
DRAFT
Uniswap v4-core Security Review

Auditors

Desmond Ho, Lead Security Researcher

Kurt Barry, Lead Security Researcher

Saw-Mon and Natalie, Lead Security Researcher

Jeiwan, Security Researcher

David Chaparro, Junior Security Researcher

Report prepared by: Lucas Goiriz

September 5, 2024

DRAFT

Contents

1 About Spearbit 2

2 Introduction 2

3 Risk classification 2
3.1 Impact . 2
3.2 Likelihood . 2
3.3 Action required for severity levels . 2

4 Executive Summary 3

5 Findings 4
5.1 Medium Risk . 4

5.1.1 Donations can be stolen by providing just-in-time liquidity . 4
5.2 Low Risk . 5

5.2.1 tickSpacingToMaxLiquidityPerTick's calculation is not completely accurate 5
5.2.2 Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick 5
5.2.3 The used constants representing the min and max of the errors in getTickAtSqrtPrice are

not accurate . 9
5.2.4 PoolManager.updateDynamicLPFee() doesn't emit an event 14
5.2.5 bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues 14

5.3 Gas Optimization . 14
5.3.1 A simple upcasting operation can be performed . 14
5.3.2 toId performs an unnecesary length calculation . 15
5.3.3 state.sqrtPriceX96 can be used instead of slot0Start.sqrtPriceX96() in Pool.swap . . 15
5.3.4 Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed 17
5.3.5 Deriving liquidityGrossBefore can be optimised . 19
5.3.6 msg.sender can be inlined in _burnFrom to save gas . 19
5.3.7 _fetchProtocolFee can be optimised by using the scratch space 20
5.3.8 Gas optimization in clear() function . 22
5.3.9 Non-assembly version of state.tick setter possibly more gas efficient 22
5.3.10 mulDiv() is redundant for fee growth calculation . 23
5.3.11 More efficient mask derivation in TickBitmap . 23
5.3.12 BitMath . 24

5.4 Informational . 28
5.4.1 Some contracts don't follow Uniswap's version convention . 28
5.4.2 computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amoun-

tRemainingLessFee . 29
5.4.3 Add comments regarding the derivation of SQRT_PRICE_A_B constant 30
5.4.4 amountIn is always 0 in an inner branch of computeSwapStep 31
5.4.5 Unused code should be removed . 32
5.4.6 Unnecessary unchecked blocks . 32
5.4.7 Confusing error message in ERC6909.transferFrom() . 32
5.4.8 getSqrtPriceAtTick assumes that the allowed tick range is centered at 0 33
5.4.9 The current or next tick is not always on the tick spacing grid or within the allowed range . . . 33
5.4.10 unchecked blocks . 34
5.4.11 Dirty bit cleaning . 38
5.4.12 Named return are unused in settle() and settleFor() . 38
5.4.13 collectProtocolFees lacks an own event to track fee collections 39
5.4.14 Best practices for handling action flows . 39
5.4.15 Pools with maximum lpFee do not support exact output swaps 39
5.4.16 Currency.isZero() is equivalent to Currency.isNative() 40
5.4.17 Comment Improvements . 40
5.4.18 memory-safe annotation . 41

1

DRAFT

1 About Spearbit

Spearbit is a decentralized network of expert security engineers offering reviews and other security related services
to Web3 projects with the goal of creating a stronger ecosystem. Our network has experience on every part of the
blockchain technology stack, including but not limited to protocol design, smart contracts and the Solidity compiler.
Spearbit brings in untapped security talent by enabling expert freelance auditors seeking flexibility to work on
interesting projects together.

Learn more about us at spearbit.com

2 Introduction

Uniswap is an open source decentralized exchange that facilitates automated transactions between ERC20 token
tokens on various EVM-based chains through the use of liquidity pools and automatic market makers (AMM).

Disclaimer : This security review does not guarantee against a hack. It is a snapshot in time of v4-core according
to the specific commit. Any modifications to the code will require a new security review.

3 Risk classification

Severity level Impact: High Impact: Medium Impact: Low
Likelihood: high Critical High Medium
Likelihood: medium High Medium Low
Likelihood: low Medium Low Low

3.1 Impact

• High - leads to a loss of a significant portion (>10%) of assets in the protocol, or significant harm to a majority
of users.

• Medium - global losses <10% or losses to only a subset of users, but still unacceptable.

• Low - losses will be annoying but bearable--applies to things like griefing attacks that can be easily repaired
or even gas inefficiencies.

3.2 Likelihood

• High - almost certain to happen, easy to perform, or not easy but highly incentivized

• Medium - only conditionally possible or incentivized, but still relatively likely

• Low - requires stars to align, or little-to-no incentive

3.3 Action required for severity levels

• Critical - Must fix as soon as possible (if already deployed)

• High - Must fix (before deployment if not already deployed)

• Medium - Should fix

• Low - Could fix

2

https://spearbit.com

DRAFT

4 Executive Summary

Disclaimer: The current report is a draft. Fix review is still in progress for many issues and nothing in this report
should be considered finalized.

Over the course of 10 days in total, Uniswap engaged with Spearbit to review the v4-core protocol. In this period
of time a total of 36 issues were found.

Summary

Project Name Uniswap

Repository v4-core

Commit 7a7203...a2c037

Type of Project DeFi, AMM

Audit Timeline Jul 15 to Aug 26

Two week fix period Aug 26 - Sep 10

Issues Found

Severity Count Fixed Acknowledged

Critical Risk 0 0 0

High Risk 0 0 0

Medium Risk 1 1 0

Low Risk 5 2 1

Gas Optimizations 12 9 2

Informational 18 12 1

Total 36 24 4

3

https://uniswap.org/
https://spearbit.com
https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core/tree/7a72031574fc4548ca8fce197114cf87d5a2c037

DRAFT

5 Findings

5.1 Medium Risk

5.1.1 Donations can be stolen by providing just-in-time liquidity

Severity: Medium Risk

Context: PoolManager.sol#L252, Pool.sol#L463-L468

Description: The PoolManager.donate() function allows to donate tokens to liquidity providers. Donations are
counted as swap fees and immediately added to the global swap fees trackers (Pool.sol#L463-L468):

if (amount0 > 0) {

state.feeGrowthGlobal0X128 += FullMath.mulDiv(amount0, FixedPoint128.Q128, liquidity);

}

if (amount1 > 0) {

state.feeGrowthGlobal1X128 += FullMath.mulDiv(amount1, FixedPoint128.Q128, liquidity);

}

This increases the earned swap fees of all liquidity positions that include the current price.

Since donation amounts can be arbitrary (specifically, they can be significantly bigger than swap fees), this opens
up an attack vector that allows anyone to steal a portion of donations by providing just-in-time liquidity. This can
be exploited via a sandwich attack that wraps the donating transaction in two transactions:

1. In the preceding transaction, some amount of liquidity is added around the current price.

2. The donating transaction rewards LPs, including the position added in 1.

3. In the following transaction, the liquidity added in 1 is removed and a portion of the donation is withdrawn.

In this scenario, the attacker earns a portion of the donation while not providing useful liquidity to the pool.

Recommendation: Given that the core contracts strive to remain as simple and basic as possible, we recommend
removing the PoolManager.donate() function and letting integrators implement their own donations solution via
the hooks. Alternatively, consider keeping PoolManager.donate() and warning users that it should only be used for
donating insignificant amounts (users would need to determine their size by themselves, ensuring their donations
are not profitable for MEV bots). For bigger amounts, however, integrators will still need to implement a more
robust solution using the hooks. E.g. donations can be vested (i.e. distributed over time), or LPs can be required
to keep their liquidity for a minimum amount of time.

Uniswap: Comments have been added in PR 851.

Spearbit: Verified.

4

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L252
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L252
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/pull/851

DRAFT

5.2 Low Risk

5.2.1 tickSpacingToMaxLiquidityPerTick's calculation is not completely accurate

Severity: Low Risk

Context: Pool.sol#L574

Description: In the above context when minTick is calculated one compresses the MIN_TICK such that it would
round towards 0 and not negative infinity. Where as one needs to apply the compression towards negative infinity.

And thus the result can be off by 1 in the denominator.

Also see the related issue "Incorrect tick compression for negative ticks in countInitializedTicksLoaded" for
‘v4-periphery‘.

Recommendation: For better estimate make sure the tick compressions are preformed correctly so they would
round toward negative infinity.

Uniswap: Fixed in PR 870.

Spearbit: Verified.

5.2.2 Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick

Severity: Low Risk

Context: TickMath.sol#L54-L108

Description: Let i be the tick provided, and below to be the binary represnetation of j i j:

j i j= b19 � � � b2b1b0

Note that 20 binary digits is enough since in the min and max range of the ticks we know that j i j< 220 .

Let hi (b) be (where b 2 f0, 1g):

hi (b) =

&
2128

p
1.0001

2i �b

'

h0(1) =
�

2128
p

1.0001

�
= 340265354078544963557816517032075149314 = 0xfffcb933bd6fad37aa2d162d1a594002

Also we know hi (0) = 2128 . Let's define the
 operator as the multiplication in Q...x128 type:

a
 b =
�

a � b
2128

�

Then we have:

hi (0)
 a = a
 hi (0) = a

and up to TickMath.sol#L96 the price p calculated becomes (order of applying the
 operator matters below):

p19 = (h19(b19)
 � � � (h2(b2)
 (h1(b1)
 p0)) � � �) =
19O
i=0

hi (bi)

5

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L574
https://github.com/spearbit-audits/review-uniswap-v4/issues/81
https://github.com/Uniswap/v4-core/pull/870
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L54-L108
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L96

DRAFT
getSqrtPriceAtTick(i) =

8><
>:
&j

2256�1
p19

k

232

'
, if i > 0� p19

232

�
, otherwise

1. Note that we have:

1
p

1.0001
jij =

1
1.0001219�1�b19

� � � � � 1
1.000121�1�b1

� 1
1.000120�1�b0

and thus p19 should be the above multiplication in Q128x128 with 128 bits of precision and then at the end
lowered to Q128x96.

2. The multiplactions
 are rounded down although the (most) of the constants hi (1) used are rounded up.

3. The inversion for the postive ticks i is rounded down although besides multiplications
 everything else is
rounded up.

4. The inversion for positive ticks i > 0 is not accurate in Q128x128 the inversion should have been (also rounded
up if possible):

2128

p19
� 2128 =

2256

p19

But since one cannot use 2256 that is probably why the constant not(0) 2256 � 1 is used instead.

Let's assess the accurary of the constants used hi (1):

formula wolfram value value used in the code used - actual

h0(1) 0xfffcb933bd6fad37aa2d162d1a594002 0xfffcb933bd6fad37aa2d162d1a594001 �1

h1(1) 0xfff97272373d413259a46990580e213a 0xfff97272373d413259a46990580e213a 0

h2(1) 0xfff2e50f5f656932ef12357cf3c7fdcc 0xfff2e50f5f656932ef12357cf3c7fdcc 0

h3(1) 0xffe5caca7e10e4e61c3624eaa0941cd0 0xffe5caca7e10e4e61c3624eaa0941cd0 0

h4(1) 0xffcb9843d60f6159c9db58835c926644 0xffcb9843d60f6159c9db58835c926644 0

h5(1) 0xff973b41fa98c081472e6896dfb254c0 0xff973b41fa98c081472e6896dfb254c0 0

h6(1) 0xff2ea16466c96a3843ec78b326b52861 0xff2ea16466c96a3843ec78b326b52861 0

h7(1) 0xfe5dee046a99a2a811c461f1969c3053 0xfe5dee046a99a2a811c461f1969c3053 0

h8(1) 0xfcbe86c7900a88aedcffc83b479aa3a4 0xfcbe86c7900a88aedcffc83b479aa3a4 0

h9(1) 0xf987a7253ac413176f2b074cf7815e54 0xf987a7253ac413176f2b074cf7815e54 0

h10(1) 0xf3392b0822b70005940c7a398e4b70f3 0xf3392b0822b70005940c7a398e4b70f3 0

h11(1) 0xe7159475a2c29b7443b29c7fa6e889d9 0xe7159475a2c29b7443b29c7fa6e889d9 0

h12(1) 0xd097f3bdfd2022b8845ad8f792aa5826 0xd097f3bdfd2022b8845ad8f792aa5825 �1

h13(1) 0xa9f746462d870fdf8a65dc1f90e061e5 0xa9f746462d870fdf8a65dc1f90e061e5 0

h14(1) 0x70d869a156d2a1b890bb3df62baf32f7 0x70d869a156d2a1b890bb3df62baf32f7 0

h15(1) 0x31be135f97d08fd981231505542fcfa6 0x31be135f97d08fd981231505542fcfa6 0

h16(1) 0x9aa508b5b7a84e1c677de54f3e99bc9 0x9aa508b5b7a84e1c677de54f3e99bc9 0

h17(1) 0x5d6af8dedb81196699c329225ee605 0x5d6af8dedb81196699c329225ee604 �1

6

D
R
A
F
T

formula wolfram value value used in the code used - actual

h18(1) 0x2216e584f5fa1ea926041bedfe97 (inaccurate) 0x2216e584f5fa1ea926041bedfe98 1

