/ SPEARBIT

Uniswap v4-core Security Review

Auditors
Desmond Ho, Lead Security Researcher
Kurt Barry, Lead Security Researcher
Saw-Mon and Natalie, Lead Security Researcher
Jeiwan, Security Researcher
David Chaparro, Junior Security Researcher

Report prepared by: Lucas Goiriz

September 5, 2024

Contents

1 About Spearbit

2
3

Introduction

Risk classification

3.1
3.2
3.3

Impact
Likelihood e
Action required for severity levels

Executive Summary

Findings

5.1

5.2

5.3

54

Medium Risk e e e e
5.1.1 Donations can be stolen by providing just-in-time liquidity
Low Risk e e e
5.2.1 tickSpacingToMaxLiquidityPerTick's calculation is-not completely accurate
5.2.2 Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick
5.2.3 The used constants representing the min and max of the errors.in getTickAtSqrtPrice are
notaccurate e
5.2.4 PoolManager.updateDynamicLPFee() doesntemitanevent
5.2.5 bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues
Gas Optimization e e
5.3.1 A simple upcasting operation can be performed L oL
5.3.2 tolId performs an unnecesary length calculation
5.3.3 state.sqrtPriceX96 can be used instead of slotOStart.sqrtPriceX96() in Pool.swap . .
5.3.4 Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed
5.3.5 Deriving liquidityGrossBefore canbeoptimised
5.3.6 msg.sender can be inlinedin _burnFromtosavegas
5.3.7 _fetchProtocolFee can be optimised by using the scratchspace
5.3.8 Gasoptimizationin clear() function
5.3.9 Non-assembly version of state.tick setter possibly more gas efficient
5.3.10 mulDiv () is redundant for fee growth calculation,
5.3.11 More efficient mask derivation in TickBitmap
5312 BitMath
Informational L e
5.4.1 ~Some contracts don't follow Uniswap's version convention
5.4.2 computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amoun-
tRemaininglessFee
5.4.3 Add comments regarding the derivation of SQRT_PRICE_A_Bconstant
5.4.4 amountIn is always 0 in an inner branch of computeSwapStep
5.4.5 Unusedcodeshouldberemoved
5.4.6 Unnecessary uncheckedblocks
5.4.7 Confusing error message in ERC6909.transferFrom()
5.4.8 getSqrtPriceAtTick assumes that the allowed tick range is centeredato.
5.4.9 The current or next tick is not always on the tick spacing grid or within the allowed range . . .
5.4.10 unchecked blocks e
5.411 Dirty bitcleaning e e
5.4.12 Named return are unused in settle() and settleFor()
5.4.13 collectProtocolFees lacks an own event to track fee collections
5.4.14 Best practices for handling actionflows oo
5.4.15 Pools with maximum 1pFee do not support exact outputswaps
5.4.16 Currency.isZero() is equivalent to Currency.isNative()
5.417 Comment Improvements L e e
5.4.18 memory-safe annotation

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Uniswap is an open source decentralized exchange that facilitates automated transactions between ERC20 token
tokens on various EVM-based chains through the use of liquidity pools and automatic market makers (AMM).

Disclaimer: This security review does not guarantee against a hack. It is a snapshot in time of v4-core according
to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High | Impact: Medium | Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium | High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

+ High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

* Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

» Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

» High - almost certain to happen, easy to perform, or not easy but highly incentivized
+ Medium - only conditionally possible or incentivized, but still relatively likely

* Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

+ Critical - Must fix as soon as possible (if already deployed)

High - Must fix (before deployment if not already deployed)
* Medium - Should fix

* Low - Could fix

https://spearbit.com

4 Executive Summary
Disclaimer: The current report is a draft. Fix review is still in progress for many issues and nothing in this report
should be considered finalized.

Over the course of 10 days in total, Uniswap engaged with Spearbit to review the v4-core protocol. In this period
of time a total of 36 issues were found.

Summary
Project Name Uniswap
Repository v4-core
Commit 7a7208...a2c037
Type of Project DeFi, AMM
Audit Timeline Jul 15 to Aug 26
Two week fix period Aug 26 - Sep 10

Issues Found

Severity Count Fixed Acknowledged
Critical Risk 0 0 0
High Risk 0 0 0
Medium Risk 1 1 0
Low Risk 5 2 1
Gas Optimizations 12 9 2
Informational 18 12 1
Total 36 24 4

https://uniswap.org/
https://spearbit.com
https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core/tree/7a72031574fc4548ca8fce197114cf87d5a2c037

5 Findings
5.1 Medium Risk

5.1.1 Donations can be stolen by providing just-in-time liquidity
Severity: Medium Risk
Context: PoolManager.sol#L252, Pool.sol#L.463-L468

Description: The PoolManager.donate() function allows to donate tokens to liquidity providers. Donations are
counted as swap fees and immediately added to the global swap fees trackers (Pool.sol#L463-L468):

if (amount0 > 0) {

state.feeGrowthGlobalOX128 += FullMath.mulDiv(amountO, FixedPoint128.Q128, liquidity);
}
if (amountl > 0) {

state.feeGrowthGloballX128 += FullMath.mulDiv(amountl, FixedPoint128.Q128, liquidity);
}

This increases the earned swap fees of all liquidity positions that include the current price.

Since donation amounts can be arbitrary (specifically, they can be significantly bigger than swap fees), this opens
up an attack vector that allows anyone to steal a portion of donations by providing just-in-time liquidity. This can
be exploited via a sandwich attack that wraps the donating transaction in two transactions:

1. In the preceding transaction, some amount of liquidity is added around the current price.

2. The donating transaction rewards LPs, including the position added in 1.

3. In the following transaction, the liquidity added in 1 is removed and a portion of the donation is withdrawn.
In this scenario, the attacker earns a portion of the donation while not providing useful liquidity to the pool.

Recommendation: Given that the core contracts strive to remain as simple and basic as possible, we recommend
removing the PoolManager.donate() function and letting integrators implement their own donations solution via
the hooks. Alternatively, consider keeping PoolManager . donate () and warning users that it should only be used for
donating insignificant amounts (users would need to determine their size by themselves, ensuring their donations
are not profitable for MEV bots). For bigger amounts, however, integrators will still need to implement a more
robust solution using the hooks. E.g. donations can be vested (i.e. distributed over time), or LPs can be required
to keep their liquidity for a minimum amount of time.

Uniswap: Comments have been added in PR 851.
Spearbit: Verified.

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L252
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L252
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/pull/851

5.2 Low Risk

5.2.1 tickSpacingToMaxLiquidityPerTick's calculation is not completely accurate
Severity: Low Risk

Context: Pool.sol#L574

Description: In the above context when minTick is calculated one compresses the MIN_TICK such that it would
round towards 0 and not negative infinity. Where as one needs to apply the compression towards negative infinity.

And thus the result can be off by 1 in the denominator.

Also see the related issue "Incorrect tick compression for negative ticks in countInitializedTicksLoaded" for
‘v4-periphery".

Recommendation: For better estimate make sure the tick compressions are preformed correctly so they would
round toward negative infinity.

Uniswap: Fixed in PR 870.
Spearbit: Verified.

5.2.2 Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick

Severity: Low Risk

Context: TickMath.sol#L54-L108

Description: Let i be the tick provided, and below to be the binary represnetation of | i |:
| i'|=b1g - - b2b1bo

Note that 20 binary digits is enough since in the min and max range of the ticks we know that | i |< 220 .
Let h;(b) be (where b € {0,1}):

2128
hi(b) = | ————
v/ 1.0001

2128

ho(1) = {\/1.0001

“ = 340265354078544963557816517032075149314 = 0xfffcb933bd6fad37aa2d162d1a594002

Also we know h;(0) = 228 . Let's define the ® operator as the multiplication in q. . . x128 type:

a-b
a® b= {2124

Then we have:

hi0)® a=a® hi(0)=a
and up to TickMath.sol#L96 the price p calculated becomes (order of applying the ® operator matters below):
19

P19 = (hig(bre) © - - - (ha(b2) @ (h1(b1) © po)) -) = (X) hi(by)

i=0

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L574
https://github.com/spearbit-audits/review-uniswap-v4/issues/81
https://github.com/Uniswap/v4-core/pull/870
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L54-L108
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L96

[225671J
. o |, ifi>0
getSqrtPriceAtTick(/) =

[82], otherwise

1. Note that we have:

1 1 1 ;
T0007" 1.00012% B T 000126 1.000127

and thus pig should be the above multiplication in Q128x128 with 128 bits of precision and then at the end
lowered to Q128x96.

2. The multiplactions ® are rounded down although the (most) of the constants h;(1) used are rounded up.

3. The inversion for the postive ticks i is rounded down although besides multiplications ® everything else is
rounded up.

4. The inversion for positive ticks / > 0 is not accurate in Q128x128 the inversion should have been (also rounded
up if possible):
2128 . 2128 b 2256
P19 P19
But since one cannot use 22% that is probably why the constant not (0) 22°6 — 1 is used instead.

Let's assess the accurary of the constants used h;(1):

formula wolfram value value used in the code used - actual
ho(1) 0xfffcb933bd6fad37aa2d162d1a594002 Oxfffcb933bd6fad37aa2d162d1a594001 -1
hi(1) 0xf££97272373d413259a46990580e213a 0xfff97272373d413259a46990580e213a 0
ho(1) 0xff£2e50£5£656932ef12357cf3c7fdcc = 0xfff2e50£5£656932ef12357cf3c7fdcc 0
hs(1) Oxffebcaca’elOed4e61c3624eaa0941cd0 Oxffebcaca7ellede61c3624eaal0941cd0 0
ha(1) 0xffcb9843d60£f6159c9db58835c926644 0xffcb9843d60£6159c9db58835c926644 0
hs(1) 0xf£973b41£a98c081472e6896dfb254c0 0xff973b41fa98c081472e6896dfb254c0 0
he(1) 0xff2eal6466c96a3843ec78b326b52861 0xff2eal16466c96a3843ec78b326b52861 0
h7(1) Oxfebdee046a99a2a811c461£1969c3053 Oxfebdee046a99a2a811c461£1969c¢3053 0
hg(1) 0xfcbe86c7900a88aedcffc83b479aal3ad Oxfcbe86c7900a88aedcffc83b479aa3ad 0
he(1) 0xf987a7253ac413176£2b074cf7815eb4 0xf987a7253ac413176£2b074cf7815e54 0
hio(1) 0x£3392b0822b70005940c7a398e4b70£f3 0x£3392b0822b70005940c7a398e4b70£3 0
hi1(1) 0xe7159475a2c29b7443b29c7£a6e889d9 0xe7159475a2c29b7443b29c7£a6e889d9 0
hi2(1) 0xd097£3bdfd2022b8845ad8£792aab826 0xd097f3bdfd2022b8845ad8f792aa5825 -1
hi3(1) 0xa9f746462d870fdf8a65dc1f90e061eb 0xa9f746462d870fdf8a65dc1£90e061eb 0
h14(1) 0x70d869a156d2a1b890bb3df62baf32f7 0x70d869a156d2a1b890bb3df62baf32f7
hys(1) 0x31be135£97d08£d981231505542fcfa6 0x31bel35£97d08£d981231505542fcfab
hie(1) 0x9aab08bbb7a84e1c677deb4f3e99bc9 0x9aa508bbb7a84e1c677deb4f3e99bc9 0
hi7(1) 0x5d6af8dedb81196699c329225ee605 0x5d6af8dedb81196699c329225ee604 -1

formula wolfram value value used in the code used - actual

hig(1) 0x2216e584f5falea926041bedfed7 (inaccurate) 0x2216e584f5falea926041bedfe98

