary.sol

Recommendation The “signextend” operation is redundant as Solidity tolerates junk in
unused bits of narrow types.

{tick := signextend(2, shr(160, data))

CVF-135 Reported

« Category Procedural + Source TransientStatelLibrary.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

{pragma solidity ~0.8.21;

CVF-136 Reported

+ Category Procedural » Source TransientStateLibrary.sol

Description Solidity compiler is smart enough to precompute constant hash expressions.

Recommendation Use hash expressions instead of hardcoded hashes.

W/// bytes32(uint256 (keccak256("Reserves0f")) - 1)
bytes32 public constant RESERVES OF SLOT =
0x1e0745a7db1623981f0b2a5d4232364c00787266eb75ad546f190eb6cebe9bd9a5;

'// The slot holding the number of nonzero deltas. bytes32(uint256(
— keccak256("NonzeroDeltaCount")) - 1)

bytes32 public constant NONZERO DELTA COUNT SLOT =

0x7d4b3164c6e45b97e7d87b7125a44c5828d005af881f9d751cfd78729c5d99albb;

"'// The slot holding the unlocked state, transiently. bytes32(uint256 \
— (keccak256("Unlocked")) - 1)
bytes32 public constant IS UNLOCKED SLOT =

‘0xc090fc4683624cfc3884e9d8de5eca132f2d0ec062aff75d43c0465d5ceeab23;

PN

ABDK 62

CVF-137 Reported

« Category Procedural + Source CurrencyDelta.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity ~0.8.20;

CVF-138 Reported

» Category Procedural » Source LiquidityMath.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity ~0.8.20;

CVF-139 Reported

« Category Procedural * Source LiquidityMath.sol

Description The only function implemented in this library is actually not liquidity specific.
It just adds an int128 value to a uint128 value and returns the result as uint128.

Recommendation Move the function into a generic utility library and remove this library.

5 Tlibrary LiquidityMath {

ABDK 63

CVF-140 Reported

« Category Procedural * Source LiquidityMath.sol
Recommendation This function could be implemented in pure Solidity like this: uint256
result = uint256(int256(uint256(x)) + int256(y)); if ((z = uint128(result)) != result) revert
SafeCastOverflow();

function addDelta(uintl128 x, intl28 y) internal pure returns (
— uintl28 z) {

CVF-141 Reported

+ Category Documentation e Source IERC20Minimal.sol

Description Here "balance of a token” sounds ambiguous.

Recommendation Rephrase as “token balance of an account”.

/// @notice Returns the balance of a token

CVF-142 Reported

+ Category Procedural » Source IERC6909Claims.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity >=0.8.0;

CVF-143 Reported

o Category Unclear behavior e Source IERC6909Claims.sol

Recommendation This interface misses event definitions.

interface IERC6909Claims {

I

ABDK 64

28

35

41

46

2

2

CVF-144 Reported

+ Category Documentation » Source IERC6909Claims.sol

Description The returned value is not documented.

Recommendation Give a descriptive name to the returned value and/or describe in the
documentation comment.

qunction transfer(address receiver, uint256 id, uint256 amount)
— external returns (bool);

/function transferFrom(address sender, address receiver, uint256 id,
< uint256 amount) external returns (bool);

'function approve(address spender, uint256 id, uint256 amount)
— external returns (bool);

rfunction setOperator(address spender, bool approved) external
— returns (bool);

CVF-145 Reported

» Category Procedural » Source

Description Specifying a compiler version range without upper bound is a bad practice,
as it is impossible to guarantee compatibility with future major releases.

Recommendation Specify as “*0.6.0 || ~0.7.0 || 0.8.0".

(pragma solidity >=0.6.0;

CVF-146 Reported

» Category Procedural » Source |Extsload.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

'pragma solidity >=0.6.0;

PN

ABDK 65

13

CVF-147 Reported
+ Category Documentation » Source |Extsload.sol
Recommendation It would be more reasonable to return an array of "bytes32" values.