h19(1) 0x48a170391f7dc42444e8fa2 (inaccurate) 0x48a170391f7dc42444e8fa2 0

formula Sympy value value used in the code used - actual

h0(1) 0xfffcb933bd6fad37aa2d162d1a594002 0xfffcb933bd6fad37aa2d162d1a594001 �1

h1(1) 0xfff97272373d413259a46990580e213a 0xfff97272373d413259a46990580e213a 0

h2(1) 0xfff2e50f5f656932ef12357cf3c7fdcc 0xfff2e50f5f656932ef12357cf3c7fdcc 0

h3(1) 0xffe5caca7e10e4e61c3624eaa0941cd0 0xffe5caca7e10e4e61c3624eaa0941cd0 0

h4(1) 0xffcb9843d60f6159c9db58835c926644 0xffcb9843d60f6159c9db58835c926644 0

h5(1) 0xff973b41fa98c081472e6896dfb254c0 0xff973b41fa98c081472e6896dfb254c0 0

h6(1) 0xff2ea16466c96a3843ec78b326b52861 0xff2ea16466c96a3843ec78b326b52861 0

h7(1) 0xfe5dee046a99a2a811c461f1969c3053 0xfe5dee046a99a2a811c461f1969c3053 0

h8(1) 0xfcbe86c7900a88aedcffc83b479aa3a4 0xfcbe86c7900a88aedcffc83b479aa3a4 0

h9(1) 0xf987a7253ac413176f2b074cf7815e54 0xf987a7253ac413176f2b074cf7815e54 0

h10(1) 0xf3392b0822b70005940c7a398e4b70f3 0xf3392b0822b70005940c7a398e4b70f3 0

h11(1) 0xe7159475a2c29b7443b29c7fa6e889d9 0xe7159475a2c29b7443b29c7fa6e889d9 0

h12(1) 0xd097f3bdfd2022b8845ad8f792aa5826 0xd097f3bdfd2022b8845ad8f792aa5825 �1

h13(1) 0xa9f746462d870fdf8a65dc1f90e061e5 0xa9f746462d870fdf8a65dc1f90e061e5 0

h14(1) 0x70d869a156d2a1b890bb3df62baf32f7 0x70d869a156d2a1b890bb3df62baf32f7 0

h15(1) 0x31be135f97d08fd981231505542fcfa6 0x31be135f97d08fd981231505542fcfa6 0

h16(1) 0x9aa508b5b7a84e1c677de54f3e99bc9 0x9aa508b5b7a84e1c677de54f3e99bc9 0

h17(1) 0x5d6af8dedb81196699c329225ee605 0x5d6af8dedb81196699c329225ee604 �1

h18(1) 0x2216e584f5fa1ea926041bedfe98 0x2216e584f5fa1ea926041bedfe98 0

h19(1) 0x48a170391f7dc42444e8fa3 0x48a170391f7dc42444e8fa2 �1

• See below the sympy code to calculate the constants:

import sympy

from math import ceil

values from the codebase

u = [

0xfffcb933bd6fad37aa2d162d1a594001,

0xfff97272373d413259a46990580e213a,

0xfff2e50f5f656932ef12357cf3c7fdcc,

0xffe5caca7e10e4e61c3624eaa0941cd0,

0xffcb9843d60f6159c9db58835c926644,

0xff973b41fa98c081472e6896dfb254c0,

0xff2ea16466c96a3843ec78b326b52861,

0xfe5dee046a99a2a811c461f1969c3053,

0xfcbe86c7900a88aedcffc83b479aa3a4,

0xf987a7253ac413176f2b074cf7815e54,

7

DRAFT

0xf3392b0822b70005940c7a398e4b70f3,

0xe7159475a2c29b7443b29c7fa6e889d9,

0xd097f3bdfd2022b8845ad8f792aa5825,

0xa9f746462d870fdf8a65dc1f90e061e5,

0x70d869a156d2a1b890bb3df62baf32f7,

0x31be135f97d08fd981231505542fcfa6,

0x9aa508b5b7a84e1c677de54f3e99bc9,

0x5d6af8dedb81196699c329225ee604,

0x2216e584f5fa1ea926041bedfe98,

0x48a170391f7dc42444e8fa2,

]

x = sympy.symbols("x")

g = (

sympy.S('340282366920938463463374607431768211456') # 2 ** 128

/ (sympy.S('10001/10000') ** (2 ** (x - 1)))

)

a = [0 for _ in range(21)]

PREC = 1000

a[0] = g.evalf(PREC, subs={x: sympy.S(' 0.0')})

a[1] = g.evalf(PREC, subs={x: sympy.S(' 1.0')})

a[2] = g.evalf(PREC, subs={x: sympy.S(' 2.0')})

a[3] = g.evalf(PREC, subs={x: sympy.S(' 3.0')})

a[4] = g.evalf(PREC, subs={x: sympy.S(' 4.0')})

a[5] = g.evalf(PREC, subs={x: sympy.S(' 5.0')})

a[6] = g.evalf(PREC, subs={x: sympy.S(' 6.0')})

a[7] = g.evalf(PREC, subs={x: sympy.S(' 7.0')})

a[8] = g.evalf(PREC, subs={x: sympy.S(' 8.0')})

a[9] = g.evalf(PREC, subs={x: sympy.S(' 9.0')})

a[10] = g.evalf(PREC, subs={x: sympy.S('10.0')})

a[11] = g.evalf(PREC, subs={x: sympy.S('11.0')})

a[12] = g.evalf(PREC, subs={x: sympy.S('12.0')})

a[13] = g.evalf(PREC, subs={x: sympy.S('13.0')})

a[14] = g.evalf(PREC, subs={x: sympy.S('14.0')})

a[15] = g.evalf(PREC, subs={x: sympy.S('15.0')})

a[16] = g.evalf(PREC, subs={x: sympy.S('16.0')})

a[17] = g.evalf(PREC, subs={x: sympy.S('17.0')})

a[18] = g.evalf(PREC, subs={x: sympy.S('18.0')})

a[19] = g.evalf(PREC, subs={x: sympy.S('19.0')})

a[20] = g.evalf(PREC, subs={x: sympy.S('20.0')})

for i in range(20):

b = int(ceil(a[i]))

print("| $h_{{{3}}}(1)$ | `0x{0:x}` | `0x{1:x}` | ${2:d}$|".format(

b,

u[i],

u[i] - b,

i

))

5. and so the values h0(1), h12(1), h17(1), h19(1) are off by 1.

Recommendations:

1. Fix or document why a mixed use of rounding down and up is used in this function. This could have been
due to gas saving since one could just use right shifts for multiplication.

2. Adjust the constants used for h0(1), h12(1), h17(1), h19(1). Note that with the adjusted constants (from the

8

DRAFT

Sympy table) the test suite still passes.

3. Add code comments like Aperture-Finance/uni-v3-lib

4. Provide details/proof as why the final value fits in uint160 (Q64x96).

Warning: If 2. is applied the invariants should be checked again. Mainly that getSqrtPriceAtTick is
sticktly increasing and also close to the actual value. And also its related invariants in relashionship to
getTickAtSqrtPrice is also preserved.

Uniswap: Regarding 2. Some comments have been added to explain the rounding direction for hi (1) to the nearest
integer value in PR 867.

Spearbit: Partially fixed and verified.

5.2.3 The used constants representing the min and max of the errors in getTickAtSqrtPrice are not
accurate

Severity: Low Risk

Context: TickMath.sol#L259-L262, Logarithm Approximation Precision by ABDK

Description: In the above context we have:

int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);

int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

Let:

 =
255738958999603826347141

264

 � 1
log2

p
1.0001

= 1.08830 � � � 10�20

Let's calculate the rounded-down maximum error:

b2128 �max(�i)c =

$
2128 �

64

 � 1

log2

p
1.0001

!
+ logp1.00011.0000005

!%

b2128 �max(�i)c = 3402992956809132418596140100660247209

The above 3402992956809132418596140100660247209 is derived by wolframalpha. The value used in the code-
base is d2128 �max(�i)e which differs by the correct value only by 1:

d2128 �max(�i)e = 3402992956809132418596140100660247210

Let's calculate the rounded-down minimium error:

b2128�min(�i)c =

$
2128 �

�96

 � 1

log2

p
1.0001

!
+

��1
2i +

3
2

�
2� 1

2i�1

�
log2

�
1� 1

2127

��
+ logp1.00010.9999995

!%

We are interested in b2128 �min(�14)c since only 14 approximated terms are used:

9

https://github.com/Aperture-Finance/uni-v3-lib/blob/main/src/TickMath.sol
https://github.com/Uniswap/v4-core/pull/867
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L259-L262
https://hackmd.io/odBcee5CRpqzmtz8jDmsEg
https://www.wolframalpha.com/input?i=floor%282%5E128+*+%2864%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+log%281.0000005%29%2Flog%281.0001%5E0.5%29%29%29

D
R
A
F
T

b2128 �min(�14)c = �291339464771989623025533689748046440464

The above -291339464771989623025533689748046440464 is derived by wolframalpha. The value used in the
codebase is instead the following:

$
2128 �

�64

 � 1

log2

p
1.0001

!
+

��1
2i +

3
2

�
2� 1

2i�1

�
log2

�
1� 1

2127

��
+ logp1.00010.9999995

!%

which equals to -291339464771989622907027621153398088495. The difference is, one should have used:

�
2128 � (�96(� � � �) + � � �)�

but instead the following is calculated:

�
2128 � (�64(� � � �) + � � �)�

This is error in using 64 instead of 96 comes from the Logarithm Approximation Precision by ABDK where in the
calculations it is assumed that x 2 [2�64, 264), ie it is of type Q64x64. Note that x in that document correponds to
price (P) which is:

uint256 price = uint256(sqrtPriceX96) << 32;

We know that sqrtPriceX96 is of the type Q64x96 and thus price is of the type Q64x128 but since it is merely been
multiplided by 232 its range remains as [2�96, 264). And this is why 64 needs to be used in the formula for max(�i)
and �96 for min(�i).

unchecked block safety:

No overflow shoud occur in calculation of log_sqrt10001 since log_2 at the very end would be smaller than 65�264

and:

65 � 264 � 255738958999603826347141 = 65 � 2128 � < 2148

and no underflow shold occur since log_2:

�96 � 264 � 255738958999603826347141 = �96 � 2128 � > �2149

No overflow or unsafe casting should occur for tickHi since (with the old or new constant):

2148 + 291339464771989622907027621153398088495
2128 < 221

No underflow or unsafe casting should occur for tickLow since (with the old or new constant):

�2149 � 3402992956809132418596140100660247210
2128 > �222

Recommendation: Apply the following patch:

10

https://www.wolframalpha.com/input?i=floor%282%5E128+*+%28-96%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+%28255738958999603826347141%2F2%5E64%29*%28-1%2F2%5E14%2B%283%2F2%29*%282+-+1%2F2%5E%2814-1%29%29*%28log2%281-1%2F2%5E127%29%29%29+%2B+log%280.9999995%29%2Flog%281.0001%5E0.5%29%29%29
https://www.wolframalpha.com/input?i=floor%282%5E128+*+%28-64%28255738958999603826347141%2F2%5E64+-+1%2Flog2%281.0001%5E0.5%29%29+%2B+%28255738958999603826347141%2F2%5E64%29*%28-1%2F2%5E14%2B%283%2F2%29*%282+-+1%2F2%5E%2814-1%29%29*%28log2%281-1%2F2%5E127%29%29%29+%2B+log%280.9999995%29%2Flog%281.0001%5E0.5%29%29%29
https://hackmd.io/odBcee5CRpqzmtz8jDmsEg
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L125

D
R
A
F
T

diff --git a/src/libraries/TickMath.sol b/src/libraries/TickMath.sol

index 6e5f8417..7a1f58ca 100644

--- a/src/libraries/TickMath.sol

+++ b/src/libraries/TickMath.sol

@@ -107,11 +107,11 @@ library TickMath {

}

}

- /// @notice Calculates the greatest tick value such that getPriceAtTick(tick) <= price

- /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value

getPriceAtTick may,!