hie(1) 0x48a170391f7dc42444e8fa2 (inaccurate) 0x48a170391£7dc42444e8fa2

formula Sympy value value used in the code used - actual
ho(1) Oxfffcb933bd6fad37aa2d162d1a594002 Oxfffcb933bd6fad37aa2d162d1a594001 -1
hi(1) O0xfff97272373d413259a46990580e213a Oxfff97272373d413259a46990580e213a 0
ho(1) Oxfff2e50f5f656932ef12357cf3c7fdcc Oxfff2e50f5f656932ef12357cf3c7fdcc 0
h3(1) Oxffebcaca7ellede61c3624eaal0941cd0 Oxffebcaca7elledeb1c3624eaa0941cd0 0
hs(1) 0xffcb9843d60f6159c9db58835c926644 O0xffcb9843d60f6159c9db58835c926644 0
hs(1) 0xff973b41fa98c081472e6896dfb254c0 O0xff973b41fa98c081472e6896dfb254c0 0
he(1) 0xff2eal6466c96a3843ec78b326b52861 Oxff2eal6466c96a3843ec78b326b52861 0
h7(1) O0xfebdee046a99a2a811c461£1969c30563 Oxfebdee046a99a2a811c461£1969¢3053 0
hg(1) 0xfcbe86c7900a88aedcffc83b479aal3ad 0xfcbe86c7900a88aedcffc83b4a79aa3ad 0
hg(1) 0x£f987a7253ac413176£2b074cf7815e54 0xf987a7253ac413176£2b074cf7815e54 0
hio(1) 0x£3392b0822b70005940c7a398e4b70f3 0x£3392b0822b70005940¢c7a398e4b70£3 0
hi1(1) 0xe7159475a2c29b7443b29c7fabe889d9 0xe7159475a2c29b7443b29c7fab6e889d9 0
hi2(1) 0xd097£3bdfd2022b8845ad8f792aab826 0xd097f3bdfd2022b8845ad8f792aa5825 —1
hi3(1) 0xa9f746462d870fdf8a65dc1f90e061e5 - 0xa9f746462d870fdf8a65dc1f90e061eb 0
hi14(1) 0x7048692156d2a1b890bb3df62baf32f7 0x70d8692156d2a1b890bb3df62baf32f7 0
hi5(1) 0x31be135f97d08£d981231505542fcfaé 0x31bel135f97d08£d981231505542f cfab 0
hie(1) 0x92a508b5b7a84e1c677deb4£3e99bc9 0x9aab08bbb7a84e1c677deb4£3e99bc9 0
hi7(1) 0x5d6af8dedb81196699c329225ee605 0x5d6af8dedb81196699c329225ee604 —1
hig(1) 0x2216eb584f5falea926041bedfe98 0x2216e584f5falea926041bedfe98 0
hig(1) 0x48a170391f7dc42444e8fa3 0x48a170391f7dc42444e8fa2 —1

+ See below the sympy code to calculate the constants:

import sympy
from math import ceil

values from the codebase
u-=[

Oxfffcb933bd6fad37aa2d162d1a594001,
0xfff97272373d413259a46990580e213a,
0xff£2e50£5f656932ef12357cf3c7fdcc,
Oxffebcaca7elled4eb61c3624eaa0941cdoO,
0xffcb9843d60£f6159c9db58835c926644,
0xff973b41fa98c081472e6896dfb254c0,
0xff2eal6466c96a3843ec78b326b52861,
Oxfebdee046a99a2a811c461£1969c3053,
0xfcbe86c7900a88aedcffc83b479aal3as,
0xf987a7253ac413176£2b074cf7815e54,

0x£3392b0822b70005940c7a398e4b70£3,
0xe7159475a2¢c29b7443b29c7fa6e889d9,
0xd097£3bdfd2022b8845ad8f792aa5825,
0xa9f746462d870fdf8a65dc1£90e061e5,
0x70d869a156d2a1b890bb3df62baf32f7,
0x31be135£97d08£d981231505542fcfab,
0x9aab08bbb7a84el1c677de54£3e99bc9,
0x5d6af8dedb81196699c329225ee604,
0x2216e584f5falea926041bedfe98,
0x48a170391f7dc42444e8fa2,

X = sympy.symbols("x")
(
sympy .S ('340282366920938463463374607431768211456"') # 2 ** 128

/ (sympy.S('10001/10000') ** (2 *x (x - 1)))

a = [0 for _ in range(21)]

PREC = 1000

a[0] = g.evalf(PREC, subs={x: sympy.S(' 0.0')})
a[1] = g.evalf(PREC, subs={x: sympy.S(' 1.0')})
al[2] = g.evalf(PREC, subs={x: sympy.S(' 2.0')})
a[3] = g.evalf(PREC, subs={x: sympy.S(' 3.0')})
a[4] = g.evalf(PREC, subs={x: sympy.S(' 4.0')})
a[5] = g.evalf(PREC, subs={x: sympy.S(' 5.0')})
a[6] = g.evalf(PREC, subs={x: sympy.S(' 6.0')})
al7] = g.evalf(PREC, subs={x: sympy.S(' 7.0')})
al[8] = g.evalf(PREC, subs={x: sympy.S(' 8.0')})
al9] = g.evalf(PREC, subs={x: sympy.S(' 9.0')})
a[10] = g.evalf(PREC, subs={x: sympy.S('10.0')})
a[11] = g.evalf(PREC, subs={x: sympy.S('11.0')})
a[12] = g.evalf(PREC, subs={x: sympy.S('12.0')})
a[13] = g.evalf (PREC, subs={x: sympy.S('13.0')})
a[14] = g.evalf(PREC, subs={x: sympy.S('14.0')})
a[15] = g.evalf(PREC, subs={x: sympy.S('15.0')1})
a[16] = g.evalf (PREC, subs={x: sympy.S('16.0')})
a[17] = g.evalf(PREC, subs={x: sympy.S('17.0')})
a[18] = g.evalf (PREC, subs={x: sympy.S('18.0')})
a[19] = g.evalf(PREC, subs={x: sympy.S('19.0')})
a[20] = g.evalf(PREC, subs={x: sympy.S('20.0')})

for i in range(20):
b = int(ceil(alil))

print (" $ho{{{8}}}(1)$ | ~0x{0:x}" | ~Ox{1l:x}" | ${2:d}$|".format(
b’
u[il,
uli] - b,
i

))

5. and so the values hy(1), hi2(1), h17(1), h1g(1) are off by 1.

Recommendations:

1. Fix or document why a mixed use of rounding down and up is used in this function. This could have been

due to gas saving since one could just use right shifts for multiplication.

2. Adjust the constants used for ho(1), h12(1), h17(1), hig(1). Note that with the adjusted constants (from the

Sympy table) the test suite still passes.
3. Add code comments like Aperture-Finance/uni-v3-1ib
4. Provide details/proof as why the final value fits in uint160 (Q64x96).

Warning: If 2. is applied the invariants should be checked again. Mainly that getSqrtPriceAtTick is
sticktly increasing and also close to the actual value. And also its related invariants in relashionship to
getTickAtSqrtPrice is also preserved.

Uniswap: Regarding 2. Some comments have been added to explain the rounding direction for h;(1) to the nearest
integer value in PR 867.

Spearbit: Partially fixed and verified.

5.2.3 The used constants representing the min and max of the errors in getTickAtSqrtPrice are not
accurate

Severity: Low Risk
Context: TickMath.sol#L259-L262, Logarithm Approximation Precision by ABDK

Description: In the above context we have:

int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

Let:

255738958999603826347141
UAS 064

]
Y- log, v/1.0001

Let's calculate the rounded-down maximum error:

=1.08830---102°

;
2128 “max(e;)| = (28 - (64 () — ———— | + 10 1.0000005
s (€i)] [(<¢ log, 1.0001)+ 90001)J

|2128 . max(e;)| = 3402992956809132418596140100660247209

The above 3402992956809132418596140100660247209 is derived by wolframalpha. The value used in the code-
base is [2'?8 - max(e;)] which differs by the correct value only by 1:

[2'28 . max(e;)] = 3402992956809132418596140100660247210

Let's calculate the rounded-down minimium error:

1 -1 3 1 1
128 H 128
(2 min(e;)] = {2 | (‘96 (“’ - W) (g rz(Eg)on(1-gm)) "’gmo'g"ggg%)J

We are interested in [2'28 . min(e14) | since only 14 approximated terms are used:

https://github.com/Aperture-Finance/uni-v3-lib/blob/main/src/TickMath.sol
https://github.com/Uniswap/v4-core/pull/867
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L259-L262
https://hackmd.io/odBcee5CRpqzmtz8jDmsEg
https://www.wolframalpha.com/input?i=floor%282%5E128+*+%2864%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+log%281.0000005%29%2Flog%281.0001%5E0.5%29%29%29

|228 - min(e14)] = —291339464771989623025533689748046440464

The above -291339464771989623025533689748046440464 is derived by wolframalpha. The value used in the
codebase is instead the following:

1 -1 3 1 1
128

which equals to -291339464771989622907027621153398088495. The difference is, one should have used:

L2128'(—96(1/1—"')+"')J

but instead the following is calculated:

L2128'(—64(¢—"')+"')J

This is error in using 64 instead of 96 comes from the Logarithm Approximation Precision by ABDK where in the
calculations it is assumed that x € [2-64,264), ie it is of type Q64x64. Note that x in that document correponds to
price (P) which is:

uint256 price = uint256(sqrtPriceX96) << 32;

We know that sqrtPriceX96 is of the type Q64x96 and thus price is of the type Q64x128 but since it is merely been
multiplided by 232 its range remains as [27%, 264). And this is why 64 needs to be used in the formula for max(e;)
and —96 for min(e;).

unchecked block safety:

No overflow shoud occur in calculation of 1og_sqrt 10001 since log_2 at the very end would be smaller than 65-264
and:

65 - 254 . 255738958999603826347141 = 65 - 2128 . ¢) < 2148

and no underflow shold occur since log_2:

—96 - 254 . 255738958999603826347141 = —96 - 2128 . ¢ > 2149

No overflow or unsafe casting should occur for tickHi since (with the old or new constant):

2148 1 291339464771989622907027621153398088495 <

21
o128 2

No underflow or unsafe casting should occur for tickLow since (with the old or new constant):

—2149 _ 3402992956809132418596140100660247210 S

22
2128 —2

Recommendation: Apply the following patch:

10

https://www.wolframalpha.com/input?i=floor%282%5E128+*+%28-96%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+%28255738958999603826347141%2F2%5E64%29*%28-1%2F2%5E14%2B%283%2F2%29*%282+-+1%2F2%5E%2814-1%29%29*%28log2%281-1%2F2%5E127%29%29%29+%2B+log%280.9999995%29%2Flog%281.0001%5E0.5%29%29%29
https://www.wolframalpha.com/input?i=floor%282%5E128+*+%28-64%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+%28255738958999603826347141%2F2%5E64%29*%28-1%2F2%5E14%2B%283%2F2%29*%282+-+1%2F2%5E%2814-1%29%29*%28log2%281-1%2F2%5E127%29%29%29+%2B+log%280.9999995%29%2Flog%281.0001%5E0.5%29%29%29
https://hackmd.io/odBcee5CRpqzmtz8jDmsEg
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L125

diff --git a/src/libraries/TickMath.sol b/src/libraries/TickMath.sol
index 6e5f8417..7al1f58ca 100644
--- a/src/libraries/TickMath.sol
+++ b/src/libraries/TickMath.sol
@@ -107,11 +107,11 @@ library TickMath {
}
}

- /// @notice Calculates the greatest tick value such that getPriceAtTick(tick) <= price
- /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value
— getPriceAtTick may
+ /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96
+ /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value
— getSqrtPriceAtTick may
/// ever return.
/// @param sqrtPriceX96 The sqrt price for which to compute the tick as a (64.96
- /// Q@return tick The greatest tick for which the price is less than or equal to the input price
+ /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to
— the input sqrtPriceX96
function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {
unchecked {
// Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert
«— InvalidSqrtPrice();
0@ -256,10 +256,10 @@ library TickMath {
log_2 := or(log_2, shl(50, f))
}

- int256 log_sqrt10001
+ int256 log_sqrt10001

log_2 * 255738958999603826347141; // 128.128 number
log_2 * 255738958999603826347141; // Q22.128 number

- int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);
- int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);
+ int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247209) >> 128);
+ int24 tickHi = int24((log_sqrt10001 + 291339464771989623025533689748046440464) >> 128);

tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 7 tickHi :
— tickLow;

}

Warning: The intervals provided by both the old and the new constant overlap almost entirely and

measure around 0.8661 - - - in length. But on low side the old internal hangs out as much as 21% and
the new internal on the high side hangs out as much as 3435 and thus the result is that in some edge
cases the current and the new implementation using the new constant might be off by one tick. Note

that the current tests all pass with the new constants so these edge cases are not tested throughly.