/// @return value The value of the sload-ed slots concatenated as
— dynamic bytes

CVF-148 Reported

« Category Procedural » Source |Exttload.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity >=0.8.24;

CVF-149 Reported

+ Category Procedural ¢ Source IHooks.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity ~0.8.24;

CVF-150 Reported

+ Category Procedural » Source |IProtocolFeeController.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "~0.8.20;

I

ABDK 66

10

13

18

CVF-151 Reported

+ Category Documentation » Source |IProtocolFeeController.sol

Description The number format of the returned value is unclear.

Recommendation Explain in the documentation comment.

function protocolFeeForPool (PoolKey memory poolKey) external view
< returns (uint24);

CVF-152 Reported

« Category Procedural e Source IProtocolFees.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity 70.8.19;

CVF-153 Reported

o Category Suboptimal + Source IProtocolFees.sol

Recommendation This error could be made more useful by adding certain parameters
into it.

error InvalidProtocolFee();

CVF-154 Reported

+ Category Procedural ¢ Source IProtocolFees.sol

Recommendation The argument should be indexed.

event ProtocolFeeControllerUpdated(address protocolFeeController);

I

ABDK 67

18

21

30

33

36

CVF-155 Reported

« Category Procedural e Source IPoolManager.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity ~0.8.24;

CVF-156 Reported

o Category Suboptimal + Source |IPoolManager.sol

Recommendation These errors could be made more useful by adding certain parameters
into them.

error CurrencyNotSettled();
error PoolNotInitialized();
error TickSpacingToolLarge();
error TickSpacingTooSmall();

error CurrenciesOutOfOrderOrEqual();

CVF-157 Reported

+ Category Procedural + Source |IPoolManager.sol

Recommendation The “id"” parameter should be indexed.

56 PoolId id, Currency indexed currency@, Currency indexed currencyl,

< uint24 fee, int24 tickSpacing, IHooks hooks

ABDK 68

80

89

90

92

103

CVF-158 Reported

« Category Procedural e Source IPoolManager.sol

Recommendation This parameter should be indexed.

‘address sender,

CVF-159 Reported

+ Category Procedural + Source |IPoolManager.sol

Recommendation These functions should be replaced by constants.

//// @notice Returns the constant representing the maximum
— tickSpacing for an initialized pool key
function MAX TICK SPACING() external view returns (int24);

‘//// @notice Returns the constant representing the minimum
— tickSpacing for an initialized pool key
function MIN TICK SPACING() external view returns (int24);

CVF-160 Reported

o Category Bad naming + Source IPoolManager.sol

Description The semantics of the returned value is unclear.

Recommendation Give a descriptive name to the returned value and/or explain the se-
mantics in the documentation comment.

(returns (int24 tick):

ABDK 69

CVF-161 Reported

+ Category Documentation e Source IPoolManager.sol

Description This phrase is confusing.

Recommendation Explain a typical use case for the function.

105 \/// @notice All operations go through this function J

CVF-162 Reported

o Category Documentation + Source |IPoolManager.sol

Description The returned values are actually unnamed.

Recommendation Give names to the returned values.

125 (/// @return callerDelta The balance delta of the caller of \
\ — modifyLiquidity. This is the total of both principal and fee
| < deltas. |
| /// @return feeDelta The balance delta of the fees generated in the
| — liquidity range. Returned for informational purposes. J

CVF-163 Reported

o Category Documentation + Source IPoolManager.sol

Description The returned value is actually unnamed.

Recommendation Give a name to the returned value.

141 \/// @return swapDelta The balance delta of the address swapping ‘

AB’DK 70

152

2

CVF-164 Reported

+ Category Bad naming e Source IPoolManager.sol

Description The semantics of the returned value is unclear.

Recommendation Give a descriptive hame to the returned value and/or explain in the
documentation comment.

returns (BalanceDelta);

CVF-165 Reported

« Category Procedural * Source

Description Specifying a compiler version range without upper bound is a bad practice,
as it is impossible to guarantee compatibility with future major releases.