+ /// @notice Calculates the greatest tick value such that getSqrtPriceAtTick(tick) <= sqrtPriceX96

+ /// @dev Throws in case sqrtPriceX96 < MIN_SQRT_PRICE, as MIN_SQRT_PRICE is the lowest value

getSqrtPriceAtTick may,!

/// ever return.

/// @param sqrtPriceX96 The sqrt price for which to compute the tick as a Q64.96

- /// @return tick The greatest tick for which the price is less than or equal to the input price

+ /// @return tick The greatest tick for which the getSqrtPriceAtTick(tick) is less than or equal to

the input sqrtPriceX96,!

function getTickAtSqrtPrice(uint160 sqrtPriceX96) internal pure returns (int24 tick) {

unchecked {

// Equivalent: if (sqrtPriceX96 < MIN_SQRT_PRICE || sqrtPriceX96 >= MAX_SQRT_PRICE) revert

InvalidSqrtPrice();,!

@@ -256,10 +256,10 @@ library TickMath {

log_2 := or(log_2, shl(50, f))

}

- int256 log_sqrt10001 = log_2 * 255738958999603826347141; // 128.128 number

+ int256 log_sqrt10001 = log_2 * 255738958999603826347141; // Q22.128 number

- int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247210) >> 128);

- int24 tickHi = int24((log_sqrt10001 + 291339464771989622907027621153398088495) >> 128);

+ int24 tickLow = int24((log_sqrt10001 - 3402992956809132418596140100660247209) >> 128);

+ int24 tickHi = int24((log_sqrt10001 + 291339464771989623025533689748046440464) >> 128);

tick = tickLow == tickHi ? tickLow : getSqrtPriceAtTick(tickHi) <= sqrtPriceX96 ? tickHi :

tickLow;,!

}

Warning: The intervals provided by both the old and the new constant overlap almost entirely and
measure around 0.8661 � � � in length. But on low side the old internal hangs out as much as 1

2128 and
the new internal on the high side hangs out as much as 3.482���

1019 and thus the result is that in some edge
cases the current and the new implementation using the new constant might be off by one tick. Note
that the current tests all pass with the new constants so these edge cases are not tested throughly.

Note: Moreover, one can use the borrowed msb calculation from Solady to replace the current calcution
to save some gas:

assembly ("memory-safe") {

let f := shl(7, gt(r, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(6, gt(r, 0xFFFFFFFFFFFFFFFF))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(5, gt(r, 0xFFFFFFFF))

11

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L15-L24

DRAFT

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(4, gt(r, 0xFFFF))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(3, gt(r, 0xFF))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(2, gt(r, 0xF))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := shl(1, gt(r, 0x3))

msb := or(msb, f)

r := shr(f, r)

}

assembly ("memory-safe") {

let f := gt(r, 0x1)

msb := or(msb, f)

}

Appendix: getTickAtSqrtPrice works as following note that
p

p is a symbolic value representing sqrtPriceX96

which is of the type Q64x96:

1. Check
p

p 2 [
p

pmin,
p

pmax) .

2. Then P =
p

p � 232 and thus it is of the type Q64x128 and in the range [2�96, 264).

3. Find the most significant bit of P and let's name it n = blog2Pc.
4. r is taken to be:

r = r0 =
�

P
2blog2Pc � 2127

�
2 �2127, 2128�

and that is why multiplying r by itselft does not overflow (this also applies to the other iterations). We then
have:

�
r2
0

2127

�
2 �2127, 2129�

I've marked the assembly block below so that we can follow the variable naming with subscripts:

assembly ("memory-safe") {

r := shr(127, mul(r, r)) // r_{i-1} = r before the multiplication

let f := shr(128, r) // f_i = f

log_2 := or(log_2, shl(64 - i, f)) // L_i(P) = L_{i-1}(P) | f_i * 2^{64-i}

r := shr(f, r) // r_i = the assginment value

}

and thus:

12

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L128-L168

DRAFT
f = f1 =

6664log2

0
@
j

r2
0

2127

k
2127

1
A
7775 = blog2 g(P)c 2 f0, 1g

In the above the function g(x) is defined as:

g(x) =

66664
0
@
j

x
2blog2xc � 2127

k
2127

1
A

2

� 2127

777752�127

and so r1 is calculated as:

r1 =
�

g(P)
2blog2g(P)c � 2127

�
2 �2127, 2128�

and thus f2 ends up being:

f2 =

6664log2

0
@
j

r2
1

2127

k
2127

1
A
7775 = blog2 g(g(P))c 2 f0, 1g

and so the i th approximation of log_2 using the Li (P) notation with 64 binary precision ends up being:

Li (P) =
�

log2
P

2128

�
� 264 +

iX
k=1

fk � 264�k =
�

log2
P

2128

�
� 264 _

i_

k=1

fk � 264�k

!

Above one can do + or _ (bitwise or) since fk 2 f0, 1g .

Note that the approximation provided by the ABDK document matches with the above formula not taking into
the consideration the precision factor 264:

LABDK
i (P) =

�
log2

P
2128

�
+

iX
k=1

1
2k blog2 g(g(� � � g(P)))c

where in the above summation the g function is composed k times.

For getTickAtSqrtPrice, i = 14 and so L14(P) is calculated. Also all approximations in this case Li (P) are
of the type Q8x64. And so:

logSqrt10001 = L14(P) � � 264

 � 264 is of the type Q14x64, thus the above logSqrt10001 is of the type Q22x128

13

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L179

DRAFT

5.2.4 PoolManager.updateDynamicLPFee() doesn't emit an event

Severity: Low Risk

Context: PoolManager.sol#L324

Description: The PoolManager.updateDynamicLPFee() function allows the hook contract to update the LP fee
when it's dynamic. The fee is recorded in the contract storage, however, there's no even emitted to allow monitoring
applications to detect the change.

Recommendation: Consider emitting an event in PoolManager.updateDynamicLPFee() to allow off-chain appli-
cations to track LP fee changes.

Uniswap: Decided against emitting an event when the dynamic fee is updated. This is because the override
possibility for individual swaps would make it hard to track all of them off chain

Spearbit: Acknowledged.

5.2.5 bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues

Severity: Low Risk

Context: CustomRevert.sol#L88, CustomRevert.sol#L91

Description/Recommendation:

� CustomRevert.sol#L88: copying the returndata to memory is prone to return data bombing and can revert
with out of gas here. It would be best to first estimate to see if such an operation can happen with the current
leftover gas and if so perform the copy or otherwise throw with a different generic error. For reference, please
look at this implementation from Seaport.

� CustomRevert.sol#L91: use shr and shl instead of div and mul since the right hand side operands are 32.
The solc compiler might at some step in the optimisation do the replacement but it would be best to enforce
it in the code.

� CustomRevert.sol#L91: allocating more than copied memory in the revert statement might use portion of
the memory space which has already been filled by other data. If the size is being aligned to multiples of
32. If this operation is necessary it would be best to also make sure the extra allocated memory space is
cleaned.

5.3 Gas Optimization

5.3.1 A simple upcasting operation can be performed

Severity: Gas Optimization

Context: SqrtPriceMath.sol#L241-L245

Description: The contract uses inline assembly to perform a bitwise AND operation to restrict the liquidity value
to 128 bits. However, this approach is unnecessarily complex and less readable compared to a simple upcasting
operation.

uint256 _liquidity;

assembly ("memory-safe") {

// avoid implicit upcasting

_liquidity := and(liquidity, 0xffffffffffffffffffffffffffffffff)

}

Recommendation: Replace the assembly code with a simple upcasting operation in order to simplifies the code
and provide a small gas optimization.

uint256 _liquidity = uint256(liquidity);

14

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L324
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L324
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L88
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L88
https://github.com/ProjectOpenSea/seaport-core/blob/7ca0a99396e7cb6ce86ced6f4f036d252bbaa5da/src/lib/LowLevelHelpers.sol#L36-L88
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L91
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SqrtPriceMath.sol#L241-L245

D
R
A
F
T

Uniswap: Fixed in PR 857.

Spearbit: Fixed.

5.3.2 toId performs an unnecesary length calculation

Severity: Gas Optimization

Context: PoolIdLibrary.sol#L12-L16

Description: toId function currently calculates the size of the poolKey struct in memory using the expression
mul(32, 5). While this is correct, it performs an unnecessary multiplication operation every time the function is
called. Replacing this with a hardcoded value can save gas and make the intention clearer.

Recommendation: Replace the calculation mul(32, 5) with the hardcoded hexadecimal value 0xa0, which is
equivalent to 160 bytes (5� 32). Additionally, add a comment explaining the memory layout of PoolKey structure.

Uniswap: Fixed in PR 857.

Spearbit: Verified.

5.3.3 state.sqrtPriceX96 can be used instead of slot0Start.sqrtPriceX96() in Pool.swap

Severity: Gas Optimization

Context: Pool.sol#L319-L328

Description: In this context when the params.sqrtPriceLimitX96 bounds are checked against
slot0Start.sqrtPriceX96(), the storage slots are reread again. Although they also have been cached in
memory in state.sqrtPriceX96.

Recommendation: Reuse state.sqrtPriceX96 instead of reading from storage again:

diff --git a/src/libraries/Pool.sol b/src/libraries/Pool.sol

index 1a376354..7625e1f5 100644

--- a/src/libraries/Pool.sol

+++ b/src/libraries/Pool.sol

@@ -316,15 +316,15 @@ library Pool {

if (params.amountSpecified == 0) return (BalanceDeltaLibrary.ZERO_DELTA, 0, swapFee, state);

if (zeroForOne) {

- if (params.sqrtPriceLimitX96 >= slot0Start.sqrtPriceX96()) {

- PriceLimitAlreadyExceeded.selector.revertWith(slot0Start.sqrtPriceX96(),

params.sqrtPriceLimitX96);,!

+ if (params.sqrtPriceLimitX96 >= state.sqrtPriceX96) {

+ PriceLimitAlreadyExceeded.selector.revertWith(state.sqrtPriceX96,

params.sqrtPriceLimitX96);,!

}

if (params.sqrtPriceLimitX96 < TickMath.MIN_SQRT_PRICE) {

PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96);

}

} else {

- if (params.sqrtPriceLimitX96 <= slot0Start.sqrtPriceX96()) {

- PriceLimitAlreadyExceeded.selector.revertWith(slot0Start.sqrtPriceX96(),

params.sqrtPriceLimitX96);,!

+ if (params.sqrtPriceLimitX96 <= state.sqrtPriceX96) {

+ PriceLimitAlreadyExceeded.selector.revertWith(state.sqrtPriceX96,

params.sqrtPriceLimitX96);,!