Note: Moreover, one can use the borrowed msb calculation from Solady to replace the current calcution
to save some gas:

assembly ("memory-safe") {
let f := shl(7, gt(r, OxFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)

}

assembly ("memory-safe'") {
let £ := shl(6, gt(r, OxFFFFFFFFFFFFFFFF))
msb := or(msb, f)
r := shr(f, r)

}

assembly ("memory-safe") {
let £ := shl(5, gt(r, OxFFFFFFFF))

11

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L15-L24

msb := or(msb, f)
r := shr(f, r)
}
assembly ("memory-safe'") {
let f := shl(4, gt(r, OxFFFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly ("memory-safe") {
let £ := shl(3, gt(r, OxFF))
msb := or(msb, f)
r := shr(f, r)
}
assembly ("memory-safe") {
let £ := shl(2, gt(r, OxF))
msb := or(msb, f)
r := shr(f, r)
}
assembly ("memory-safe'") {
let f := shl(1l, gt(r, 0x3))
msb := or(msb, f)
r := shr(f, r)
}
assembly ("memory-safe'") {
let £ := gt(r, Ox1)
msb := or(msb, f)

}

Appendix: getTickAtSqrtPrice works as following note that \/p is a symbolic value representing sqrtPriceX96
which is of the type Q64x96:

1. Check \/5 € [\/pminy vV Pmax) .
Then P = \/p - 232 and thusit is of the type Q64x128 and in the range [27%6,2%4).

Find the most significant bit of P and let's name it n = |logz P].

Ll

r is taken to be:

P 127 127 128
< {ZL/ogzPJ 2% e [2%,27)

and that is why multiplying r by itselft does not overflow (this also applies to the other iterations). We then
have:

r2
{Q%J c [2127,2129)

I've marked the assembly block below so that we can follow the variable naming with subscripts:

assembly ("memory-safe") {
r := shr(127, mul(r, r)) // r_{i-1} = r before the multiplication
let f := shr(128, r) // foi =
log_2 := or(log_2, shl(64 - i, £)) // L_i(P) = L_{i-1}(P) | f_i # 2°{6}-i}
r := shr(f, r) // r_4 = the assginment wvalue
}
and thus:

12

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L128-L168

feof = {Iogz (E}ZJ)‘ = [log, 9(P)] € {0,1}

In the above the function g(x) is defined as:

2
x . ol27
g(x) = <{2“"g2;272 J) o127 | o127

and so ry is calculated as:

_ 9(P) 127 127 5128
e LL/ogzg(P)J 27| € 2,2

and thus £ ends up being:

f = Mog2 ([;ZJ)‘ = [log, g(g(P))] € {0, 1}

and so the ith approximation of 1og_2 using the L;(P) notation with 64 binary precision ends up being:

P ! B P i B
Li(P) = {Iog2 2128J 064 Z f - 264K — bog2 ﬁJ . 084y, <\/ f, - 284 k>
k=1

k=1

Above one can do + or V (bitwise or) since fx € {0,1} .

Note that the approximation provided by the ABDK document matches with the above formula not taking into
the consideration the precision factor 254:

LSPK(P) = |log, izs | + 3 i Log, alat-+- gl
k=1

where in the above summation the g function is composed k times.

For getTickAtSqrtPrice, [= 14 and so Li4(P) is calculated. Also all approximations in this case L;(P) are
of the type Q8x64. And so:

1ogSqrt10001 = Li4(P) - ¢ - 2%4

1 - 2%% is of the type Q14x64, thus the above 1ogSqrt10001 is of the type Q22x128

13

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L179

5.2.4 PoolManager.updateDynamicLPFee() doesn't emit an event

Severity: Low Risk
Context: PoolManager.sol#L324

Description: The PoolManager.updateDynamicLPFee() function allows the hook contract to update the LP fee
when it's dynamic. The fee is recorded in the contract storage, however, there's no even emitted to allow monitoring
applications to detect the change.

Recommendation: Consider emitting an event in PoolManager .updateDynamicLPFee() to allow off-chain appli-
cations to track LP fee changes.

Uniswap: Decided against emitting an event when the dynamic fee is updated. This is because the override
possibility for individual swaps would make it hard to track all of them off chain

Spearbit: Acknowledged.

5.2.5 bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues

Severity: Low Risk
Context: CustomRevert.sol#L.88, CustomRevert.sol#L91
Description/Recommendation:

O CustomRevert.sol#L88: copying the returndata to memory is prone to return data bombing and can revert
with out of gas here. It would be best to first estimate to see if such an operation can happen with the current
leftover gas and if so perform the copy or otherwise throw with a different generic error. For reference, please
look at this implementation from Seaport.

O CustomRevert.sol#L91: use shr and shl instead of div and mul since the right hand side operands are 32.
The solc compiler might at some step in the optimisation do the replacement but it would be best to enforce
it in the code.

O CustomRevert.sol#L91: allocating more than copied memory in the revert statement might use portion of
the memory space which has already been filled by other data. If the size is being aligned to multiples of
32. If this operation is necessary it would be best to also make sure the extra allocated memory space is
cleaned.

5.3 Gas Optimization

5.3.1 A simple upcasting operation can be performed
Severity: Gas Optimization

Context: SqrtPriceMath.sol#L241-L245

Description: The contract uses.inline assembly to perform a bitwise AND operation to restrict the 1iquidity value
to 128 bits. However, this approach is unnecessarily complex and less readable compared to a simple upcasting
operation.

uint256 _liquidity;
assembly ("memory-safe'") {

// avoid implicit upcasting

_liquidity := and(liquidity, OxffffffffffffffffffffffffffFffffef)
}

Recommendation: Replace the assembly code with a simple upcasting operation in order to simplifies the code
and provide a small gas optimization.

uint256 _liquidity = uint256(liquidity);

14

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L324
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L324
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L88
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L88
https://github.com/ProjectOpenSea/seaport-core/blob/7ca0a99396e7cb6ce86ced6f4f036d252bbaa5da/src/lib/LowLevelHelpers.sol#L36-L88
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SqrtPriceMath.sol#L241-L245

Uniswap: Fixed in PR 857.
Spearbit: Fixed.

5.3.2 toId performs an unnecesary length calculation
Severity: Gas Optimization
Context: PoolldLibrary.sol#L12-L16

Description: toId function currently calculates the size of the poolKey struct in memory using the expression
mul (32, 5). While this is correct, it performs an unnecessary multiplication operation every time the function is
called. Replacing this with a hardcoded value can save gas and make the intention clearer.

Recommendation: Replace the calculation mul (32, 5) with the hardcoded hexadecimal value 0xa0, which is
equivalent to 160 bytes (5 x 32). Additionally, add a comment explaining the memory layout of PoolKey structure.

Uniswap: Fixed in PR 857.
Spearbit: Verified.

5.3.3 state.sqrtPriceX96 can be used instead of slotOStart.sqrtPriceX96() in Pool.swap
Severity: Gas Optimization
Context: Pool.sol#L319-L.328

Description: In this context when the params.sqrtPriceLimitX96 bounds are checked against
slotOStart.sqrtPriceX96(), the storage slots are reread again. Although they also have been cached in
memory in state.sqrtPriceX96.

Recommendation: Reuse state.sqrtPriceX96 instead of reading from storage again:

diff --git a/src/libraries/Pool.sol b/src/libraries/Pool.sol
index 1a376354..7625e1f5 100644
--- a/src/libraries/Pool.sol
+++ b/src/libraries/Pool.sol
@@ -316,15 +316,15 @@ library Pool {
if (params.amountSpecified == 0) return (BalanceDeltaLibrary.ZERO_DELTA, O, swapFee, state);

if (zeroForOne) {
- if (params.sqrtPriceLimitX96 >= slotOStart.sqrtPriceX96()) {
- PricelLimitAlreadyExceeded.selector.revertWith(slotOStart.sqrtPriceX96(),
«— params.sqrtPriceLimitX96) ;

+ if (params.sqrtPriceLimitX96 >= state.sqrtPriceX96) {
+ PricelLimitAlreadyExceeded.selector.revertWith(state.sqrtPriceX96,
«— params.sqrtPriceLimitX96) ;

3

if (params.sqrtPriceLimitX96 < TickMath.MIN_SQRT_PRICE) {
PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96) ;
}
} else {
- if (params.sqrtPriceLimitX96 <= slotOStart.sqrtPriceX96()) {
- PriceLimitAlreadyExceeded.selector.revertWith(slotOStart.sqrtPriceX96(),
«— params.sqrtPriceLimitX96) ;

+ if (params.sqrtPricelLimitX96 <= state.sqrtPriceX96) {
+ PriceLimitAlreadyExceeded.selector.revertWith(state.sqrtPriceX96,
«— params.sqrtPriceLimitX96) ;

}

if (params.sqrtPriceLimitX96 >= TickMath.MAX_SQRT_PRICE) {
PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96) ;

forge s --diff

15

https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/PoolId.sol#L12-L16
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L319-L328

test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -2 (-0.000%))
test_swap_beforeSwapNoOpsSwap_exactOutput () (gas: -2 (-0.000%))
test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 4 (0.000%))
test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 4 (0.001%))
test_swap_succeedsWithCorrectSelectors() (gas: 21 (0.001%))
test_swap_failsWithIncorrectSelectors() (gas: 21 (0.001%))
test_swap_withHooks_gas() (gas: 42 (0.001%))
test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: 21 (0.002%))
test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: 21 (0.002%))
test_shouldSwapEqual (uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 115 (0.002%))
test_swap_succeedsWithHooksIfInitialized() (gas: 21 (0.002%))
test_getFeeGrowthInside() (gas: 21 (0.003%))
test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))
test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))
test_getTickInfo() (gas: 21 (0.004%))

test_getTickFeeGrowthOutside() (gas: 21 (0.004%))

test_getSlot0() (gas: 21 (0.004%))

test_getPositionInfo() (gas: 21 (0.005%))

test_swap_withDynamicFee_gas() (gas: 21 (0.005%))
test_dynamicReturnSwapFee_notStored() (gas: 21 (0.005%))
test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: 21 (0.005%))
test_getFeeGrowthGlobals0() (gas: 21 (0.005%))
test_fuzz_nonZeroDeltaCount (uint256) (gas: 12 (0.006%))
test_getFeeGrowthGlobals1() (gas: 21 (0.006%))

test_swap_succeedsWithHook() (gas: 21 (0.009%))

test_nestedSwap() (gas: 21 (0.010%))
test_collectProtocolFees_ERC20_accumulateFees_gas() (gas: 21 (0.011%))
test_swap_99PercentFee_AmountOut_WithProtocol() (gas: 21 (0.011%))
test_collectProtocolFees_nativeToken_accumulateFees_gas() (gas: 21 (0.011%))
test_collectProtocolFees_ERC20_accumulateFees_exactOutput() (gas: 21 (0.011%))
test_collectProtocolFees_nativeToken_returnsAllFeesIfOIsProvidedAsParameter() (gas: 21 (0.011%))
test_collectProtocolFees_ERC20_returnsAllFeesIfOIsProvidedAsParameter() (gas: 21 (0.011%))
test_afterDonate_skipIfCalledByHook() (gas: 3000 (0.012%))
test_beforeDonate_skipIfCalledByHook() (gas: 3000 (0.012%))
test_swap_100PercentFee_AmountIn_WithProtocol() (gas: 21 (0.012%))
test_afterRemoveliquidity_skipIfCalledByHook() (gas: 3000 (0.012%))
test_afterAddLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))
test_beforeAddLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))
test_beforeRemovelLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))
test_gas_beforeSwap_skipIfCalledByHook() (gas: 3042 (0.012%))
test_afterInitialize_skipIfCalledByHook() (gas: 3000 (0.012%))
test_beforeInitialize_skipIfCalledByHook() (gas: 3000 (0.012%))
test_emitsSwapFee() (gas: 21 (0.012%))

test_afterSwap_skipIfCalledByHook() (gas: 3084 (0.012%))
test_beforeSwap_skipIfCalledByHook() (gas: 3084 (0.012%))
test_swap_mint6909If0OutputNotTaken_gas() (gas: 21 (0.012%))
test_updateDynamicLPFee_beforeSwap_succeeds_gas() (gas: 21 (0.013%))
test_returnDynamicSwapFee_beforeSwap_succeeds_gas() (gas: 21 (0.013%))
test_swap_50PercentLPFee_AmountIn_NoProtocol() (gas: 21 (0.013%))
test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: -79 (-0.013%))
test_swap_succeedsIfInitialized() (gas: 21 (0.013%))
test_swap_50PercentLPFee_AmountOut_NoProtocol() (gas: 21 (0.013%))
test_settle_withStartingBalance() (gas: 21 (0.014%))
test_swap_100PercentLPFee_AmountIn_NoProtocol() (gas: 21 (0.0147%))
test_swap_succeedsWithNativeTokensIfInitialized() (gas: 21 (0.0147%))
test_swap_helper_zeroForOne_exactInput() (gas: 21 (0.0147))
test_swap_helper_zeroForOne_exactOutput () (gas: 21 (0.014%))
test_fuzz_dynamicReturnSwapFee (uint24) (gas: 21 (0.0147%))
test_swap_mint6909IfNativeOutputNotTaken_gas() (gas: 21 (0.014%))
test_swapNativeInput_helper_zeroForOne_exactOutput() (gas: 21 (0.015%))
test_swap_helper_oneForZero_exactOutput () (gas: 21 (0.015%))