Recommendation Specify as “*0.6.0 || ~0.7.0 || ~0.8.0".

pragma solidity >=0.6.0;

CVF-166 Reported

+ Category Procedural * Source Extsload.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity >=0.6.0;

ABDK 71

CVF-167 Reported

« Category Procedural e Source ERC6909.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 \fpragma solidity >=0.8.0;

CVF-168 Reported

o Category Bad naming ¢ Source ERC6909.so0l

Description The semantics of keys and values for these mappings is unclear.

Recommendation Give descriptive names to the keys and values and/or explain in docu-
mentation comments.

25 \:/mapping(address => mapping(address => bool)) public isOperator;

27 \:/mapping(address => mapping(uint256 => uint256)) public balanceOf;

29 {mapping(address => mapping(address => mapping(uint256 => uint256)))
\ — public allowance;

CVF-169 Reported

+ Category Procedural + Source Exttload.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 \‘"pragma solidity >=0.8.24;

ABDK 72

CVF-170 Reported

« Category Procedural » Source NoDelegateCall.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 | pragma solidity ~0.8.20;

CVF-171 Reported

+ Category Procedural » Source ERC6909Claims.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 |pragma solidity >=0.8.0;

CVF-172 Reported

« Category Procedural » Source ProtocolFees.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

2 pragma solidity 70.8.19;

CVF-173 Reported

o Category Unclear behavior + Source ProtocolFees.sol

Description This event is emitted even if nothing actually changed.

33 emit ProtocolFeeControllerUpdated(address(controller));

I

ABDK 73

84

98

CVF-174 Reported

« Category Procedural » Source ProtocolFees.sol

Description The “data” value is converted to “uint24” twice.

Recommendation Convert once and reuse.

(success, protocolFee) = (returnData == uint24(returnData)) &&
< uint24(returnData).isValidProtocolFee()

CVF-175 Reported

« Category Procedural + Source PoolManager.sol

Description This version requirement is inconsistent with other files in this code base.

Recommendation Use the same compiler version requirement across the code base.

pragma solidity "0.8.24;

CVF-176 Reported

+ Category Procedural + Source PoolManager.sol

Recommendation It is a good practice to put a comment into an empty block to explain
why the block is empty.

constructor(uint256 controllerGasLimit) ProtocolFees(
< controllerGasLimit) {}

ABDK 74

ABDK

Consulting

About us

Established in 2016, is a leading service provider in the space of blockchain
development and audit. It has contributed to numerous blockchain projects, and co-
authored some widely known blockchain primitives like Poseidon hash function.

The ABDK Audit Team, led by Mikhail Vladimirov and Dmitry Khovratovich, has
conducted over 40 audits of blockchain projects in Solidity, Rust, Circom, C++,
JavaScript, and other languages.

Contact

X Email @ Website
dmitry@abdkconsulting.com abdk.consulting
W Twitter @ LinkedIn

twitter.com/ABDKconsulting linkedin.com/company/abdk - consulting

https://twitter.com/ABDKconsulting
https://abdk.consulting/
https://linkedin.com/company/abdk-consulting

	Changelog
	Introduction
	Project scope
	Methodology
	Our findings
	Major Issues
	CVF-1. Reported
	CVF-2. Reported
	CVF-3. Reported
	CVF-4. Reported
	CVF-5. Reported
	CVF-6. Reported
	CVF-7. Reported
	CVF-8. Reported
	CVF-9. Reported
	CVF-10. Reported
	CVF-11. Reported
	CVF-12. Reported
	CVF-13. Reported
	CVF-14. Reported
	CVF-15. Reported
	CVF-16. Reported
	CVF-17. Reported