}

if (params.sqrtPriceLimitX96 >= TickMath.MAX_SQRT_PRICE) {

PriceLimitOutOfBounds.selector.revertWith(params.sqrtPriceLimitX96);

forge s --diff

15

https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/PoolId.sol#L12-L16
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L319-L328

D
R
A
F
T

test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -2 (-0.000%))

test_swap_beforeSwapNoOpsSwap_exactOutput() (gas: -2 (-0.000%))

test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 4 (0.000%))

test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 4 (0.001%))

test_swap_succeedsWithCorrectSelectors() (gas: 21 (0.001%))

test_swap_failsWithIncorrectSelectors() (gas: 21 (0.001%))

test_swap_withHooks_gas() (gas: 42 (0.001%))

test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: 21 (0.002%))

test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: 21 (0.002%))

test_shouldSwapEqual(uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 115 (0.002%))

test_swap_succeedsWithHooksIfInitialized() (gas: 21 (0.002%))

test_getFeeGrowthInside() (gas: 21 (0.003%))

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))

test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))

test_getTickInfo() (gas: 21 (0.004%))

test_getTickFeeGrowthOutside() (gas: 21 (0.004%))

test_getSlot0() (gas: 21 (0.004%))

test_getPositionInfo() (gas: 21 (0.005%))

test_swap_withDynamicFee_gas() (gas: 21 (0.005%))

test_dynamicReturnSwapFee_notStored() (gas: 21 (0.005%))

test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: 21 (0.005%))

test_getFeeGrowthGlobals0() (gas: 21 (0.005%))

test_fuzz_nonZeroDeltaCount(uint256) (gas: 12 (0.006%))

test_getFeeGrowthGlobals1() (gas: 21 (0.006%))

test_swap_succeedsWithHook() (gas: 21 (0.009%))

test_nestedSwap() (gas: 21 (0.010%))

test_collectProtocolFees_ERC20_accumulateFees_gas() (gas: 21 (0.011%))

test_swap_99PercentFee_AmountOut_WithProtocol() (gas: 21 (0.011%))

test_collectProtocolFees_nativeToken_accumulateFees_gas() (gas: 21 (0.011%))

test_collectProtocolFees_ERC20_accumulateFees_exactOutput() (gas: 21 (0.011%))

test_collectProtocolFees_nativeToken_returnsAllFeesIf0IsProvidedAsParameter() (gas: 21 (0.011%))

test_collectProtocolFees_ERC20_returnsAllFeesIf0IsProvidedAsParameter() (gas: 21 (0.011%))

test_afterDonate_skipIfCalledByHook() (gas: 3000 (0.012%))

test_beforeDonate_skipIfCalledByHook() (gas: 3000 (0.012%))

test_swap_100PercentFee_AmountIn_WithProtocol() (gas: 21 (0.012%))

test_afterRemoveLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))

test_afterAddLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))

test_beforeAddLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))

test_beforeRemoveLiquidity_skipIfCalledByHook() (gas: 3000 (0.012%))

test_gas_beforeSwap_skipIfCalledByHook() (gas: 3042 (0.012%))

test_afterInitialize_skipIfCalledByHook() (gas: 3000 (0.012%))

test_beforeInitialize_skipIfCalledByHook() (gas: 3000 (0.012%))

test_emitsSwapFee() (gas: 21 (0.012%))

test_afterSwap_skipIfCalledByHook() (gas: 3084 (0.012%))

test_beforeSwap_skipIfCalledByHook() (gas: 3084 (0.012%))

test_swap_mint6909IfOutputNotTaken_gas() (gas: 21 (0.012%))

test_updateDynamicLPFee_beforeSwap_succeeds_gas() (gas: 21 (0.013%))

test_returnDynamicSwapFee_beforeSwap_succeeds_gas() (gas: 21 (0.013%))

test_swap_50PercentLPFee_AmountIn_NoProtocol() (gas: 21 (0.013%))

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: -79 (-0.013%))

test_swap_succeedsIfInitialized() (gas: 21 (0.013%))

test_swap_50PercentLPFee_AmountOut_NoProtocol() (gas: 21 (0.013%))

test_settle_withStartingBalance() (gas: 21 (0.014%))

test_swap_100PercentLPFee_AmountIn_NoProtocol() (gas: 21 (0.014%))

test_swap_succeedsWithNativeTokensIfInitialized() (gas: 21 (0.014%))

test_swap_helper_zeroForOne_exactInput() (gas: 21 (0.014%))

test_swap_helper_zeroForOne_exactOutput() (gas: 21 (0.014%))

test_fuzz_dynamicReturnSwapFee(uint24) (gas: 21 (0.014%))

test_swap_mint6909IfNativeOutputNotTaken_gas() (gas: 21 (0.014%))

test_swapNativeInput_helper_zeroForOne_exactOutput() (gas: 21 (0.015%))

test_swap_helper_oneForZero_exactOutput() (gas: 21 (0.015%))

16

D
R
A
F
T

test_swap_helper_oneForZero_exactInput() (gas: 21 (0.015%))

test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: 38 (0.015%))

test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:

40 (0.015%)),!

test_swap_helper_native_zeroForOne_exactInput() (gas: 21 (0.015%))

test_swapNativeInput_helper_zeroForOne_exactInput() (gas: 21 (0.015%))

test_swap_succeeds() (gas: 21 (0.015%))

test_take_failsWithNoLiquidity() (gas: 3000 (0.015%))

test_swap_burn6909AsInput_gas() (gas: 42 (0.016%))

test_swapNativeInput_helper_oneForZero_exactOutput() (gas: 21 (0.016%))

test_swapNativeInput_helper_oneForZero_exactInput() (gas: 21 (0.016%))

test_swap_helper_native_oneForZero_exactOutput() (gas: 21 (0.016%))

test_swap_helper_native_oneForZero_exactInput() (gas: 21 (0.016%))

test_swap_gas() (gas: 21 (0.016%))

test_afterSwap_invalidReturn() (gas: 21 (0.017%))

test_swap_withNative_succeeds() (gas: 21 (0.017%))

test_swap_burnNative6909AsInput_gas() (gas: 42 (0.017%))

test_swap_withNative_gas() (gas: 21 (0.018%))

test_swap_againstLiqWithNative_gas() (gas: 42 (0.021%))

test_swap_againstLiquidity_gas() (gas: 42 (0.021%))

test_fuzz_getFeeGrowthInside((int24,int24,int256,bytes32),bool) (gas: 405 (0.067%))

test_fuzz_ProtocolAndLPFee(uint24,uint16,uint16,int256) (gas: 162 (0.081%))

test_fuzz_swap(uint160,uint24,uint16,uint16,(int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))

test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))

(gas: -763 (-0.182%)),!

test_fuzz_consecutiveExtsload(uint256,uint256,uint256) (gas: 2014 (0.221%))

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: -1104

(-0.253%)),!

test_shouldSwapEqualMultipleLP(uint24,int24,(int24,int24,int256)[],int256,int128,bool) (gas: -39552

(-0.460%)),!

test_fuzz_extsload(uint256,uint256,bytes) (gas: 14346 (1.126%))

test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11043 (-1.553%))

test_fuzz_collectProtocolFees(address,uint256,uint256) (gas: -9403 (-10.907%))

Overall gas change: -7252 (-0.002%)

Uniswap: Acknowledged. Recommendation not applied.

Spearbit: Acknowledged.

5.3.4 Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed

Severity: Gas Optimization

Context: Pool.sol#L574-L577

Description/Recommendation: The calculation in this context can be simplified by removing the unnecessary
multiplication and then division by tickSpacing:

let minTick := sdiv(MIN_TICK, tickSpacing)

let maxTick := sdiv(MAX_TICK, tickSpacing)

let numTicks := add(sub(maxTick, minTick), 1)

result := div(0xffffffffffffffffffffffffffffffff, numTicks)

forge s --diff

test_swap_withHooks_gas() (gas: -21 (-0.001%))

test_swap_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))

test_donate_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))

test_donate_failsWithIncorrectSelectors() (gas: -21 (-0.001%))

test_swap_failsWithIncorrectSelectors() (gas: -21 (-0.001%))

test_removeLiquidity_failsWithIncorrectSelectors() (gas: -21 (-0.001%))

test_addLiquidity_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))

17

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L574-L577

D
R
A
F
T

test_addLiquidity_withHooks_gas() (gas: -21 (-0.001%))

test_addLiquidity_failsWithIncorrectSelectors() (gas: -21 (-0.001%))

test_removeLiquidity_succeedsWithCorrectSelectors() (gas: -21 (-0.001%))

test_removeLiquidity_withHooks_gas() (gas: -21 (-0.001%))

test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: -21 (-0.002%))

test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: -21 (-0.002%))

test_removeLiquidity_withFeeTakingHook() (gas: -21 (-0.002%))

test_fuzz_swap_beforeSwap_returnsDeltaSpecified(int128,int256,bool) (gas: -21 (-0.002%))

test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -21 (-0.002%))

test_swap_beforeSwapNoOpsSwap_exactOutput() (gas: -21 (-0.002%))

test_shouldSwapEqual(uint24,int24,int24,int24,int256,int256,int128,bool) (gas: -113 (-0.002%))

test_swap_succeedsWithHooksIfInitialized() (gas: -21 (-0.002%))

test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -18 (-0.002%))

test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -18 (-0.002%))

test_modifyLiquidity_sameSalt_differentLiquidityRouters_doNotEditSamePosition() (gas: -42 (-0.002%))

test_take_failsWithInvalidTokensThatDoNotReturnTrueOnTransfer() (gas: -21 (-0.002%))

test_addLiquidity_withFeeTakingHook() (gas: -42 (-0.003%))

test_afterInitialize_skipIfCalledByHook() (gas: -1013 (-0.004%))

test_beforeInitialize_skipIfCalledByHook() (gas: -1013 (-0.004%))

test_afterSwap_skipIfCalledByHook() (gas: -1034 (-0.004%))

test_beforeSwap_skipIfCalledByHook() (gas: -1034 (-0.004%))

test_afterDonate_skipIfCalledByHook() (gas: -1034 (-0.004%))

test_beforeDonate_skipIfCalledByHook() (gas: -1034 (-0.004%))

test_gas_beforeSwap_skipIfCalledByHook() (gas: -1034 (-0.004%))

test_afterRemoveLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))

test_afterAddLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))

test_beforeAddLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))

test_beforeRemoveLiquidity_skipIfCalledByHook() (gas: -1097 (-0.004%))

test_getPositionInfo() (gas: -21 (-0.005%))

test_swap_withDynamicFee_gas() (gas: -21 (-0.005%))

test_beforeAfterRemoveLiquidity_calledWithZeroLiquidityDelta() (gas: -21 (-0.005%))

test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: -13 (-0.005%))

test_take_failsWithNoLiquidity() (gas: -1011 (-0.005%))

test_dynamicReturnSwapFee_notStored() (gas: -21 (-0.005%))

test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: -21 (-0.005%))

test_getFeeGrowthGlobals0() (gas: -21 (-0.005%))

test_getFeeGrowthGlobals1() (gas: -21 (-0.006%))

test_beforeAfterAddLiquidity_beforeAfterRemoveLiquidity_succeedsWithHook() (gas: -21 (-0.006%))

test_ffi_addLiqudity_weirdPool_0_returnsCorrectLiquidityDelta() (gas: -21 (-0.006%))

test_beforeAfterRemoveLiquidity_calledWithPositiveLiquidityDelta() (gas: -21 (-0.007%))

test_settle_withNoStartingBalance() (gas: -21 (-0.007%))

test_getFeeGrowthInside() (gas: -42 (-0.007%))

test_getTickLiquidity() (gas: -21 (-0.007%))

test_getTickBitmap() (gas: -21 (-0.007%))

test_getPositionLiquidity() (gas: -21 (-0.007%))

test_gas_modifyLiquidity_newPosition() (gas: -21 (-0.007%))

test_getTickInfo() (gas: -42 (-0.008%))

test_getTickFeeGrowthOutside() (gas: -42 (-0.008%))

test_beforeAfterAddLiquidity_calledWithPositiveLiquidityDelta() (gas: -21 (-0.008%))

test_getSlot0() (gas: -42 (-0.008%))

test_addLiquidity_6909() (gas: -21 (-0.008%))

test_nestedRemoveLiquidity() (gas: -21 (-0.008%))

test_removeLiquidity_6909() (gas: -21 (-0.008%))

test_ffi_addLiqudity_weirdPool_1_returnsCorrectLiquidityDelta() (gas: -21 (-0.008%))

test_afterRemoveLiquidity_invalidReturn() (gas: -21 (-0.009%))

test_nestedAddLiquidity() (gas: -21 (-0.009%))

test_beforeRemoveLiquidity_invalidReturn() (gas: -21 (-0.009%))

test_getLiquidity() (gas: -42 (-0.010%))

test_removeLiquidity_someLiquidityRemains_gas() (gas: -21 (-0.011%))

test_modifyLiquidity_samePosition_withSalt_isUpdated() (gas: -42 (-0.012%))

test_modifyLiquidity_samePosition_zeroSalt_isUpdated() (gas: -42 (-0.012%))

test_removeLiquidity_gas() (gas: -17 (-0.012%))

18

D
R
A
F
T

test_gas_modifyLiquidity_updateSamePosition_withSalt() (gas: -42 (-0.012%))

test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:

-33 (-0.013%)),!