16

test_swap_helper_oneForZero_exactInput() (gas: 21 (0.015%))
test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: 38 (0.015%))
test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:
— 40 (0.015%))

test_swap_helper_native_zeroForOne_exactInput() (gas: 21 (0.015%))
test_swapNativeInput_helper_zeroForOne_exactInput() (gas: 21 (0.015%))

test_swap_succeeds () (gas: 21 (0.015%))

test_take_failsWithNoLiquidity() (gas: 3000 (0.015%))

test_swap_burn6909AsInput_gas() (gas: 42 (0.016%))
test_swapNativeInput_helper_oneForZero_exactOutput() (gas: 21 (0.016%))
test_swapNativeInput_helper_oneForZero_exactInput() (gas: 21 (0.016%))
test_swap_helper_native_oneForZero_exactOutput() (gas: 21 (0.016%))
test_swap_helper_native_oneForZero_exactInput() (gas: 21 (0.016%))

test_swap_gas() (gas: 21 (0.016%))

test_afterSwap_invalidReturn() (gas: 21 (0.017%))

test_swap_withNative_succeeds() (gas: 21 (0.017%))

test_swap_burnNative6909AsInput_gas() (gas: 42 (0.017%))

test_swap_withNative_gas() (gas: 21 (0.018%))

test_swap_againstLiqWithNative_gas() (gas: 42 (0.021%))

test_swap_againstLiquidity_gas() (gas: 42 (0.021%))

test_fuzz_getFeeGrowthInside ((int24,int24,int256 ,bytes32) ,bool) (gas: 405 (0.067%))
test_fuzz_ProtocolAndLPFee (uint24,uint16,uint16,int256) (gas: 162 (0.081%))
test_fuzz_swap(uint160,uint24,uint16,uint16, (int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))
test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32), (int24,int24,int256,bytes32))
— (gas: -763 (-0.182%))

test_fuzz_consecutiveExtsload (uint256,uint256,uint256) (gas: 2014 (0.221%))
test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: -1104
— (-0.253%))
test_shouldSwapEqualMultipleLP (uint24,int24, (int24,int24,int256) [1,int256,int128,bool) (gas: -39552
— (-0.460%))

test_fuzz_extsload(uint256,uint256,bytes) (gas: 14346 (1.126%))
test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11043 (-1.553%))
test_fuzz_collectProtocolFees(address,uint256,uint256) (gas: -9403 (-10.9077%))

Overall gas change: -7252 (-0.002%)

Uniswap: Acknowledged. Recommendation not applied.

Spearbit: Acknowledged.

5.3.4 Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed
Severity: Gas Optimization
Context: Pool.sol#L574-L577

Description/Recommendation: The calculation in this context can be simplified by removing the unnecessary
multiplication and then division by tickSpacing:

let minTick := sdiv(MIN_TICK, tickSpacing)

let maxTick := sdiv(MAX_TICK, tickSpacing)

let numTicks := add(sub(maxTick, minTick), 1)

result := div(OxfffffffffffFfFFFFEFFFFEFFEFEFFEF, numTicks)

forge s --diff

test_swap_withHooks_gas() (gas: -21 (-0.001%))
test_swap_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))
test_donate_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))
test_donate_failsWithIncorrectSelectors() (gas: -21 (-0.001%))
test_swap_failsWithIncorrectSelectors() (gas: -21 (-0.001%))
test_removeLiquidity_failsWithIncorrectSelectors() (gas: -21 (-0.001%))
test_addLiquidity_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))

17

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L574-L577

test_addLiquidity_withHooks_gas() (gas: -21 (-0.001%))
test_addLiquidity_failsWithIncorrectSelectors() (gas: -21 (-0.001%))
test_removeLiquidity_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))
test_removeLiquidity_withHooks_gas() (gas: -21 (-0.001%))
test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: -21 (-0.002%))
test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: -21 (-0.002%))
test_removeLiquidity_withFeeTakingHook() (gas: -21 (-0.002%))
test_fuzz_swap_beforeSwap_returnsDeltaSpecified(int128,int256,bool) (gas: -21 (-0.002%))
test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -21 (-0.002%))
test_swap_beforeSwapNoOpsSwap_exactOutput () (gas: -21 (-0.002%))
test_shouldSwapEqual (uint24,int24,int24,int24,int256,int256,int128,bool) (gas: -113 (-0.002%))
test_swap_succeedsWithHooksIfInitialized() (gas: -21 (-0.002%))
test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -18 (-0.0027%))
test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -18 (-0.002%))
test_modifyLiquidity_sameSalt_differentLiquidityRouters_doNotEditSamePosition() (gas: -42 (-0.002%))
test_take_failsWithInvalidTokensThatDoNotReturnTrueOnTransfer() (gas: -21 (-0.002%))
test_addLiquidity_withFeeTakingHook() (gas: -42 (-0.003%))
test_afterInitialize_skipIfCalledByHook() (gas: -1013 (-0.004%))
test_beforeInitialize_skipIfCalledByHook() (gas: -1013 (-0.004%))
test_afterSwap_skipIfCalledByHook() (gas: -1034 (-0.004%))
test_beforeSwap_skipIfCalledByHook() (gas: -1034 (-0.0047%))
test_afterDonate_skipIfCalledByHook() (gas: -1034 (-0.004%))
test_beforeDonate_skipIfCalledByHook() (gas: -1034 (-0.004%))
test_gas_beforeSwap_skipIfCalledByHook() (gas: -1034 (-0.004%))
test_afterRemoveliquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))
test_afterAddLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))
test_beforeAddLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))
test_beforeRemovelLiquidity_skipIfCalledByHook() (gas: -1097 (-0.0047%))
test_getPositionInfo() (gas: -21 (-0.005%))

test_swap_withDynamicFee_gas() (gas: -21 (-0.005%))
test_beforeAfterRemoveliquidity_calledWithZeroLiquidityDelta() (gas: -21 (-0.005%))
test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: -13 (-0.005%))
test_take_failsWithNoLiquidity() (gas: -1011 (-0.005%))
test_dynamicReturnSwapFee_notStored() (gas: -21 (-0.005%))
test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: -21 (-0.005%))
test_getFeeGrowthGlobals0() (gas: -21 (-0.005%))

test_getFeeGrowthGlobals1() (gas: -21 (-0.006%))
test_beforeAfterAddLiquidity_beforeAfterRemovelLiquidity_succeedsWithHook() (gas: -21 (-0.006%))
test_ffi_addLiqudity_weirdPool_O_returnsCorrectLiquidityDelta() (gas: -21 (-0.006%))
test_beforeAfterRemoveliquidity_calledWithPositiveLiquidityDelta() (gas: -21 (-0.007%))
test_settle_withNoStartingBalance() (gas: -21 (-0.007%))

test_getFeeGrowthInside() (gas: -42 (-0.007%))

test_getTickLiquidity() (gas: -21 (-0.007%))

test_getTickBitmap() (gas: -21 (-0.007%))

test_getPositionLiquidity() (gas: -21 (-0.007%))
test_gas_modifyLiquidity_newPosition() (gas: -21 (-0.0077%))

test_getTickInfo() (gas: -42 (-0.008%))

test_getTickFeeGrowthOutside() (gas: -42 (-0.008%))
test_beforeAfterAddLiquidity_calledWithPositiveLiquidityDelta() (gas: -21 (-0.008%))
test_getSlot0() (gas: -42 (-0.008%))

test_addLiquidity_6909() (gas: -21 (-0.008%))

test_nestedRemoveLiquidity () (gas: -21 (-0.008%))

test_removeLiquidity_6909() (gas: -21 (-0.008%))
test_ffi_addLiqudity_weirdPool_1_returnsCorrectLiquidityDelta() (gas: -21 (-0.008%))
test_afterRemoveliquidity_invalidReturn() (gas: -21 (-0.009%))
test_nestedAddLiquidity() (gas: -21 (-0.009%))
test_beforeRemoveLiquidity_invalidReturn() (gas: -21 (-0.009%))

test_getLiquidity() (gas: -42 (-0.010%))
test_removelLiquidity_someLiquidityRemains_gas() (gas: -21 (-0.011%))
test_modifyLiquidity_samePosition_withSalt_isUpdated() (gas: -42 (-0.012%))
test_modifyLiquidity_samePosition_zeroSalt_isUpdated() (gas: -42 (-0.012%))
test_removeLiquidity_gas() (gas: -17 (-0.012%))

18

test_gas_modifyLiquidity_updateSamePosition_withSalt() (gas: -42 (-0.012%))
test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:
— =33 (-0.013%))

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: -33 (-0.013%))
test_modifyLiquidity_sameTicks_withDifferentSalt_isNotUpdated() (gas: -60 (-0.013%))
test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: -33 (-0.013%))

test_addLiquidity_gas() (gas: -21 (-0.013%))

test_addLiquidity_succeedsIfInitialized(uint160) (gas: -21 (-0.014%))
test_addLiquidity_succeedsForNativeTokensIfInitialized(uint160) (gas: -21 (-0.014%))
test_addLiquidity_withNative_gas() (gas: -21 (-0.014%))

test_afterAddLiquidity_invalidReturn() (gas: -21 (-0.0147%))

test_addLiquidity_succeeds() (gas: -21 (-0.015%))
test_shouldSwapEqualMultipleLP (uint24,int24, (int24,int24,int256) [],int256,int128,bool) (gas: 1767
— (0.021%))

test_addLiquidity_secondAdditionSameRange_gas() (gas: -42 (-0.022%))
test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32), (int24,int24,int256,bytes32))
— (gas: -135 (-0.032%))

test_fuzz_ProtocolAndLPFee (uint24,uint16,uint16,int256) (gas: 141 (0.070%))
test_fuzz_getFeeGrowthInside ((int24,int24,int256,bytes32) ,bool) (gas: -462 (-0.076%))
test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32), (int24,int24,int256,bytes32)) (gas: -364
— (-0.083%))

testTick_tickSpacingToParametersInvariants_fuzz(int24) (gas: -24 (-0.224%))
test_fuzz_tickSpacingToMaxLiquidityPerTick(int24) (gas: -21 (-0.240%))
test_fuzz_initialize((address,address,uint24,int24,address) ,uint160) (gas: 45 (0.275%))
test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 2642 (0.443%))
test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11106 (-1.562%))

Overall gas change: -21941 (-0.005%)

Uniswap: Fixed in PR 823.
Spearbit: Verified.

5.3.5 Deriving liquidityGrossBefore can be optimised
Severity: Gas Optimization
Context: Pool.sol#L523

Description/Recommendation: It is cheaper to mask a value by using and than shifting left then right:

uint256 internal constant LIQUIDITY_GROSS_MASK = Oxffffffffffffffffffffffffffffffff;
/7.
liquidityGrossBefore := and(liquidity, LIQUIDITY_GROSS_MASK)

Uniswap: Usage of the assembly block has been removed in PR 827.