	Moderate Issues
	CVF-18. Reported
	CVF-19. Reported
	CVF-20. Reported
	CVF-21. Reported
	CVF-22. Reported
	CVF-23. Reported
	CVF-24. Reported
	CVF-25. Reported
	CVF-26. Reported
	CVF-27. Reported
	CVF-28. Reported
	CVF-29. Reported
	CVF-30. Reported
	CVF-31. Reported
	CVF-32. Reported
	CVF-33. Reported
	CVF-34. Reported
	CVF-35. Reported
	CVF-36. Reported
	CVF-37. Reported
	CVF-38. Reported
	CVF-39. Reported
	CVF-40. Reported
	CVF-41. Reported
	CVF-42. Reported
	CVF-43. Reported
	CVF-44. Reported
	CVF-45. Reported
	CVF-46. Reported
	CVF-47. Reported
	CVF-48. Reported
	CVF-49. Reported
	CVF-50. Reported

	Minor Issues
	CVF-51. Reported
	CVF-52. Reported
	CVF-53. Reported
	CVF-54. Reported
	CVF-55. Reported
	CVF-56. Reported
	CVF-57. Reported
	CVF-58. Reported
	CVF-59. Reported
	CVF-60. Reported
	CVF-61. Reported
	CVF-62. Reported
	CVF-63. Reported
	CVF-64. Reported
	CVF-65. Reported
	CVF-66. Reported
	CVF-67. Reported
	CVF-68. Reported
	CVF-69. Reported
	CVF-70. Reported
	CVF-71. Reported
	CVF-72. Reported
	CVF-73. Reported
	CVF-74. Reported
	CVF-75. Reported
	CVF-76. Reported
	CVF-77. Reported
	CVF-78. Reported
	CVF-79. Reported
	CVF-80. Reported
	CVF-81. Reported
	CVF-82. Reported
	CVF-83. Reported
	CVF-84. Reported
	CVF-85. Reported
	CVF-86. Reported
	CVF-87. Reported
	CVF-88. Reported
	CVF-89. Reported
	CVF-90. Reported
	CVF-91. Reported
	CVF-92. Reported
	CVF-93. Reported
	CVF-94. Reported
	CVF-95. Reported
	CVF-96. Reported
	CVF-97. Reported
	CVF-98. Reported
	CVF-99. Reported
	CVF-100. Reported
	CVF-101. Reported
	CVF-102. Reported
	CVF-103. Reported
	CVF-104. Reported
	CVF-105. Reported
	CVF-106. Reported
	CVF-107. Reported
	CVF-108. Reported
	CVF-109. Reported
	CVF-110. Reported
	CVF-111. Reported
	CVF-112. Reported
	CVF-113. Reported
	CVF-114. Reported
	CVF-115. Reported
	CVF-116. Reported
	CVF-117. Reported
	CVF-118. Reported
	CVF-119. Reported
	CVF-120. Reported
	CVF-121. Reported
	CVF-122. Reported
	CVF-123. Reported
	CVF-124. Reported
	CVF-125. Reported
	CVF-126. Reported
	CVF-127. Reported
	CVF-128. Reported
	CVF-129. Reported
	CVF-130. Reported
	CVF-131. Reported
	CVF-132. Reported
	CVF-133. Reported
	CVF-134. Reported
	CVF-135. Reported
	CVF-136. Reported
	CVF-137. Reported
	CVF-138. Reported
	CVF-139. Reported
	CVF-140. Reported
	CVF-141. Reported
	CVF-142. Reported
	CVF-143. Reported
	CVF-144. Reported
	CVF-145. Reported
	CVF-146. Reported
	CVF-147. Reported
	CVF-148. Reported
	CVF-149. Reported
	CVF-150. Reported
	CVF-151. Reported
	CVF-152. Reported
	CVF-153. Reported
	CVF-154. Reported
	CVF-155. Reported
	CVF-156. Reported
	CVF-157. Reported
	CVF-158. Reported
	CVF-159. Reported
	CVF-160. Reported
	CVF-161. Reported
	CVF-162. Reported
	CVF-163. Reported
	CVF-164. Reported
	CVF-165. Reported
	CVF-166. Reported
	CVF-167. Reported
	CVF-168. Reported
	CVF-169. Reported
	CVF-170. Reported
	CVF-171. Reported
	CVF-172. Reported
	CVF-173. Reported
	CVF-174. Reported
	CVF-175. Reported
	CVF-176. Reported