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: -33 (-0.013%))

test_modifyLiquidity_sameTicks_withDifferentSalt_isNotUpdated() (gas: -60 (-0.013%))

test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: -33 (-0.013%))

test_addLiquidity_gas() (gas: -21 (-0.013%))

test_addLiquidity_succeedsIfInitialized(uint160) (gas: -21 (-0.014%))

test_addLiquidity_succeedsForNativeTokensIfInitialized(uint160) (gas: -21 (-0.014%))

test_addLiquidity_withNative_gas() (gas: -21 (-0.014%))

test_afterAddLiquidity_invalidReturn() (gas: -21 (-0.014%))

test_addLiquidity_succeeds() (gas: -21 (-0.015%))

test_shouldSwapEqualMultipleLP(uint24,int24,(int24,int24,int256)[],int256,int128,bool) (gas: 1767

(0.021%)),!

test_addLiquidity_secondAdditionSameRange_gas() (gas: -42 (-0.022%))

test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))

(gas: -135 (-0.032%)),!

test_fuzz_ProtocolAndLPFee(uint24,uint16,uint16,int256) (gas: 141 (0.070%))

test_fuzz_getFeeGrowthInside((int24,int24,int256,bytes32),bool) (gas: -462 (-0.076%))

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: -364

(-0.083%)),!

testTick_tickSpacingToParametersInvariants_fuzz(int24) (gas: -24 (-0.224%))

test_fuzz_tickSpacingToMaxLiquidityPerTick(int24) (gas: -21 (-0.240%))

test_fuzz_initialize((address,address,uint24,int24,address),uint160) (gas: 45 (0.275%))

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 2642 (0.443%))

test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11106 (-1.562%))

Overall gas change: -21941 (-0.005%)

Uniswap: Fixed in PR 823.

Spearbit: Verified.

5.3.5 Deriving liquidityGrossBefore can be optimised

Severity: Gas Optimization

Context: Pool.sol#L523

Description/Recommendation: It is cheaper to mask a value by using and than shifting left then right:

uint256 internal constant LIQUIDITY_GROSS_MASK = 0xffffffffffffffffffffffffffffffff;

// ...

liquidityGrossBefore := and(liquidity, LIQUIDITY_GROSS_MASK)

Uniswap: Usage of the assembly block has been removed in PR 827.

Spearbit: Verified since the optimisation does not apply anymore.

5.3.6 msg.sender can be inlined in _burnFrom to save gas

Severity: Gas Optimization

Context: ERC6909Claims.sol#L14-L19

Description/Recommendation: msg.sender can be inlined in _burnFrom to save gas to avoid using the sender

stack variable:

19

https://github.com/Uniswap/v4-core/pull/823
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L523
https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909Claims.sol#L14-L19

D
R
A
F
T

function _burnFrom(address from, uint256 id, uint256 amount) internal {

if (from != msg.sender && !isOperator[from][msg.sender]) {

uint256 senderAllowance = allowance[from][msg.sender][id];

if (senderAllowance != type(uint256).max) {

allowance[from][msg.sender][id] = senderAllowance - amount;

}

}

_burn(from, id, amount);

}

forge snapshot --diff

test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 5 (0.001%))

test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: 5 (0.001%))

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))

test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))

test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:

10 (0.004%)),!

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: 17

(0.004%)),!

test_shouldSwapEqual(uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 287 (0.005%))

test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: 29 (0.012%))

test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))

(gas: -79 (-0.019%)),!

test_fuzz_getFeeGrowthInside((int24,int24,int256,bytes32),bool) (gas: 232 (0.038%))

test_shouldSwapEqualMultipleLP(uint24,int24,(int24,int24,int256)[],int256,int128,bool) (gas: -4712

(-0.055%)),!

test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))

test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 7118 (1.194%))

test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11064 (-1.556%))

Overall gas change: -1036 (-0.000%)

Uniswap: We don't think this approach would improve gas costs.

Spearbit: Acknowledged.

5.3.7 _fetchProtocolFee can be optimised by using the scratch space

Severity: Gas Optimization

Context: ProtocolFees.sol#L88-L93

Description: If success is true then we know that the returndatasize() should be 32 so we can copy the
returned value to the first memory slot in the scratch space to save on gas cost.

Recommendation: Avoid using the free memory point and instead use the scratch space to copy and use the
returned value:

if success {

returndatacopy(0, 0, 32)

returnData := mload(0)

}

forge snapshot --diff

test_swap_withHooks_gas() (gas: -11 (-0.000%))

test_swap_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))

test_donate_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))

test_donate_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

test_swap_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

20

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L88-L93
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L85

D
R
A
F
T

test_removeLiquidity_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

test_addLiquidity_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))

test_addLiquidity_withHooks_gas() (gas: -11 (-0.000%))

test_addLiquidity_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

test_removeLiquidity_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))

test_removeLiquidity_withHooks_gas() (gas: -11 (-0.000%))

test_initialize_failsWithIncorrectSelectors() (gas: -11 (-0.000%))

test_initialize_succeedsWithCorrectSelectors() (gas: -11 (-0.000%))

test_initialize_succeedsWithEmptyHooks(uint160) (gas: -11 (-0.000%))

test_swap_afterSwapFeeOnUnspecified_exactInput() (gas: -11 (-0.001%))

test_swap_afterSwapFeeOnUnspecified_exactOutput() (gas: -11 (-0.001%))

test_addLiquidity_withFeeTakingHook() (gas: -11 (-0.001%))

test_removeLiquidity_withFeeTakingHook() (gas: -11 (-0.001%))

test_fuzz_swap_beforeSwap_returnsDeltaSpecified(int128,int256,bool) (gas: -11 (-0.001%))

test_swap_beforeSwapNoOpsSwap_exactInput() (gas: -11 (-0.001%))

test_swap_beforeSwapNoOpsSwap_exactOutput() (gas: -11 (-0.001%))

test_swap_succeedsWithHooksIfInitialized() (gas: -11 (-0.001%))

test_take_failsWithInvalidTokensThatDoNotReturnTrueOnTransfer() (gas: -11 (-0.001%))

test_addLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -11 (-0.001%))

test_removeLiquidity_succeedsWithHooksIfInitialized(uint160) (gas: -11 (-0.001%))

test_initialize_succeedsWithHooks(uint160) (gas: -11 (-0.002%))

test_swap_withDynamicFee_gas() (gas: -11 (-0.003%))

test_dynamicReturnSwapFee_notStored() (gas: -11 (-0.003%))

test_dynamicReturnSwapFee_notUsedIfPoolIsStaticFee() (gas: -11 (-0.003%))

test_afterSwap_skipIfCalledByHook() (gas: -824 (-0.003%))

test_beforeSwap_skipIfCalledByHook() (gas: -824 (-0.003%))

test_afterDonate_skipIfCalledByHook() (gas: -824 (-0.003%))

test_beforeDonate_skipIfCalledByHook() (gas: -824 (-0.003%))

test_afterRemoveLiquidity_skipIfCalledByHook() (gas: -824 (-0.003%))

test_afterAddLiquidity_skipIfCalledByHook() (gas: -824 (-0.003%))

test_beforeAddLiquidity_skipIfCalledByHook() (gas: -824 (-0.003%))

test_beforeRemoveLiquidity_skipIfCalledByHook() (gas: -824 (-0.003%))

test_gas_beforeSwap_skipIfCalledByHook() (gas: -824 (-0.003%))

test_ffi_addLiqudity_weirdPool_0_returnsCorrectLiquidityDelta() (gas: -11 (-0.003%))

test_afterInitialize_skipIfCalledByHook() (gas: -835 (-0.003%))

test_beforeInitialize_skipIfCalledByHook() (gas: -835 (-0.003%))

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: 9 (0.003%))

test_settle_withNoStartingBalance() (gas: -11 (-0.003%))

test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: 9 (0.004%))

test_take_failsWithNoLiquidity() (gas: -811 (-0.004%))

test_ffi_addLiqudity_weirdPool_1_returnsCorrectLiquidityDelta() (gas: -11 (-0.004%))

test_shouldSwapEqual(uint24,int24,int24,int24,int256,int256,int128,bool) (gas: 305 (0.006%))

test_fetchProtocolFee_outOfBounds() (gas: -11 (-0.006%))

test_fetchProtocolFee_overflowFee() (gas: -11 (-0.007%))

test_initialize_succeedsWithHook() (gas: -11 (-0.008%))

test_callHook_revertsWithInternalErrorFailedHookCall() (gas: -11 (-0.008%))

test_nestedInitialize() (gas: -11 (-0.009%))

test_initialize_forNativeTokens(uint160) (gas: -6 (-0.010%))

test_donate_failsIfNoLiquidity(uint160) (gas: -11 (-0.011%))

test_callHook_revertsWithBubbleUp() (gas: -11 (-0.012%))

test_afterInitialize_invalidReturn() (gas: -11 (-0.013%))

test_fuzz_getLiquidity((int24,int24,int256,bytes32)) (gas: 33 (0.013%))

test_initialize_fetchFeeWhenController(uint24) (gas: -11 (-0.013%))

test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:

40 (0.015%)),!

test_updateDynamicLPFee_afterInitialize_initializesFee() (gas: -11 (-0.015%))

test_initialize_succeedsWithOverflowFeeController(uint160) (gas: -11 (-0.016%))

test_initialize_succeedsWithOutOfBoundsFeeController(uint160) (gas: -11 (-0.016%))

test_initialize_initializesFeeTo0() (gas: -11 (-0.016%))

test_updateDynamicLPFee_revertsIfPoolHasStaticFee() (gas: -11 (-0.016%))

test_updateDynamicLPFee_afterInitialize_failsWithTooLargeFee() (gas: -11 (-0.016%))

test_initialize_succeedsWithMaxTickSpacing(uint160) (gas: -11 (-0.017%))

21

DRAFT

test_dynamicReturnSwapFee_initializeZeroSwapFee() (gas: -11 (-0.019%))

test_initialize_gas() (gas: -11 (-0.019%))

test_fetchProtocolFee_succeeds() (gas: -11 (-0.022%))

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 151 (0.025%))

test_initialize_revertsWhenPoolAlreadyInitialized(uint160) (gas: -25 (-0.041%))

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: 285

(0.065%)),!

test_fuzz_ProtocolAndLPFee(uint24,uint16,uint16,int256) (gas: 141 (0.070%))

test_fuzz_getFeeGrowthInside((int24,int24,int256,bytes32),bool) (gas: 476 (0.079%))

test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))

test_fuzz_swap(uint160,uint24,uint16,uint16,(int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))

test_shouldSwapEqualMultipleLP(uint24,int24,(int24,int24,int256)[],int256,int128,bool) (gas: -19223

(-0.224%)),!

test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))

test_swap_accruesProtocolFees(uint16,uint16,int256) (gas: -11497 (-1.617%))

test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))

(gas: 16970 (4.059%)),!

test_fuzz_collectProtocolFees(address,uint256,uint256) (gas: -11601 (-13.457%))

Overall gas change: -27267 (-0.007%)

Uniswap: Different optimisation applied in PR 825.

Spearbit: The new approach also looks cheaper, one still needs to measure by how much.

5.3.8 Gas optimization in clear() function

Severity: Gas Optimization

Context: PoolManager.sol#L303

Description: Because the amount argument to clear() is non-negative, the amountDelta value obtained by safe-
casting amount to int128 is also non-negative, and thus the negation of amountDelta cannot overflow. Therefore,
an unchecked block could be used here to reduce gas usage and bytecode size, consistent with what is done in
other functions like take and mint.

Recommendation: Put the line containing the negation within an unchecked block:

+ unchecked {

_accountDelta(currency, -(amountDelta), msg.sender);

+ }

Uniswap: Fixed in PR 826.

Spearbit: Fix verified.

5.3.9 Non-assembly version of state.tick setter possibly more gas efficient

Severity: Gas Optimization

Context: Pool.sol#L415-L422

Description: The non-assembly version of the setting of state.tick seems to be more efficient than the current
implementation.

unchecked {

int24 _zeroForOne = zeroForOne ? int24(1) : int24(0);

state.tick = step.tickNext - _zeroForOne;

}

Recommendation: In addition to adopting the above recommendation, revisit assembly blocks and re-test to see
if their non-assembly counterparts could be more efficient. This could possibly be due to the number of optimizer
runs with the IR optimizer.

22

https://github.com/Uniswap/v4-core/pull/825
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L303
https://github.com/Uniswap/v4-core/pull/826
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L415-L422

DRAFT

Uniswap: Fixed in PR 827.

Spearbit: Fixed.

5.3.10 mulDiv() is redundant for fee growth calculation

Severity: Gas Optimization

Context: Pool.sol#L391-L393, Pool.sol#L463-L468

Description: In donate(), amount0 and amount1 are safely casted to int128. As such, Full-

Math.mulDiv() isn't required because amount * Q128 <= type(int128).max) * Q128 =

0x7fffffffffffffffffffffffffffffff00000000000000000000000000000000 < type(uint256).max,
ie. the intermediate value will not overflow uint256.