Spearbit: Verified since the optimisation does not apply anymore.

5.3.6 msg.sender can be inlined in _burnFrom to save gas
Severity: Gas Optimization
Context: ERC6909Claims.sol#L14-L19

Description/Recommendation: msg.sender can be inlined in _burnFrom to save gas to avoid using the sender
stack variable:

19

https://github.com/Uniswap/v4-core/pull/823
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L523
https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909Claims.sol#L14-L19

function _burnFrom(address from, uint256 id, uint256 amount) internal {
if (from != msg.sender && !isOperator[from] [msg.sender]) {
uint256 senderAllowance = allowance[from] [msg.sender] [id];
if (senderAllowance !'= type(uint256).max) {
allowance [from] [msg.sender] [id] = senderAllowance - amount;
}
}

_burn(from, id, amount);

forge snapshot --diff

test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 5 (0.001%))
test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 5 (0.001%))
test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))
test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))
test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:
— 10 (0.004%))

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32), (int24,int24,int256,bytes32)) (gas: 17
— (0.004%))

test_shouldSwapEqual (uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 287 (0.005%))
test_fuzz_getLiquidity ((int24,int24,int256,bytes32)) (gas: 29 (0.012%))
test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))
- (gas: -79 (-0.019%))

test_fuzz_getFeeGrowthInside ((int24,int24,int256,bytes32) ,bool) (gas: 232 (0.038%))
test_shouldSwapEqualMultipleLP (uint24,int24, (int24,int24,int256) [],int256,int128,bool) (gas: -4712
— (-0.055%))

test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))
test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))
test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 7118 (1.1947%))
test_swap_accruesProtocolFees(uint16,uint16,int2566) (gas: -11064 (-1.556%))

Overall gas change: -1036 (-0.000%)

Uniswap: We don't think this approach would improve gas costs.

Spearbit: Acknowledged.

5.3.7 _fetchProtocolFee can be optimised by using the scratch space
Severity: Gas Optimization
Context: ProtocolFees.sol#L.88-193

Description: If success is true then we know that the returndatasize() should be 32 so we can copy the
returned value to the first memory slot in the scratch space to save on gas cost.

Recommendation: Avoid using the free memory point and instead use the scratch space to copy and use the
returned value:

if success {
returndatacopy (0, 0, 32)
returnData := mload(0)

forge snapshot --diff

test_swap_withHooks_gas() (gas: -11 (-0.000%))
test_swap_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))
test_donate_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))
test_donate_failsWithIncorrectSelectors() (gas: -11 (-0.000%))
test_swap_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

20

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L88-L93
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L85

test_removeLiquidity_failsWithIncorrectSelectors() (gas: -11 (-0.000%))
test_addLiquidity_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))
test_addLiquidity_withHooks_gas() (gas: -11 (-0.000%))
test_addLiquidity_failsWithIncorrectSelectors() (gas: -11 (-0.000%))
test_removelLiquidity_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))
test_removeLiquidity_withHooks_gas() (gas: -11 (-0.000%))
test_initialize_failsWithIncorrectSelectors() (gas: -11 (-0.000%))
test_initialize_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))
test_initialize_succeedsWithEmptyHooks (uint160) (gas: -11 (-0.000%))
test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: -11 (-0.001%))
test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: -11 (-0.001%))
test_addLiquidity_withFeeTakingHook() (gas: -11 (-0.001%))
test_removeLiquidity_withFeeTakingHook() (gas: -11 (-0.001%))
test_fuzz_swap_beforeSwap_returnsDeltaSpecified(int128,int256,bool) (gas: -11 (-0.001%))
test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -11 (-0.001%))
test_swap_beforeSwapNoOpsSwap_exactOutput () (gas: -11 (-0.001%))
test_swap_succeedsWithHooksIfInitialized() (gas: -11 (-0.001%))
test_take_failsWithInvalidTokensThatDoNotReturnTrueOnTransfer() (gas: -11 (-0.001%))
test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -11 (-0.001%))
test_removelLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -11 (-0.001%))
test_initialize_succeedsWithHooks (uint160) (gas: -11 (-0.002%))
test_swap_withDynamicFee_gas() (gas: -11 (-0.003%))
test_dynamicReturnSwapFee_notStored() (gas: -11 (-0.003%))
test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: -11 (-0.003%))
test_afterSwap_skipIfCalledByHook() (gas: -824 (-0.0037%))
test_beforeSwap_skipIfCalledByHook() (gas: -824 (-0.003%))
test_afterDonate_skipIfCalledByHook() (gas: -824 (-0.003%))
test_beforeDonate_skipIfCalledByHook() (gas: -824 (-0.003%))
test_afterRemoveliquidity_skipIfCalledByHook() (gas: -824 (-0.003%))
test_afterAddLiquidity_skipIfCalledByHook() (gas: -824 (-0.003%))
test_beforeAddLiquidity_skipIfCalledByHook() (gas: -824.(-0.003%))
test_beforeRemoveliquidity_skipIfCalledByHook().(gas: -824 (-0.003%))
test_gas_beforeSwap_skipIfCalledByHook() (gas: =824 (-0.003%))
test_ffi_addLiqudity_weirdPool_O_returnsCorrectLiquidityDelta() (gas: -11 (-0.003%))
test_afterInitialize_skipIfCalledByHook() (gas: -835 (-0.003%))
test_beforeInitialize_skipIfCalledByHook() (gas: -835 (-0.003%))
test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))
test_settle_withNoStartingBalance() (gas: -11 (-0.003%))
test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))
test_take_failsWithNoLiquidity() (gas: -811 (-0.004%))
test_ffi_addLiqudity_weirdPool_1_returnsCorrectLiquidityDelta() (gas: -11 (-0.004%))
test_shouldSwapEqual (uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 305 (0.006%))
test_fetchProtocolFee_out0fBounds () (gas: -11 (-0.006%))
test_fetchProtocolFee_overflowFee() (gas: -11 (-0.007%))
test_initialize_succeedsWithHook() (gas: -11 (-0.008%))
test_callHook_revertsWithInternalErrorFailedHookCall() (gas: -11 (-0.008%))
test_nestedInitialize() (gas: -11 (-0.009%))
test_initialize_forNativeTokens (uint160) (gas: -6 (-0.010%))
test_donate_failsIfNoLiquidity(uint160) (gas: -11 (-0.011%))
test_callHook_revertsWithBubbleUp() (gas: -11 (-0.012%))
test_afterInitialize_invalidReturn() (gas: -11 (-0.013%))
test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: 33 (0.013%))
test_initialize_fetchFeeWhenController(uint24) (gas: -11 (-0.013%))
test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:
< 40 (0.015%))

test_updateDynamicLPFee_afterInitialize_initializesFee() (gas: -11 (-0.015%))
test_initialize_succeedsWithOverflowFeeController(uint160) (gas: -11 (-0.016%))
test_initialize_succeedsWithOutOfBoundsFeeController (uint160) (gas: -11 (-0.016%))
test_initialize_initializesFeeToO() (gas: -11 (-0.016%))
test_updateDynamicLPFee_revertsIfPoolHasStaticFee() (gas: -11 (-0.0167%))
test_updateDynamicLPFee_afterInitialize_failsWithTooLargeFee() (gas: -11 (-0.016%))
test_initialize_succeedsWithMaxTickSpacing(uint160) (gas: -11 (-0.017%))

21

test_dynamicReturnSwapFee_initializeZeroSwapFee() (gas: -11 (-0.0197%))

test_initialize_gas() (gas: -11 (-0.019%))

test_fetchProtocolFee_succeeds() (gas: -11 (-0.022%))
test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 151 (0.025%))
test_initialize_revertsWhenPoolAlreadyInitialized(uint160) (gas: -25 (-0.041%))
test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32), (int24,int24,int256,bytes32)) (gas: 285
— (0.065%))

test_fuzz_ProtocolAndLPFee (uint24,uint16,uint16,int256) (gas: 141 (0.070%))
test_fuzz_getFeeGrowthInside ((int24,int24,int256,bytes32) ,bool) (gas: 476 (0.079%))
test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))
test_fuzz_swap(uint160,uint24,uint16,uint16, (int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))
test_shouldSwapEqualMultipleLP (uint24,int24, (int24,int24,int256) [],int256,int128,bool) (gas: -19223
- (-0.224%))

test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))
test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11497 (-1.617%))
test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32), (int24,int24,int256,bytes32))
« (gas: 16970 (4.059%))

test_fuzz_collectProtocolFees(address,uint256,uint256) (gas: -11601 (-13.457%))

Overall gas change: -27267 (-0.0077%)

Uniswap: Different optimisation applied in PR 825.

Spearbit: The new approach also looks cheaper, one still needs to measure by how much.

5.3.8 Gas optimization in clear() function
Severity: Gas Optimization
Context: PoolManager.sol#L303

Description: Because the amount argument to clear () is non-negative, the amountDelta value obtained by safe-
casting amount to int128 is also non-negative, and thus the negation of amountDelta cannot overflow. Therefore,
an unchecked block could be used here to reduce gas usage and bytecode size, consistent with what is done in
other functions like take and mint.

Recommendation: Put the line containing the negation within an unchecked block:

+ unchecked {
_accountDelta(currency, -(amountDelta), msg.sender);

+ }

Uniswap: Fixed in PR 826.
Spearbit: Fix verified.

5.3.9 Non-assembly version of state.tick setter possibly more gas efficient
Severity: Gas Optimization
Context: Pool.sol#L415-L422

Description: The non-assembly version of the setting of state.tick seems to be more efficient than the current
implementation.

unchecked {
int24 _zeroForOne = zeroForOne ? int24(1) : int24(0);
state.tick = step.tickNext - _zeroFor(One;

}

Recommendation: In addition to adopting the above recommendation, revisit assembly blocks and re-test to see
if their non-assembly counterparts could be more efficient. This could possibly be due to the number of optimizer
runs with the IR optimizer.

22

https://github.com/Uniswap/v4-core/pull/825
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L303
https://github.com/Uniswap/v4-core/pull/826
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L415-L422

Uniswap: Fixed in PR 827.
Spearbit: Fixed.

5.3.10 mulDiv() is redundant for fee growth calculation
Severity: Gas Optimization
Context: Pool.sol#L391-L393, Pool.sol#L463-L468

Description: In donate(), amountO0 and amountl are safely casted to int128. As such, Full-
Math.mulDiv() isn't required because amount * Q128 <= type(int128).max) * Q128 =
Ox7TEffffffEEFEEFEEFLEFLLLLELLELLEEL00000000000000000000000000000000 < type(uint256) .max,

ie. the intermediate value will not overflow uint256.

Therefore the calculation could use native operands, or a simplified version of mulDiv:

function simpleMulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result)
- {
assembly ("memory-safe'") {
result := div(mul(a, b), denominator)

}
}

Under the assumption that supported tokens can have a maximum supply of type (uint128) .max, the same can
be applied in swap () when incrementing fee growth global.

Recommendation: Replace FullMath.mulDiv() with a simplified and more gas efficient version for the refer-
enced lines.

Uniswap: Fixed in PR 844.
Spearbit: Fixed.

5.3.11 More efficient mask derivation in TickBitmap
Severity: Gas Optimization
Context: TickBitmap.sol#L96-L97

Description: The mask derivation has been modified from UniswapV3 to be slightly more efficient:

// Univ3
- uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);
// = 2% (1 << bitPos) - 1
// = (1 << bitPos + 1) -1
// = UnivV4
+ uint256 mask = (1 << (uint256(bitPos) + 1)) - 1;

This can be further optimised to uint256 mask = type(uint256).max >> (uint256(type(uint8).max) - bit-
Pos) ;, which is 1 operand less. Essentially, it's doing SHR of the full mask by 255 - bitPos bits.

Recommendation:

- uint256 mask = (1 << (uint256(bitPos) + 1)) - 1;
+ uint256 mask = type(uint256).max >> (uint256 (type(uint8).max) - bitPos);

Uniswap: Fixed in PR 828.
Spearbit: Fixed.

23

https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L391-L393
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/pull/844
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickBitmap.sol#L96-L97
https://github.com/Uniswap/v4-core/pull/828

5.3.12 BitMath

Severity: Gas Optimization

Context: BitMath.sol#L 16, BitMath.sol#L23

Description:

1. mostSignificantBit can be slightly optimised since we require thatx > 0and so sh1(8, iszero(x)) would

just be 0.

2. The constant 0x0706060506020504060203020504030106050205030304010505030400000000 which is used
as a lookup bitmap is slightly different from how one would construct it. The assumes that the following can
include values 7 and 14 which is not true:

= 0x8421084210842108cc6318c6db6d54be

= and(0x1f, shr(shr(r, x), A))

In the above snippet shr(r, x) would have at most 8 bits and thus shifting 0x8421084210842108cc6318c6db6d54be
to the right by the shr(r, x) amount and then masking by 0x1f which picks the least 5 bits of the shifted value

gives us the following table:

most significant bit of shr(r, x)

possible values of B in binary

binary portion of A which is relev

Ob
0Ob
Ob
Ob
0b
0b
Ob
Ob
0Ob

111
110
101
100
011
010
001
000

00000
00001,
00110,
01101,
10100,
01011,
01111,
11111
11110

00010,
00011,
10110,
01010,
00101,
10111

00100, 01000, 10000
10001, 11000, 01100,
11011

10101, 11010

10010, 01001

10011,

11001

00..00
100001000010000100001000010¢
110011000110001100011000110¢
1101101101101101

01010100

1011

11

1

0

Note: In the above table the symbol 0b .

represents the case/state that the code never ends up at

but it is included for the sake of completeness. This is when shr(r, x) == 0 aka when x == 0 but we
never end up at this case since we have the require(x > 0) statement.

And so the set of possible values of B does not include 7 (00111) or 14 (01110). And so the 7th or 14th byte of
0x0706060506020504060203020504030106050205030304010505030400000000 is never queried:

C = 0x0706060506020504060203020504030106050205030304010505030400000000
byte (B, C)

And that is why the 7th and 14th bytes of C can be any value and it would be best to just set them as 00.

24

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L16
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L23

mnun

suggested value
0207060605060205_00_060203020504_00_0106050205030304010505030400000000
00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000000]
00000110 00000010 00000011 00000010 00000101 00000100 [00000000] 00000001
00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001
00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

current value
0x07060605060205_04_060203020504_03_0106050205030304010505030400000000
00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000100]
00000110 00000010 00000011 00000010 00000101 00000100 [00000011] 00000001
00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001
00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

nan

Proof of concept: See the following Python code to verify and construct different constants:

import re
MAX_RANGE = 1 << 256

LSB
print ("\n--- LSB ---\n")

m = 0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff

nun

1000 0000 0100 0000 0100 0000 0101 0101
0100 0011 0000 0000 0101 0010 0110 0110
0100 0100 0011 0010 0000 0000 0000 0000
0101 0000 0010 0000 0110 0001 0000 0110
0111 0100 0000 0101 0011 0000 0010 0110
0000 0010 0000 0000 0000 0000 0001 0000
0111 0101 0000 0110 0010 0000 0000 0001
0111 0110 0001 0001 0111 0000 0111 0111

nun

L = 0x8040405543005266443200005020610674053026020000107506200176117077

patterns = [set() for _ in range(8)]

for i in range(256):
block = i // 32
pattern = ((m << i) % MAX_RANGE) >> 250
patterns[block] .add(pattern)

for i in range(8):
s = f'block {i:03b} : ' + ', '.join([f'{p:06b}' for p in patterns[i]]l)

print(s)

for i in range(8):
for j in range(8):
if i == j:
continue
intersection = patterns[i].intersection(patterns([j])
if len(intersection) != O:
print(f'collision ({i}, {j}): {intersection}')

for i in range(8):

25

for p in patterns[i]:
b = ((L << (p << 2)) 7% MAX_RANGE) >> 252
if b != 1i:
print(f"error on block {i} and pattern {p:06b}")

make sure L is computed correctly.
h =1 << 255
for i in range(8):
for p in patterns[i]:
if p == 0:
print ('O pattern detected')
h |=1 << ((256 - 4) - (p << 2))

print(f"h == L: {h == L}")

11010111011001000101001111100000

m2 = 0xd76453e0

pattern2 = []

L2 = 0x001£0d1e100c1d070£090b19131c1706010e11080a12141802121b1503160405
h2 = 0

make sure L2 is computed correctly.
for i in range(0, 32):
p= (m2 > i) & 31
pattern2.append(p)
h2 [= i << ((256 - 8) - (p << 3))

print (pattern2)
print (f"h2 == L2: {h2 == L2}")

HMSB

print ("\n--- MSB ---\n")

mun

7 -00..00 - 00000

6 - 1000010000100001000010000100001000010000100001000010000100001000 - 00001, 00010, 00100, 01000,
5 - 11001100011000110001100011000110 - 00110, 00011, 10001, 11000, 01100, 10011, 11001

4 - 1101101101101101 - 01101, 10110, 11011,

3 - 01010100 - 10100, 01010, 10101, 11010

2 - 1011 - 01011, 00101, 10010, 01001

1 - 11 - 01111, 10111

0 -1 - 11111

-0 - 11110

nnn

m3 = 0x8421084210842108cc6318c6db6d54be

nnn

7- 0/

6 - 1, 2, 4, 8, 16/

5- 3, 6, 12, 17, 19, 24, 25 /

4 - 7, 13, 22, 27 22 (1 7)
3 - 10, 14, 20, 21, 26 22 (14)
2 - 5, 9,11, 18 /

1 - 15, 23 /

0 - 28, 29, 30, 31

- 22

non

L3 = 0x0706060506020504060203020504030106050205030304010505030400000000

ranges3 = [[0]]
ranges3.extend([[i + (1 << j) for i in range(l << j)] for j in range(8)1)

26

10000

patterns3 = [set() for _ in range(len(ranges3))]

for i in range(len(ranges3)):
for j in ranges3[il]:
patterns3[i] .add ((0x8421084210842108cc6318c6dbb6d54be >> j) & 31)

print (patterns3)

for i in range(8):
for pattern in patterns3[i+1]:
j = 0bil1111 & (L3 >> ((256 - 8) - (pattern << 3)))
if i ot= §:
print(f'(i, j, pattern): {i}, {j}, {pattern:05b}')

h3 =0
for i in range(8):
for pattern in patterns3[i+1]:
h3 |= i << ((256 - 8) - (pattern << 3))

for i in range(8):
for pattern in patterns3[i+1]:
j = 0bl1111l & (W3 >> ((256 - 8) - (pattern << 3)))
if i 1= j:
print(f' (i, j, pattern): {i}, {j}, {pattern:05b}"')

print("h3: " + ' '.join(re.findall('.{8}', £'{h3:0256b}')))
print("L3: " + ' '.join(re.findall('.{8}', f'{L3:0256b}")))
print ("h3: " + hex(h3))

print (f"h3 == L3: {h3 == L3}")

nnn

suggested value
0z706060506020500060203020504000106050205030304010505030400000000

00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000000]
00000110 00000010 00000011 00000010 00000101 00000100 [00000000] 00000001
00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001
00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

current value
0x0706060506020504060203020504030106050205030304010505030400000000
00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000100]
00000110 00000010 00000011 00000010 00000101 00000100 [00000011] 00000001
00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001
00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

nnn

Recommendation: Apply the following changes:

27

diff --git a/src/libraries/BitMath.sol b/src/libraries/BitMath.sol
index 500d6f7e..6ed4e8c7a 100644
--- a/src/libraries/BitMath.sol
+++ b/src/libraries/BitMath.sol
@@ -13,14 +13,14 @@ library BitMath {
require(x > 0);

assembly ("memory-safe") {
- r := or(shl(8, iszero(x)), shl(7, 1t(OxfffffffffffffffffffffffffFFFFFfff, x)))
:= shl(7, lt(Oxffffffffffffffffffffffffff£££££f, x))
:= or(r, shl(6, 1t(Oxffffffffffffffff, shr(r, x))))
or(r, shl(5, 1t (Oxffffffff, shr(r, x))))
or(r, shl(4, 1t(0xffff, shr(r, x))))
or(r, shl(3, 1t(0xff, shr(r, x))))
orgefmt: disable-next-item
or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)) ,
- 0x0706060506020504060203020504030106050205030304010505030400000000))
+ 0x0706060506020500060203020504000106050205030304010505030400000000))

/

r
r
r
r
r
/
r

n o

Uniswap: Fixed in PR 822.
Spearbit: Verified.

5.4 Informational
5.4.1 Some contracts don't follow Uniswap's version convention

Severity: Informational
Context: CurrencyReserves.sol#L2, IProtocolFees.sol#L2

Description: The Solidity pragma statements in various contracts within the v4-periphery repository do not adhere
to Uniswap's stated rules for version specification:

Uniswap's stated rules:
1. Contracts to be deployed should have a fixed compiler version for safety (0.8.26).
2. Open-source libraries without transient storage should use ~0.8.0.
3. Open-source libraries with transient storage should use ~0.8.24.
Current pragma statements that don't follow this:
* 70.8.20: CurrencyReserves.
* 70.8.19: IProtocolFees:

Recommendation: Standardize the version in order to align the codebase with Uniswap's stated best practices,
locking the pragma version where posible or setting the correct range where needed.

Uniswap: Fixed in PR 858.

28

https://github.com/Uniswap/v4-core/pull/822/
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L2
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IProtocolFees.sol#L2
https://github.com/Uniswap/v4-core/pull/858

5.4.2 computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amountRemain-
inglessFee

Severity: Informational

Context: SwapMath.sol#L74-181

Description: In the above context we are in the case of exactIn swaps when amountIn is greater than amoun-
tRemaininglessFee!:

sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput (
sqrtPriceCurrentX96, liquidity, amountRemaininglessFee, zeroFor(One
)5
amountIn = zeroFor(One
7 SqrtPriceMath.getAmountODelta(sqrtPriceNextX96, sqrtPriceCurrentX96, liquidity, true)
: SqrtPriceMath.getAmountiDelta(sqrtPriceCurrentX96, sqrtPriceNextX96, liquidity, true);
// we didn't reach the target, so take the remainder of the mazimum input as fee
feeAmount = uint256(-amountRemaining) - amountIn;

Notations:

parameter description

v/Pc sqrtPriceCurrentX96
\/ Pt sqrtPriceTargetX96
\/Pn sqrtPriceNextX96
a; amountIn
ao amount(Out
aw amountRemaininglessFee
ar amountRemaining
ar feeAmount
L liquidity
f feePips
1. Case 0— 1 swaps
L
Vpn= L an
—_ + —_
/pc 296
L L
aj = 2% —
vVPn V/Pc
=ady
2. Case 1 — 0 swaps
96
aw
VPn =+/Pc + L
(\/pn - \/pc) L
ai = 296 - aW

29

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L74-L81

so in both directions in this inner else block one could have just set amountIn as amountRemaininglessFee and
the feeAmount ends up being:

or in other words amountIn gets capped by amountRemainingLessFee. Doing so, make the code more unified
when compared to the implementation in the outer else block below where exactIn == false.

Recommendation: The following modification can be applied:

diff --git a/src/libraries/SwapMath.sol b/src/libraries/SwapMath.sol
index e0f4b264..59232535 100644
--- a/src/libraries/SwapMath.sol
+++ b/src/libraries/SwapMath.sol
@@ -71,12 +71,10 @@ library SwapMath {
? amountIn
: FullMath.mulDivRoundingUp (amountIn, _feePips, MAX_FEE_PIPS - _feePips);
} else {
+ amountIn = amountRemaininglessFee;
sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput (
sqrtPriceCurrentX96, liquidity, amountRemaininglessFee, zeroFor(One
)5
- amountIn = zeroForOne
- ? SqrtPriceMath.getAmountODelta(sqrtPriceNextX96, sqrtPriceCurrentX96,
— liquidity, true)
- : SqrtPriceMath.getAmountiDelta (sqrtPriceCurrentX96, sqrtPriceNextX96,
— liquidity, true);
// we didn't reach the target, so take the remainder of the maximum input as fee
feeAmount = uint256(-amountRemaining) - amountIn;

Uniswap: Fixed in PR 718.
Spearbit: Verified.