Therefore the calculation could use native operands, or a simplified version of mulDiv:

function simpleMulDiv(uint256 a, uint256 b, uint256 denominator) internal pure returns (uint256 result)

{,!

assembly ("memory-safe") {

result := div(mul(a, b), denominator)

}

}

Under the assumption that supported tokens can have a maximum supply of type(uint128).max, the same can
be applied in swap() when incrementing fee growth global.

Recommendation: Replace FullMath.mulDiv() with a simplified and more gas efficient version for the refer-
enced lines.

Uniswap: Fixed in PR 844.

Spearbit: Fixed.

5.3.11 More efficient mask derivation in TickBitmap

Severity: Gas Optimization

Context: TickBitmap.sol#L96-L97

Description: The mask derivation has been modified from UniswapV3 to be slightly more efficient:

// UniV3

- uint256 mask = (1 << bitPos) - 1 + (1 << bitPos);

// = 2 * (1 << bitPos) - 1

// = (1 << bitPos + 1) - 1

// = UniV4

+ uint256 mask = (1 << (uint256(bitPos) + 1)) - 1;

This can be further optimised to uint256 mask = type(uint256).max >> (uint256(type(uint8).max) - bit-

Pos);, which is 1 operand less. Essentially, it's doing SHR of the full mask by 255 - bitPos bits.

Recommendation:

- uint256 mask = (1 << (uint256(bitPos) + 1)) - 1;

+ uint256 mask = type(uint256).max >> (uint256(type(uint8).max) - bitPos);

Uniswap: Fixed in PR 828.

Spearbit: Fixed.

23

https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L391-L393
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L463-L468
https://github.com/Uniswap/v4-core/pull/844
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickBitmap.sol#L96-L97
https://github.com/Uniswap/v4-core/pull/828

D
R
A
F
T

5.3.12 BitMath

Severity: Gas Optimization

Context: BitMath.sol#L16, BitMath.sol#L23

Description:

1. mostSignificantBit can be slightly optimised since we require that x > 0 and so shl(8, iszero(x)) would
just be 0.

2. The constant 0x0706060506020504060203020504030106050205030304010505030400000000 which is used
as a lookup bitmap is slightly different from how one would construct it. The assumes that the following can
include values 7 and 14 which is not true:

A = 0x8421084210842108cc6318c6db6d54be

B = and(0x1f, shr(shr(r, x), A))

In the above snippet shr(r, x) would have at most 8 bits and thus shifting 0x8421084210842108cc6318c6db6d54be

to the right by the shr(r, x) amount and then masking by 0x1f which picks the least 5 bits of the shifted value
gives us the following table:

most significant bit of shr(r, x) possible values of B in binary binary portion of A which is relevant in calculating B some portions of the binary from rows above will be used when calculating B

0b 111 00000 00..00

0b 110 00001, 00010, 00100, 01000, 10000 1000010000100001000010000100001000010000100001000010000100001000

0b 101 00110, 00011, 10001, 11000, 01100, 10011, 11001 11001100011000110001100011000110

0b 100 01101, 10110, 11011 1101101101101101

0b 011 10100, 01010, 10101, 11010 01010100

0b 010 01011, 00101, 10010, 01001 1011

0b 001 01111, 10111 11

0b 000 11111 1

0b . 11110 0

Note: In the above table the symbol 0b . represents the case/state that the code never ends up at
but it is included for the sake of completeness. This is when shr(r, x) == 0 aka when x == 0 but we
never end up at this case since we have the require(x > 0) statement.

And so the set of possible values of B does not include 7 (00111) or 14 (01110). And so the 7th or 14th byte of
0x0706060506020504060203020504030106050205030304010505030400000000 is never queried:

C = 0x0706060506020504060203020504030106050205030304010505030400000000

byte(B, C)

And that is why the 7th and 14th bytes of C can be any value and it would be best to just set them as 00.

24

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L16
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/BitMath.sol#L23

D
R
A
F
T

"""

suggested value

0x07060605060205_00_060203020504_00_0106050205030304010505030400000000

00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000000]

00000110 00000010 00000011 00000010 00000101 00000100 [00000000] 00000001

00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001

00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

current value

0x07060605060205_04_060203020504_03_0106050205030304010505030400000000

00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000100]

00000110 00000010 00000011 00000010 00000101 00000100 [00000011] 00000001

00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001

00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

"""

Proof of concept: See the following Python code to verify and construct different constants:

import re

MAX_RANGE = 1 << 256

LSB

print("\n--- LSB ---\n")

m = 0xb6db6db6ddddddddd34d34d349249249210842108c6318c639ce739cffffffff

"""

1000 0000 0100 0000 0100 0000 0101 0101

0100 0011 0000 0000 0101 0010 0110 0110

0100 0100 0011 0010 0000 0000 0000 0000

0101 0000 0010 0000 0110 0001 0000 0110

0111 0100 0000 0101 0011 0000 0010 0110

0000 0010 0000 0000 0000 0000 0001 0000

0111 0101 0000 0110 0010 0000 0000 0001

0111 0110 0001 0001 0111 0000 0111 0111

"""

L = 0x8040405543005266443200005020610674053026020000107506200176117077

patterns = [set() for _ in range(8)]

for i in range(256):

block = i // 32

pattern = ((m << i) % MAX_RANGE) >> 250

patterns[block].add(pattern)

for i in range(8):

s = f'block {i:03b} : ' + ', '.join([f'{p:06b}' for p in patterns[i]])

print(s)

for i in range(8):

for j in range(8):

if i == j:

continue

intersection = patterns[i].intersection(patterns[j])

if len(intersection) != 0:

print(f'collision ({i}, {j}): {intersection}')

for i in range(8):

25

D
R
A
F
T

for p in patterns[i]:

b = ((L << (p << 2)) % MAX_RANGE) >> 252

if b != i:

print(f"error on block {i} and pattern {p:06b}")

make sure L is computed correctly.

h = 1 << 255

for i in range(8):

for p in patterns[i]:

if p == 0:

print('0 pattern detected')

h |= i << ((256 - 4) - (p << 2))

print(f"h == L: {h == L}")

11010111011001000101001111100000

m2 = 0xd76453e0

pattern2 = []

L2 = 0x001f0d1e100c1d070f090b19131c1706010e11080a1a141802121b1503160405

h2 = 0

make sure L2 is computed correctly.

for i in range(0, 32):

p = (m2 >> i) & 31

pattern2.append(p)

h2 |= i << ((256 - 8) - (p << 3))

print(pattern2)

print(f"h2 == L2: {h2 == L2}")

MSB

print("\n--- MSB ---\n")

"""

7 - 00..00 - 00000

6 - 1000010000100001000010000100001000010000100001000010000100001000 - 00001, 00010, 00100, 01000, 10000

5 - 11001100011000110001100011000110 - 00110, 00011, 10001, 11000, 01100, 10011, 11001

4 - 1101101101101101 - 01101, 10110, 11011,

3 - 01010100 - 10100, 01010, 10101, 11010

2 - 1011 - 01011, 00101, 10010, 01001

1 - 11 - 01111, 10111

0 - 1 - 11111

. - 0 - 11110

"""

m3 = 0x8421084210842108cc6318c6db6d54be

"""

7 - 0 /

6 - 1, 2, 4, 8, 16 /

5 - 3, 6, 12, 17, 19, 24, 25 /

4 - 7, 13, 22, 27 ?? (7)

3 - 10, 14, 20, 21, 26 ?? (14)

2 - 5, 9, 11, 18 /

1 - 15, 23 /

0 - 28, 29, 30, 31

. - ??

"""

L3 = 0x0706060506020504060203020504030106050205030304010505030400000000

ranges3 = [[0]]

ranges3.extend([[i + (1 << j) for i in range(1 << j)] for j in range(8)])

26

D
R
A
F
T

patterns3 = [set() for _ in range(len(ranges3))]

for i in range(len(ranges3)):

for j in ranges3[i]:

patterns3[i].add((0x8421084210842108cc6318c6db6d54be >> j) & 31)

print(patterns3)

for i in range(8):

for pattern in patterns3[i+1]:

j = 0b11111 & (L3 >> ((256 - 8) - (pattern << 3)))

if i != j:

print(f'(i, j, pattern): {i}, {j}, {pattern:05b}')

h3 = 0

for i in range(8):

for pattern in patterns3[i+1]:

h3 |= i << ((256 - 8) - (pattern << 3))

for i in range(8):

for pattern in patterns3[i+1]:

j = 0b11111 & (h3 >> ((256 - 8) - (pattern << 3)))

if i != j:

print(f'(i, j, pattern): {i}, {j}, {pattern:05b}')

print("h3: " + ' '.join(re.findall('.{8}', f'{h3:0256b}')))

print("L3: " + ' '.join(re.findall('.{8}', f'{L3:0256b}')))

print("h3: " + hex(h3))

print(f"h3 == L3: {h3 == L3}")

"""

suggested value

0x706060506020500060203020504000106050205030304010505030400000000

00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000000]

00000110 00000010 00000011 00000010 00000101 00000100 [00000000] 00000001

00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001

00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

current value

0x0706060506020504060203020504030106050205030304010505030400000000

00000111 00000110 00000110 00000101 00000110 00000010 00000101 [00000100]

00000110 00000010 00000011 00000010 00000101 00000100 [00000011] 00000001

00000110 00000101 00000010 00000101 00000011 00000011 00000100 00000001

00000101 00000101 00000011 00000100 00000000 00000000 00000000 00000000

"""

Recommendation: Apply the following changes:

27

DRAFT

diff --git a/src/libraries/BitMath.sol b/src/libraries/BitMath.sol

index 500d6f7e..6e4e8c7a 100644

--- a/src/libraries/BitMath.sol

+++ b/src/libraries/BitMath.sol

@@ -13,14 +13,14 @@ library BitMath {

require(x > 0);

assembly ("memory-safe") {

- r := or(shl(8, iszero(x)), shl(7, lt(0xffffffffffffffffffffffffffffffff, x)))

+ r := shl(7, lt(0xffffffffffffffffffffffffffffffff, x))

r := or(r, shl(6, lt(0xffffffffffffffff, shr(r, x))))

r := or(r, shl(5, lt(0xffffffff, shr(r, x))))

r := or(r, shl(4, lt(0xffff, shr(r, x))))

r := or(r, shl(3, lt(0xff, shr(r, x))))

// forgefmt: disable-next-item

r := or(r, byte(and(0x1f, shr(shr(r, x), 0x8421084210842108cc6318c6db6d54be)),

- 0x0706060506020504060203020504030106050205030304010505030400000000))

+ 0x0706060506020500060203020504000106050205030304010505030400000000))

}

}

Uniswap: Fixed in PR 822.

Spearbit: Verified.

5.4 Informational

5.4.1 Some contracts don't follow Uniswap's version convention

Severity: Informational

Context: CurrencyReserves.sol#L2, IProtocolFees.sol#L2

Description: The Solidity pragma statements in various contracts within the v4-periphery repository do not adhere
to Uniswap's stated rules for version specification:

Uniswap's stated rules:

1. Contracts to be deployed should have a fixed compiler version for safety (0.8.26).

2. Open-source libraries without transient storage should use �0.8.0.

3. Open-source libraries with transient storage should use �0.8.24.

Current pragma statements that don't follow this:

• �0.8.20: CurrencyReserves.

• �0.8.19: IProtocolFees.

Recommendation: Standardize the version in order to align the codebase with Uniswap's stated best practices,
locking the pragma version where posible or setting the correct range where needed.

Uniswap: Fixed in PR 858.

28

https://github.com/Uniswap/v4-core/pull/822/
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L2
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IProtocolFees.sol#L2
https://github.com/Uniswap/v4-core/pull/858

DRAFT

5.4.2 computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amountRemain-

ingLessFee

Severity: Informational

Context: SwapMath.sol#L74-L81

Description: In the above context we are in the case of exactIn swaps when amountIn is greater than amoun-

tRemainingLessFee:

sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(

sqrtPriceCurrentX96, liquidity, amountRemainingLessFee, zeroForOne

);

amountIn = zeroForOne

? SqrtPriceMath.getAmount0Delta(sqrtPriceNextX96, sqrtPriceCurrentX96, liquidity, true)

: SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceNextX96, liquidity, true);

// we didn't reach the target, so take the remainder of the maximum input as fee

feeAmount = uint256(-amountRemaining) - amountIn;

Notations:

parameter description

p
pc sqrtPriceCurrentX96

p
pt sqrtPriceTargetX96

p
pn sqrtPriceNextX96

ai amountIn

ao amountOut

aw amountRemainingLessFee

ar amountRemaining

af feeAmount

L liquidity

f feePips

1. Case 0 ! 1 swaps

p
pn =

L
Lp
pc

+
aw

296

ai = 296 Lp
pn
� Lp

pc

= aw

2. Case 1 ! 0 swaps

p
pn =

p
pc +

296aw

L

ai =

�p
pn �p

pc
�

L
296 = aw

29

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L74-L81

DRAFT

so in both directions in this inner else block one could have just set amountIn as amountRemainingLessFee and
the feeAmount ends up being:

af =
f � ar

106

or in other words amountIn gets capped by amountRemainingLessFee. Doing so, make the code more unified
when compared to the implementation in the outer else block below where exactIn == false.