5.4.3 Add comments regarding the derivation of SQRT_PRICE_A_B constant
Severity: Informational
Context: Constants.sol#L5-L10

Description: The constants SQRT_PRICE_A_B in this context are calculated as:

6.296

B
Where A and B are reserve amounts in the pair of currencies involved in the pool.

Recommendation: Add comments regarding the derivation of SQRT_PRICE_A_B constant. And make sure the
named constant are imported from this utility/library instead of declaring them within each test file such as Tick-
MathTestTest.

Uniswap: Fixed in PR 859.
Spearbit: Verified.

30

https://github.com/Uniswap/v4-core/pull/718
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/utils/Constants.sol#L5-L10
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/libraries/TickMath.t.sol#L18
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/libraries/TickMath.t.sol#L18
https://github.com/Uniswap/v4-core/pull/859

5.4.4 amountlIn is always 0 in an inner branch of computeSwapStep

Severity: Informational
Context: SwapMath.sol#L71

Description: In the above context we have:

if (exactIn) {

uint256 amountRemaininglessFee =

FullMath.mulDiv(uint256 (-amountRemaining), MAX_FEE_PIPS - _feePips, MAX_FEE_PIPS);
amountIn = zeroForOne

7 SqrtPriceMath.getAmountODelta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, true)

: SqrtPriceMath.getAmountiDelta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity, true);
if (amountRemaininglLessFee >= amountIn) {

/.

feeAmount = _feePips == MAX_FEE_PIPS

? amountIn // <<<

/.

If _feePips == MAX_FEE_PIPS then amountRemainingLessFee == 0 which in the above second if branch forces
amountIn to be 0:

0 = amountRemaininglessFee >= amountIn

Recommendation: If we rewrite this as:

feeAmount = _feePips == MAX_FEE_PIPS
7?0
: FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_FEE_PIPS - _feePips);

according to the forge test case it would cost more gas:

forge snapshot --diff

test_shouldSwapEqual (uint24,int24,int24,int24,int256,int256,int128,bool) (gas: -20 (-0.000%))
test_swap_100PercentFee_AmountIn_WithProtocol() (gas: -1 (-0.001%))
test_swap_100PercentLPFee_AmountIn_NoProtocol() (gas: -1 (-0.001%))
test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectlLiquidityDelta((int24,int24,int256,bytes32)) (gas:
— -2 (-0.001%))

test_fuzz_getTickLiquidity ((int24,int24,int256,bytes32)) (gas: -2 (-0.001%))
test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: -2 (-0.001%))
test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: -16
- (-0.004%))

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 27 (0.005%))
test_fuzz_getFeeGrowthInside ((int24,int24,int256,bytes32) ,bool) (gas: 40 (0.007%))
test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))
— (gas: -29 (-0.007%))

test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))
test_fuzz_swap(uint160,uint24,uint16,uint16, (int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))
test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))

Overall gas change: 7118 (0.002%)

It might still be useful to leave a comment that at this specific edge case amountIn and thus feeAmount would be
0. And if there are no test cases present for this edge case to also add some tests for it.

Uniswap: Comments added in PR 857.
Spearbit: Verified.

31

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L71
https://github.com/Uniswap/v4-core/pull/857

5.4.5 Unused code should be removed

Severity: Informational
Context: StateLibrary.sol#L15-L16

Description: Unused code should be removed, this would help decreasing cognitive load and make easier the
read, additionally reducing a little the contract codesize. Some instances:

+ FEE_GROWTH_GLOBAL1_QFFSET is not used neither at v4-core, v4-periphery, or universal router codebases.
However, it provides useful information about the storage layout.

Recommendation: Consider commenting the storage layout and removing unused variables
Uniswap: The line corresponding to the above constant has been commented out in the library in PR 857.

Spearbit: Verified.

5.4.6 Unnecessary unchecked blocks

Severity: Informational
Context: UnsafeMath.sol#L13-L19

Description: divRoundingUp in UnsafeMath is wrapped in an unchecked block. However, this block is unneces-
sary because the function uses inline assembly for its calculations. The unchecked keyword in Solidity is used to
disable overflow and underflow checks for arithmetic operations, but it has no effect on assembly code, which is
inherently unchecked.

Recommendation: Remove the unchecked block as it serves no purpose in this context. The function can be
simplified to:

function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {
assembly ("memory-safe'") {
z := add(div(x, y), gt(mod(x, y), 0))
}

}

Uniswap: Fixed in PR 857.
Spearbit: Verified.

5.4.7 Confusing error message in ERC6909.transferFrom()
Severity: Informational
Context: ERC6909.s01#L38

Description: When the allowance is lower than the transferred amount, ERC6909.transferFrom() returns a low
level "arithmetic underflow or overflow" error:

uint256 allowed = allowancel[sender] [msg.sender][id];
if (allowed != type(uint256).max) allowance[sender][msg.sender][id] = allowed - amount;

The error can be confusing for users because it doesn't explicitly says that the allowance is too low.

Recommendation: Consider returning a meaningful error. For example, see this ERC6909 implementation or the
OpenZeppelin's ERC20 implementation.

Uniswap: Added a custom revert for InsufficientAllowance and InsufficientBalance in PR 833. Currently,
it's causing us to exceed contract bytecode size limits. We may elect to not do custom reverts.

32

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/StateLibrary.sol#L15-L16
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/UnsafeMath.sol#L13-L19
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909.sol#L38
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909.sol#L35
https://github.com/jtriley-eth/ERC-6909/blob/3ecc987b9ea266c31bb32ce8d4d936be04607806/src/ERC6909.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bcd4beb5e7fd8bd8edf160fbffb5d5b03804efdb/contracts/token/ERC20/ERC20.sol#L305
https://github.com/Uniswap/v4-core/pull/833

5.4.8 getSqrtPriceAtTick assumes that the allowed tick range is centered at 0
Severity: Informational
Context: TickMath.sol#L67

Description: getSqrtPriceAtTick assumes that the allowed tick range is centered at 0, ie MAX_TICK == -MIN_-
TICK due to the following bound check:

if (absTick > uint256 (int256 (MAX_TICK))) InvalidTick.selector.revertWith(tick);

Recommendation: Perhaps this needs to be documented/highlighted in case the codebase is changed in the
future where the invariant MAX_TICK == -MIN_TICK is not satisfied anymore.

Uniswap: Comments have been added in PR 851.
Spearbit: Verified.

5.4.9 The current or next tick is not always on the tick spacing grid or within the allowed range
Severity: Informational

Context: Pool.sol#L343-L349, Pool.sol#L421, Pool.sol#L425

Description/Recommendation:

O Pool.sol#L.343-L349: clipping step.tickNext to the TickMath.MIN_TICK and TickMath.MAX_TICK range
breaks the assumptions that step.tickNext is always on the tickSpacing grid.

The following is not always true when clipped:

AI | inext

For these out of bound step.tickNext, step.initialized should be (is) false.

O Pool.sol#L421: Doing the following can push the state.tick out of the minimum bound TickMath.MIN_TICK
when _zeroFor0One is 1:

’ state.tick = step.tickNext - _zeroForOne ‘

O Pool.sol#L421, Pool.sol#L425: in this context when the tick is decremented or recalculated from the price:

’ state.tick = step.tickNext - _zeroForOne; ‘

’ state.tick = TickMath.getTickAtSqrtPrice(state.sqrtPriceX96) ; ‘

and later when one updates the storage the self.slot0.tick() will not necessarily be on the tickSpacing
grid or just off by 1 from it.

Uniswap: Addressed in PR 852.

33

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L67
https://github.com/Uniswap/v4-core/pull/851
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L343-L349
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L425
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L343-L349
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L425
https://github.com/Uniswap/v4-core/pull/852

5.4.10 unchecked blocks

Severity: Informational

Context: Pool.sol#L369-L372, Pool.sol#L381-L382, Pool.sol#L384, Pool.sol#L408
Description/Recommendation:

O Pool.sol#L.369-L.372: It is true that it is safe. But had to double check for this branch in
SwapMath. computeSwapStep due to different rounding direction for the inequalities:

if (exactIn) {
uint256 amountRemaininglessFee =
FullMath.mulDiv(uint256 (-amountRemaining) , MAX_FEE_PIPS - _feePips, MAX_FEE_PIPS);
amountIn = zeroForOne
7 SqrtPriceMath.getAmountODelta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, true)
: SqrtPriceMath.getAmountiDelta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity,
< true);
if (amountRemaininglLessFee >= amountIn) {
// “amountIn’ is capped by the target price
sqrtPriceNextX96 = sqrtPriceTargetX96;
feeAmount = _feePips == MAX_FEE_PIPS
7 amountIn
: FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_FEE_PIPS - _feePips);

for the notations see this discussion and fywap = f(feePips):

in the second if branch we know amountRemaininglessFee >= amountIn:

a {(—ar) (10° = fswap)J -

108

where a; is:

- aj - fswap
7 1105~ fonep

and so we need to make sure the following inequality is guaranteed:

a,-106
—ar > aj+ar= 106 — forr
— Iswap

But in general we have for a,b € Z and k € R*:

lk-a| >b=a> ﬁ-‘

The comment can be more accurate though since the state.amountSpecifiedRemaining is negated in the
inequality.

O Pool.sol#L.381-L382:
— Case. exactInput == true
We have in Pool.sol#L.370-L372:

unchecked {
state.amountSpecifiedRemaining += (step.amountIn + step.feeAmount).toInt256();

}

34

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L369-L372
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L381-L382
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L384
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L408
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L369-L372
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L59-L72
https://github.com/spearbit-audits/review-uniswap-v4/discussions/11
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L381-L382
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L370-L372

and based on this discussion, we know that state.amountSpecifiedRemaining always stays non-

positive. So at the very end of this function where we have

(params.amountSpecified - state.amountSpecifiedRemaining).toInt128()

for the first or second component of result. Thus, we can deduce that:

dspec — dremain = — Z(a{n + alf) > —2127
J

and thus for each iteration of the loop we would have:

4 el <27

so even if multiplied by 10° it would still not overflow in the uint256 range.
— Case. exactInput == false
We have in Pool.sol#L.367:

’ state.amountCalculated -= (step.amountIn + step.feeAmount).toInt256();

|

Note that this is a checked block and the type of state.amountCalculated is int256. So the negative

summation of these value for all the iterations cannot underflow. We also have at the very end:

’ state.amountCalculated.toInt128()

for either the first or second component of result. And thus like the previous case we would have:

_Z(a{n + alf) Z _2127
J
O Pool.sol#L384: To prove that this context doesn't underflow, we need to show:

(@i + ar) - fproto
> [2L 717 PO
= { 106

o f
fo=fy+f,— “04 > f,

The above is true since for all x € NU {0} and k € [0, 1] we have:

] < x
— Case 1. f; # 10°

To show the original inequality in the first comment we need to prove:

a;
——— 108 f
Lo<5—fS w" {a, w
< s

106 106—fs'f

35

https://github.com/spearbit-audits/review-uniswap-v4/pull/5/#discussion_r1688728376
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L367
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L384

or even a stronger inequality since we know f, < fs:

a;
-108 | f,
[106_"3 -‘p [aj -‘
< [}

1086 106—fs'f

a;

106 — fs

Let x = € Q2% and y = f,, then we need to show:

06 JS(X-H

b+e

T where a € {0,1,2,---}, b€ {0,1,---,10% =1} and € € [0, 1). Then we need to show

Let x = a+
that:

“(meamﬁ)] %J < [x<y]

or

{[(106a+b+e)] %J < {(10ea+b+e) : 1}(;6-‘

Note that we can subtract ay from both sides to get:

{f(bwﬂ-%sJ < {(bn)-@

and we can even try to prove stronger inequality:

y y
{(bH).meJ < [b.me}
Y

let k = 205 € [0,1073], then we need to show:

[(b+1)k] < [bK]
or
[bk| + [{bk} + k| < [bk] + [{bk}]
or
[{bk} + k| < [{bk}]

But from the range of k we know that {bk} + k € [0,1+10~3) and so both sides of the inequality above
can either be 0 or 1 and the right hand side can only be 1 if and only if {bk} + k > 1 which implies that
whenever it is 1 then {bk} needs to be non-zero and thus [{bk}] = 1 which proves the inequality.

36

— Case2f,=10°

Then we know that we should have aspec < 0 or only the exact input branches are reached. Also we
know in this case f; = 10%. Then there are 2 cases.

« Case 2.1 (see SwapMath.sol#L70-L71)
In this case both ar = a; = 0 which then the inequality is obvious.
= Case 2.2 (see SwapMath.sol#L77-L81)

sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput (
sqrtPriceCurrentX96, liquidity, amountRemaininglessFee, zeroForOne
)3
amountIn = zeroForOne
7 SqrtPriceMath.getAmountODelta (sqrtPriceNextX96, sqrtPriceCurrentX96,
— liquidity, true)
: SqrtPriceMath.getAmountiDelta(sqrtPriceCurrentX96, sqrtPriceNextX96,
« liquidity, true);
// we didn't reach the target, so take the remainder of the marimum input as fee
feeAmount = uint256 (-amountRemaining) - amountIn;

We know that amountRemaininglessFee == 0 and thus sqrtPriceNextX96 == sqrtPriceCur-
rentX96 which implies that amountIn == 0 and feeAmount == uint256(-amountRemaining). SO
in this case we have:

ai=0a=—ar

and the inequality becomes:

O Pool.sol#L408: We have that:

Lig=Li;+Liy

Lin=Li;—Liy

and we know that max gross liquidity of a tick cannot be greater than the tickSpacingToMaxLiquidityPer-
Tick(tickSpacing):

2128 -1 2128
Lig< < <o

me + |4mn| +1 3
A A

and since L;, L; , are non-negative values, one can deduce that:

_2127 < Li,n
parameter description
Lig liquidityGross at the tick
Lin liquidityNet at the tick /

37

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L70-L71
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L77-L81
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L408

parameter description

L, Sum of all the liquidity of all positions with their lower tick equal to i
Liy Sum of all the liquidity of all positions with their upper tick equal to i
Aj tickSpacing

5.4.11 Dirty bit cleaning

Severity: Informational

Context: SwapMath.sol#L31, Pool.sol#L419
Description:

SwapMath.sol#L31: In the context of the codebase this and some other upper bit cleanings are not nec-
essary and(zeroForOne, 0xff) since on external calls the solc compiler performs cleaning. But in the
context of a library and internal functions why the zeroForOne value is not completely cleaned by doing
and (zeroForOne, 1) ?

O Pool.sol#L419: Why not just and with 1?

Recommendation: Apply the following bit cleaning instead:

and (zeroForOne, 1)

Uniswap:
« Fixed in PR 838.

» Pool.sol#L419: is transformed into and thus avoiding the bit cleanup necessary. See PR 827.

unchecked {
result.tick = zeroForOne 7 step.tickNext - 1 : step.tickNext;

}

Spearbit: Verified.

5.4.12 Named return are unused in settle() and settleFor ()
Severity: Informational
Context: PoolManager.sol#L288-L291

Description: settle() and settleFor () functions declare a named return variable paid, but do not explicitly use
it in the function body. Instead, they directly return the result of the _settle () function call.

Recommendation: Either use the named return variable explicitly or remove it.

function settle() external payable onlyWhenUnlocked returns (uint256 paid) {
- return _settle(msg.sender);
+ paid = _settle(msg.sender);

Uniswap: Fixed in PR 829.

Spearbit: Fixed. The paid parameter was removed.

38

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/pull/838
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L288-L291
https://github.com/Uniswap/v4-core/pull/829

5.4.13 collectProtocolFees lacks an own event to track fee collections

Severity: Informational
Context: ProtocolFees.sol#L57

Description: collectProtocolFees transfers collected protocol fees to a recipient but only emits a generic cur-
rency Transfer event. This lacks specificity and makes it difficult to track protocol fee collection activities separately
from other transfers. A dedicated event for protocol fee collection would improve transparency and make it easier
to monitor and analyze these specific transactions.

Recommendation: Implement a specific event for protocol fee collection. For example:

event ProtocolFeeCollected(address indexed recipient, Currency indexed currency, uint256 amount,
< address caller);

Uniswap: Acknowledged. We are not going to be adding an event to collectProtocolFees.

Spearbit: Acknowledged.

5.4.14 Best practices for handling action flows

Severity: Informational
Context: PoolManager.sol#L271-L285

Description: Developers have to be aware of potential issues that may cause swaps or flash loans to revert. First,
sync() can be called outside of unlocks, and at most 1 currency can be synced each time before settlement. In
other words, sync() cannot be called in succession, which enables a Denial of Service (DoS) attack vector.

Second, native token transfers via the take () action which executes Currency(native).transfer () would hand
over the control flow to the recipient, allowing it to revert the entire transaction.

Recommendation: Recommend best practices for integrators and developers, and highlight present limitations
that they should be aware of. Specifically:

+ Consider checking for an existing sync and calling settle() before invoking sync().
+ Be cautious with native token transfers to untrusted recipients.
Uniswap: 2 PRs that change the current behaviour:
1. Lock added to syncin PR 856.

2. sync no-longer reverts (just overrides), and allows native to be synced to remove DoS attack vectors in PR
866.

Spearbit: Acknowledged on the new behaviour. There is a footgun introduced that developers should be aware
of: if one syncs one currency — transfers tokens — syncs another without settlement, the token transfer will not
be accounted for.

5.4.15 Pools with maximum 1pFee do not support exact output swaps
Severity: Informational
Context: Pool.sol#L312-L314

Description: While it is possible to set 1pFee to 100%, it will cause exact output swaps to revert. In other words,
such pools will only work with exactIn swaps.

Recommendation: Developers and pool creators should be aware of this side-effect should they choose to set
maximum lpFee.

Uniswap: Fixed in PR 842.
Spearbit: Fixed.

39

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L57
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L271-L285
https://github.com/Uniswap/v4-core/pull/856
https://github.com/Uniswap/v4-core/pull/866
https://github.com/Uniswap/v4-core/pull/866
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L312-L314
https://github.com/Uniswap/v4-core/pull/842

5.4.16 Currency.isZero() is equivalent to Currency.isNative()

Severity: Informational
Context: Currency.sol#L104-L110

Description: isZero() is equivalent to isNative(). Either function could be removed for simplicity and its in-
stances replaced with the other.

Recommendation: Consider removing either isZero() or isNative () and replace all its instances with the other
function.

Uniswap: Fixed in PR 834.

Spearbit: Fixed. isZero() is renamed to isAddressZero() and isNative() has been removed.

5.4.17 Comment Improvements

Severity: Informational

Context: IPoolManager.sol#L104, IPoolManager.sol#L190, IHooks.sol#L9-L11, IHooks.sol#L72, IHooks.sol#86,
ProtocolFees.sol#L61, LPFeelLibrary.sol#L21, LPFeeLibrary.sol#L34, TransientStateLibrary.sol#L27,
Pool.sol#L559, ProtocolFees.sol#L67, IPoolManager.sol#L140-L142, IPoolManager.sol#L140-L142

Description: The following are comment clarifications for correctness and clarity, and typos.

Recommendation:

- /// @dev The only functions callable without an unlocking are “initialize~ and “updateDynamicLPFee”
+ /// @dev The only functions callable without an unlocking are ~initialize”, “sync” and
«— ~“updateDynamicLPFee”

- retreivable
+ retrievable

- /// @notice The PoolManager contract decides whether to invoke specific hooks by inspecting the

— leading bits

- /// of the hooks contract address. For example, a 1 bit in the first bit of the address will

- /// cause the 'before swap' hook to be invoked. See the Hooks library for the full spec.

+ /// @notice V4 decides whether to invoke specific hooks by inspecting the lowest significant bits of
— the address that

+ /// the hooks contract is deployed to.

+ /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400

+ /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add
«— liquidity' hooks to be used.

+ /// See the Hooks library for the full spec.

- liquidty
+ liquidity

- overriden
+ overridden

- beforeSwaphook
+ beforeSwap hook

- maxmimum
+ maximum

- zerod
+ zeroed

- /// @dev Executed within the pool constructor
+ /// @dev Executed when adding liquidity

40

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/Currency.sol#L104-L110
https://github.com/Uniswap/v4-core/pull/834
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L104
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L190
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L9-L11
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L72
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L86
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L61
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/LPFeeLibrary.sol#L21
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/LPFeeLibrary.sol#L34
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TransientStateLibrary.sol#L27
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L559
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L67
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L140-L142
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L133-L136

- /// @dev the success of this function must be checked when called in setProtocolFee
(the function under the comment above is not called in setProtocolFee)

+ /// Whether to swap token zero for token one or vice versa
bool zeroFor(ne;
+ /// The desired input amount if negative ("exact in"), or the desired output amount if positive
— ("exact out")
int256 amountSpecified;
+ /// The most extreme square-root-price the pool may reach by the end of the swap
uint160 sqrtPriceLimitX96;

The IPoolManager have stale comments vs. PoolManager:

- /// @return feeDelta The balance delta of the fees generated in the liquidity range. Returned for
— informational purposes.
+ /// Qreturn feesAccrued The balance delta of the fees generated in ‘the liquidity range. Returned for
— informational purposes.

function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata
« hookData)

external

- returns (BalanceDelta callerDelta, BalanceDelta feeDelta);
+ returns (BalanceDelta callerDelta, BalanceDelta feesAccrued)s

Uniswap: Fixed in PR 846.
Spearbit: Fixed.

5.4.18 memory-safe annotation

Severity: Informational

Context: CurrencyDelta.sol#L20-L22, CurrencyReserves.sol#L.25, CurrencyReserves.sol#L31,
CurrencyReserves.sol#L.37, CurrencyReserves.sol#L44, CustomRevert.sol#L69-L74

Description/Recommendation:

» CurrencyDelta.sol#L20-.22, CurrencyReserves.sol#L25, CurrencyReserves.sol#L.31, CurrencyRe-
serves.sol#L37, CurrencyReserves.sol#L44: missing memory-safe annotation.

» CustomRevert.sol#L69-L74: this assembly block does not follow the memory-safe annotation requirement
since it writes to memory space right passed the scratch memory slots. To be safe one should use the free
memory pointer and write to memory right at and after that location.

Uniswap: Fixed in PR 830.
Spearbit: Verified.

41

https://github.com/Uniswap/v4-core/pull/846
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyDelta.sol#L20-L22
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L25
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L44
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L69-L74
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyDelta.sol#L20-L22
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L25
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L44
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L69-L74
https://github.com/Uniswap/v4-core/pull/830

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	Donations can be stolen by providing just-in-time liquidity

	Low Risk
	tickSpacingToMaxLiquidityPerTick's calculation is not completely accurate
	Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick
	The used constants representing the min and max of the errors in getTickAtSqrtPrice are not accurate
	PoolManager.updateDynamicLPFee() doesn't emit an event
	bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues

	Gas Optimization
	A simple upcasting operation can be performed
	toId performs an unnecesary length calculation
	state.sqrtPriceX96 can be used instead of slot0Start.sqrtPriceX96() in Pool.swap
	Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed
	Deriving liquidityGrossBefore can be optimised
	msg.sender can be inlined in _burnFrom to save gas
	_fetchProtocolFee can be optimised by using the scratch space
	Gas optimization in clear() function
	Non-assembly version of state.tick setter possibly more gas efficient
	mulDiv() is redundant for fee growth calculation
	More efficient mask derivation in TickBitmap
	BitMath

	Informational
	Some contracts don't follow Uniswap's version convention
	computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amountRemainingLessFee
	Add comments regarding the derivation of SQRT_PRICE_A_B constant
	amountIn is always 0 in an inner branch of computeSwapStep
	Unused code should be removed
	Unnecessary unchecked blocks
	Confusing error message in ERC6909.transferFrom()
	getSqrtPriceAtTick assumes that the allowed tick range is centered at 0
	The current or next tick is not always on the tick spacing grid or within the allowed range
	unchecked blocks
	Dirty bit cleaning
	Named return are unused in settle() and settleFor()
	collectProtocolFees lacks an own event to track fee collections
	Best practices for handling action flows
	Pools with maximum lpFee do not support exact output swaps
	Currency.isZero() is equivalent to Currency.isNative()
	Comment Improvements
	memory-safe annotation