Recommendation: The following modification can be applied:

diff --git a/src/libraries/SwapMath.sol b/src/libraries/SwapMath.sol

index e0f4b264..59232535 100644

--- a/src/libraries/SwapMath.sol

+++ b/src/libraries/SwapMath.sol

@@ -71,12 +71,10 @@ library SwapMath {

? amountIn

: FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_FEE_PIPS - _feePips);

} else {

+ amountIn = amountRemainingLessFee;

sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(

sqrtPriceCurrentX96, liquidity, amountRemainingLessFee, zeroForOne

);

- amountIn = zeroForOne

- ? SqrtPriceMath.getAmount0Delta(sqrtPriceNextX96, sqrtPriceCurrentX96,

liquidity, true),!

- : SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceNextX96,

liquidity, true);,!

// we didn't reach the target, so take the remainder of the maximum input as fee

feeAmount = uint256(-amountRemaining) - amountIn;

}

Uniswap: Fixed in PR 718.

Spearbit: Verified.

5.4.3 Add comments regarding the derivation of SQRT_PRICE_A_B constant

Severity: Informational

Context: Constants.sol#L5-L10

Description: The constants SQRT_PRICE_A_B in this context are calculated as:

6664
s

A
B
� 296

7775

Where A and B are reserve amounts in the pair of currencies involved in the pool.

Recommendation: Add comments regarding the derivation of SQRT_PRICE_A_B constant. And make sure the
named constant are imported from this utility/library instead of declaring them within each test file such as Tick-

MathTestTest.

Uniswap: Fixed in PR 859.

Spearbit: Verified.

30

https://github.com/Uniswap/v4-core/pull/718
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/utils/Constants.sol#L5-L10
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/libraries/TickMath.t.sol#L18
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/test/libraries/TickMath.t.sol#L18
https://github.com/Uniswap/v4-core/pull/859

DRAFT

5.4.4 amountIn is always 0 in an inner branch of computeSwapStep

Severity: Informational

Context: SwapMath.sol#L71

Description: In the above context we have:

if (exactIn) {

uint256 amountRemainingLessFee =

FullMath.mulDiv(uint256(-amountRemaining), MAX_FEE_PIPS - _feePips, MAX_FEE_PIPS);

amountIn = zeroForOne

? SqrtPriceMath.getAmount0Delta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, true)

: SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity, true);

if (amountRemainingLessFee >= amountIn) {

// ...

feeAmount = _feePips == MAX_FEE_PIPS

? amountIn // <<<

// ...

If _feePips == MAX_FEE_PIPS then amountRemainingLessFee == 0 which in the above second if branch forces
amountIn to be 0:

0 = amountRemainingLessFee >= amountIn

Recommendation: If we rewrite this as:

feeAmount = _feePips == MAX_FEE_PIPS

? 0

: FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_FEE_PIPS - _feePips);

according to the forge test case it would cost more gas:

forge snapshot --diff

test_shouldSwapEqual(uint24,int24,int24,int24,int256,int256,int128,bool) (gas: -20 (-0.000%))

test_swap_100PercentFee_AmountIn_WithProtocol() (gas: -1 (-0.001%))

test_swap_100PercentLPFee_AmountIn_NoProtocol() (gas: -1 (-0.001%))

test_ffi_fuzz_addLiquidity_defaultPool_ReturnsCorrectLiquidityDelta((int24,int24,int256,bytes32)) (gas:

-2 (-0.001%)),!

test_fuzz_getTickLiquidity((int24,int24,int256,bytes32)) (gas: -2 (-0.001%))

test_fuzz_getTickBitmap((int24,int24,int256,bytes32)) (gas: -2 (-0.001%))

test_fuzz_getPositionLiquidity((int24,int24,int256,bytes32),(int24,int24,int256,bytes32)) (gas: -16

(-0.004%)),!

test_fuzz_getPositionInfo((int24,int24,int256,bytes32),uint256,bool) (gas: 27 (0.005%))

test_fuzz_getFeeGrowthInside((int24,int24,int256,bytes32),bool) (gas: 40 (0.007%))

test_fuzz_getTickLiquidity_two_positions((int24,int24,int256,bytes32),(int24,int24,int256,bytes32))

(gas: -29 (-0.007%)),!

test_fuzz_nextInitializedTickWithinOneWord(int24,bool) (gas: -75 (-0.108%))

test_fuzz_swap(uint160,uint24,uint16,uint16,(int24,bool,int256,uint160,uint24)) (gas: 26 (0.159%))

test_fuzz_extsload(uint256,uint256,bytes) (gas: 7173 (0.563%))

Overall gas change: 7118 (0.002%)

It might still be useful to leave a comment that at this specific edge case amountIn and thus feeAmount would be
0. And if there are no test cases present for this edge case to also add some tests for it.

Uniswap: Comments added in PR 857.

Spearbit: Verified.

31

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L71
https://github.com/Uniswap/v4-core/pull/857

DRAFT

5.4.5 Unused code should be removed

Severity: Informational

Context: StateLibrary.sol#L15-L16

Description: Unused code should be removed, this would help decreasing cognitive load and make easier the
read, additionally reducing a little the contract codesize. Some instances:

• FEE_GROWTH_GLOBAL1_OFFSET is not used neither at v4-core, v4-periphery, or universal router codebases.
However, it provides useful information about the storage layout.

Recommendation: Consider commenting the storage layout and removing unused variables

Uniswap: The line corresponding to the above constant has been commented out in the library in PR 857.

Spearbit: Verified.

5.4.6 Unnecessary unchecked blocks

Severity: Informational

Context: UnsafeMath.sol#L13-L19

Description: divRoundingUp in UnsafeMath is wrapped in an unchecked block. However, this block is unneces-
sary because the function uses inline assembly for its calculations. The unchecked keyword in Solidity is used to
disable overflow and underflow checks for arithmetic operations, but it has no effect on assembly code, which is
inherently unchecked.

Recommendation: Remove the unchecked block as it serves no purpose in this context. The function can be
simplified to:

function divRoundingUp(uint256 x, uint256 y) internal pure returns (uint256 z) {

assembly ("memory-safe") {

z := add(div(x, y), gt(mod(x, y), 0))

}

}

Uniswap: Fixed in PR 857.

Spearbit: Verified.

5.4.7 Confusing error message in ERC6909.transferFrom()

Severity: Informational

Context: ERC6909.sol#L38

Description: When the allowance is lower than the transferred amount, ERC6909.transferFrom() returns a low
level "arithmetic underflow or overflow" error:

uint256 allowed = allowance[sender][msg.sender][id];

if (allowed != type(uint256).max) allowance[sender][msg.sender][id] = allowed - amount;

The error can be confusing for users because it doesn't explicitly says that the allowance is too low.

Recommendation: Consider returning a meaningful error. For example, see this ERC6909 implementation or the
OpenZeppelin's ERC20 implementation.

Uniswap: Added a custom revert for InsufficientAllowance and InsufficientBalance in PR 833. Currently,
it's causing us to exceed contract bytecode size limits. We may elect to not do custom reverts.

32

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/StateLibrary.sol#L15-L16
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/UnsafeMath.sol#L13-L19
https://github.com/Uniswap/v4-core/pull/857
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909.sol#L38
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ERC6909.sol#L35
https://github.com/jtriley-eth/ERC-6909/blob/3ecc987b9ea266c31bb32ce8d4d936be04607806/src/ERC6909.sol#L42
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/bcd4beb5e7fd8bd8edf160fbffb5d5b03804efdb/contracts/token/ERC20/ERC20.sol#L305
https://github.com/Uniswap/v4-core/pull/833

DRAFT

5.4.8 getSqrtPriceAtTick assumes that the allowed tick range is centered at 0

Severity: Informational

Context: TickMath.sol#L67

Description: getSqrtPriceAtTick assumes that the allowed tick range is centered at 0, ie MAX_TICK == -MIN_-

TICK due to the following bound check:

if (absTick > uint256(int256(MAX_TICK))) InvalidTick.selector.revertWith(tick);

Recommendation: Perhaps this needs to be documented/highlighted in case the codebase is changed in the
future where the invariant MAX_TICK == -MIN_TICK is not satisfied anymore.

Uniswap: Comments have been added in PR 851.

Spearbit: Verified.

5.4.9 The current or next tick is not always on the tick spacing grid or within the allowed range

Severity: Informational

Context: Pool.sol#L343-L349, Pool.sol#L421, Pool.sol#L425

Description/Recommendation:

� Pool.sol#L343-L349: clipping step.tickNext to the TickMath.MIN_TICK and TickMath.MAX_TICK range
breaks the assumptions that step.tickNext is always on the tickSpacing grid.

The following is not always true when clipped:

�i j inext

For these out of bound step.tickNext, step.initialized should be (is) false.

� Pool.sol#L421: Doing the following can push the state.tick out of the minimum bound TickMath.MIN_TICK

when _zeroForOne is 1:

state.tick = step.tickNext - _zeroForOne

� Pool.sol#L421, Pool.sol#L425: in this context when the tick is decremented or recalculated from the price:

state.tick = step.tickNext - _zeroForOne;

state.tick = TickMath.getTickAtSqrtPrice(state.sqrtPriceX96);

and later when one updates the storage the self.slot0.tick() will not necessarily be on the tickSpacing

grid or just off by 1 from it.

Uniswap: Addressed in PR 852.

33

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TickMath.sol#L67
https://github.com/Uniswap/v4-core/pull/851
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L343-L349
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L425
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L343-L349
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L421
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L425
https://github.com/Uniswap/v4-core/pull/852

DRAFT

5.4.10 unchecked blocks

Severity: Informational

Context: Pool.sol#L369-L372, Pool.sol#L381-L382, Pool.sol#L384, Pool.sol#L408

Description/Recommendation:

� Pool.sol#L369-L372: It is true that it is safe. But had to double check for this branch in
SwapMath.computeSwapStep due to different rounding direction for the inequalities:

if (exactIn) {

uint256 amountRemainingLessFee =

FullMath.mulDiv(uint256(-amountRemaining), MAX_FEE_PIPS - _feePips, MAX_FEE_PIPS);

amountIn = zeroForOne

? SqrtPriceMath.getAmount0Delta(sqrtPriceTargetX96, sqrtPriceCurrentX96, liquidity, true)

: SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceTargetX96, liquidity,

true);,!

if (amountRemainingLessFee >= amountIn) {

// `amountIn` is capped by the target price

sqrtPriceNextX96 = sqrtPriceTargetX96;

feeAmount = _feePips == MAX_FEE_PIPS

? amountIn

: FullMath.mulDivRoundingUp(amountIn, _feePips, MAX_FEE_PIPS - _feePips);

for the notations see this discussion and fswap = f (feePips):

in the second if branch we know amountRemainingLessFee >= amountIn:

aw =

$
(�ar)

�
106 � fswap

�
106

%
� ai

where af is:

af =

&
ai � fswap

106 � fswap

'

and so we need to make sure the following inequality is guaranteed:

�ar � ai + af =

&
ai � 106

106 � fswap

'

But in general we have for a, b 2 Z and k 2 R+:

bk � ac � b) a �
&

b
k

'

The comment can be more accurate though since the state.amountSpecifiedRemaining is negated in the
inequality.

� Pool.sol#L381-L382:

– Case. exactInput == true

We have in Pool.sol#L370-L372:

unchecked {

state.amountSpecifiedRemaining += (step.amountIn + step.feeAmount).toInt256();

}

34

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L369-L372
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L381-L382
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L384
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L408
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L369-L372
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L59-L72
https://github.com/spearbit-audits/review-uniswap-v4/discussions/11
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L381-L382
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L370-L372

DRAFT

and based on this discussion, we know that state.amountSpecifiedRemaining always stays non-
positive. So at the very end of this function where we have

(params.amountSpecified - state.amountSpecifiedRemaining).toInt128()

for the first or second component of result. Thus, we can deduce that:

aspec � aremain = �
X

j

(aj
in + aj

f) � �2127

and thus for each iteration of the loop we would have:

aj
in + aj

f � 2127

so even if multiplied by 103 it would still not overflow in the uint256 range.

– Case. exactInput == false

We have in Pool.sol#L367:

state.amountCalculated -= (step.amountIn + step.feeAmount).toInt256();

Note that this is a checked block and the type of state.amountCalculated is int256. So the negative
summation of these value for all the iterations cannot underflow. We also have at the very end:

state.amountCalculated.toInt128()

for either the first or second component of result. And thus like the previous case we would have:

�
X

j

(aj
in + aj

f) � �2127

� Pool.sol#L384: To prove that this context doesn't underflow, we need to show:

af �
$

(ai + af) � fproto

106

%

Let fs = fswap, fp = fproto 2
�
0, 103

�
and fL = fLP 2

�
0, 106

�
. Then

fs = fp + fL �
&

fp � fL
106

'
� fp

The above is true since for all x 2 N [f0g and k 2 [0, 1] we have:

dkxe � x

– Case 1. fs 6= 106

To show the original inequality in the first comment we need to prove:

66666664

&
ai

106 � fs
� 106

'
fp

106

77777775 �
&

ai

106 � fs
� fs
'

35

https://github.com/spearbit-audits/review-uniswap-v4/pull/5/#discussion_r1688728376
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L367
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L384

DRAFT

or even a stronger inequality since we know fp � fs:

66666664

&
ai

106 � fs
� 106

'
fp

106

77777775 �
&

ai

106 � fs
� fp
'

Let x =
ai

106 � fs
2 Q�0 and y = fp, then we need to show:

$ �
x � 106

�
y

106

%
� dx � ye

Let x = a +
b + �
106 where a 2 f0, 1, 2, � � � g, b 2 f0, 1, � � � , 106 � 1g and � 2 [0, 1). Then we need to show

that:

$��
106a + b + �

�� � y
106

%
� dx � ye

or

$��
106a + b + �

�� � y
106

%
�
&

(106a + b + �) � y
106

'

Note that we can subtract ay from both sides to get:

$
d(b + �)e � y

106

%
�
&

(b + �) � y
106

'

and we can even try to prove stronger inequality:

$
(b + 1) � y

106

%
�
&

b � y
106

'

let k =
y

106 2 [0, 10�3], then we need to show:

b(b + 1)kc � dbke

or

bbkc + bfbkg + kc � bbkc + dfbkge

or

bfbkg + kc � dfbkge

But from the range of k we know that fbkg + k 2 �0, 1 + 10�3
�

and so both sides of the inequality above
can either be 0 or 1 and the right hand side can only be 1 if and only if fbkg + k � 1 which implies that
whenever it is 1 then fbkg needs to be non-zero and thus dfbkge = 1 which proves the inequality.

36

DRAFT

– Case 2 fs = 106

Then we know that we should have aspec � 0 or only the exact input branches are reached. Also we
know in this case fL = 106. Then there are 2 cases.

* Case 2.1 (see SwapMath.sol#L70-L71)

In this case both af = ai = 0 which then the inequality is obvious.

* Case 2.2 (see SwapMath.sol#L77-L81)

sqrtPriceNextX96 = SqrtPriceMath.getNextSqrtPriceFromInput(

sqrtPriceCurrentX96, liquidity, amountRemainingLessFee, zeroForOne

);

amountIn = zeroForOne

? SqrtPriceMath.getAmount0Delta(sqrtPriceNextX96, sqrtPriceCurrentX96,

liquidity, true),!

: SqrtPriceMath.getAmount1Delta(sqrtPriceCurrentX96, sqrtPriceNextX96,

liquidity, true);,!

// we didn't reach the target, so take the remainder of the maximum input as fee

feeAmount = uint256(-amountRemaining) - amountIn;

We know that amountRemainingLessFee == 0 and thus sqrtPriceNextX96 == sqrtPriceCur-

rentX96 which implies that amountIn == 0 and feeAmount == uint256(-amountRemaining). So
in this case we have:

ai = 0, af = �ar

and the inequality becomes:

$
fp

106 � af

%
� af

� Pool.sol#L408: We have that:

Li ,g = Li ,l + Li ,u

Li ,n = Li ,l � Li ,u

and we know that max gross liquidity of a tick cannot be greater than the tickSpacingToMaxLiquidityPer-

Tick(tickSpacing):

Li ,g �
2128 � 1$

imax

�i

%
+

$
j imin j
�i

%
+ 1

<
2128

3
< 2127

and since Li ,l , Li ,u are non-negative values, one can deduce that:

�2127 < Li ,n

parameter description

Li ,g liquidityGross at the tick i

Li ,n liquidityNet at the tick i

37

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L70-L71
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L77-L81
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L408

DRAFT

parameter description

Li ,l Sum of all the liquidity of all positions with their lower tick equal to i

Li ,u Sum of all the liquidity of all positions with their upper tick equal to i

�i tickSpacing

5.4.11 Dirty bit cleaning

Severity: Informational

Context: SwapMath.sol#L31, Pool.sol#L419

Description:

SwapMath.sol#L31: In the context of the codebase this and some other upper bit cleanings are not nec-
essary and(zeroForOne, 0xff) since on external calls the solc compiler performs cleaning. But in the
context of a library and internal functions why the zeroForOne value is not completely cleaned by doing
and(zeroForOne, 1) ?

� Pool.sol#L419: Why not just and with 1?

Recommendation: Apply the following bit cleaning instead:

and(zeroForOne, 1)

Uniswap:

• Fixed in PR 838.

• Pool.sol#L419: is transformed into and thus avoiding the bit cleanup necessary. See PR 827.

unchecked {

result.tick = zeroForOne ? step.tickNext - 1 : step.tickNext;

}

Spearbit: Verified.

5.4.12 Named return are unused in settle() and settleFor()

Severity: Informational

Context: PoolManager.sol#L288-L291

Description: settle() and settleFor() functions declare a named return variable paid, but do not explicitly use
it in the function body. Instead, they directly return the result of the _settle() function call.

Recommendation: Either use the named return variable explicitly or remove it.

function settle() external payable onlyWhenUnlocked returns (uint256 paid) {

- return _settle(msg.sender);

+ paid = _settle(msg.sender);

Uniswap: Fixed in PR 829.

Spearbit: Fixed. The paid parameter was removed.

38

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/SwapMath.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/pull/838
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L419
https://github.com/Uniswap/v4-core/pull/827
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L288-L291
https://github.com/Uniswap/v4-core/pull/829

DRAFT

5.4.13 collectProtocolFees lacks an own event to track fee collections

Severity: Informational

Context: ProtocolFees.sol#L57

Description: collectProtocolFees transfers collected protocol fees to a recipient but only emits a generic cur-
rency Transfer event. This lacks specificity and makes it difficult to track protocol fee collection activities separately
from other transfers. A dedicated event for protocol fee collection would improve transparency and make it easier
to monitor and analyze these specific transactions.

Recommendation: Implement a specific event for protocol fee collection. For example:

event ProtocolFeeCollected(address indexed recipient, Currency indexed currency, uint256 amount,

address caller);,!

Uniswap: Acknowledged. We are not going to be adding an event to collectProtocolFees.

Spearbit: Acknowledged.

5.4.14 Best practices for handling action flows

Severity: Informational

Context: PoolManager.sol#L271-L285

Description: Developers have to be aware of potential issues that may cause swaps or flash loans to revert. First,
sync() can be called outside of unlocks, and at most 1 currency can be synced each time before settlement. In
other words, sync() cannot be called in succession, which enables a Denial of Service (DoS) attack vector.

Second, native token transfers via the take() action which executes Currency(native).transfer() would hand
over the control flow to the recipient, allowing it to revert the entire transaction.

Recommendation: Recommend best practices for integrators and developers, and highlight present limitations
that they should be aware of. Specifically:

• Consider checking for an existing sync and calling settle() before invoking sync().

• Be cautious with native token transfers to untrusted recipients.

Uniswap: 2 PRs that change the current behaviour:

1. Lock added to sync in PR 856.

2. sync no longer reverts (just overrides), and allows native to be synced to remove DoS attack vectors in PR
866.

Spearbit: Acknowledged on the new behaviour. There is a footgun introduced that developers should be aware
of: if one syncs one currency ! transfers tokens ! syncs another without settlement, the token transfer will not
be accounted for.

5.4.15 Pools with maximum lpFee do not support exact output swaps

Severity: Informational

Context: Pool.sol#L312-L314

Description: While it is possible to set lpFee to 100%, it will cause exact output swaps to revert. In other words,
such pools will only work with exactIn swaps.

Recommendation: Developers and pool creators should be aware of this side-effect should they choose to set
maximum lpFee.

Uniswap: Fixed in PR 842.

Spearbit: Fixed.

39

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L57
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/PoolManager.sol#L271-L285
https://github.com/Uniswap/v4-core/pull/856
https://github.com/Uniswap/v4-core/pull/866
https://github.com/Uniswap/v4-core/pull/866
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L312-L314
https://github.com/Uniswap/v4-core/pull/842

D
R
A
F
T

5.4.16 Currency.isZero() is equivalent to Currency.isNative()

Severity: Informational

Context: Currency.sol#L104-L110

Description: isZero() is equivalent to isNative(). Either function could be removed for simplicity and its in-
stances replaced with the other.

Recommendation: Consider removing either isZero() or isNative() and replace all its instances with the other
function.

Uniswap: Fixed in PR 834.

Spearbit: Fixed. isZero() is renamed to isAddressZero() and isNative() has been removed.

5.4.17 Comment Improvements

Severity: Informational

Context: IPoolManager.sol#L104, IPoolManager.sol#L190, IHooks.sol#L9-L11, IHooks.sol#L72, IHooks.sol#86,
ProtocolFees.sol#L61, LPFeeLibrary.sol#L21, LPFeeLibrary.sol#L34, TransientStateLibrary.sol#L27,
Pool.sol#L559, ProtocolFees.sol#L67, IPoolManager.sol#L140-L142, IPoolManager.sol#L140-L142

Description: The following are comment clarifications for correctness and clarity, and typos.

Recommendation:

- /// @dev The only functions callable without an unlocking are `initialize` and `updateDynamicLPFee`

+ /// @dev The only functions callable without an unlocking are `initialize`, `sync` and

`updateDynamicLPFee`,!

- retreivable

+ retrievable

- /// @notice The PoolManager contract decides whether to invoke specific hooks by inspecting the

leading bits,!

- /// of the hooks contract address. For example, a 1 bit in the first bit of the address will

- /// cause the 'before swap' hook to be invoked. See the Hooks library for the full spec.

+ /// @notice V4 decides whether to invoke specific hooks by inspecting the lowest significant bits of

the address that,!

+ /// the hooks contract is deployed to.

+ /// For example, a hooks contract deployed to address: 0x0000000000000000000000000000000000002400

+ /// has the lowest bits '10 0100 0000 0000' which would cause the 'before initialize' and 'after add

liquidity' hooks to be used.,!

+ /// See the Hooks library for the full spec.

- liquidty

+ liquidity

- overriden

+ overridden

- beforeSwaphook

+ beforeSwap hook

- maxmimum

+ maximum

- zerod

+ zeroed

- /// @dev Executed within the pool constructor

+ /// @dev Executed when adding liquidity

40

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/Currency.sol#L104-L110
https://github.com/Uniswap/v4-core/pull/834
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L104
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L190
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L9-L11
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L72
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IHooks.sol#L86
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L61
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/LPFeeLibrary.sol#L21
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/LPFeeLibrary.sol#L34
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/TransientStateLibrary.sol#L27
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L559
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L67
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L140-L142
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/interfaces/IPoolManager.sol#L133-L136

DRAFT

- /// @dev the success of this function must be checked when called in setProtocolFee

(the function under the comment above is not called in setProtocolFee)

+ /// Whether to swap token zero for token one or vice versa

bool zeroForOne;

+ /// The desired input amount if negative ("exact in"), or the desired output amount if positive

("exact out"),!

int256 amountSpecified;

+ /// The most extreme square-root-price the pool may reach by the end of the swap

uint160 sqrtPriceLimitX96;

The IPoolManager have stale comments vs. PoolManager:

- /// @return feeDelta The balance delta of the fees generated in the liquidity range. Returned for

informational purposes.,!

+ /// @return feesAccrued The balance delta of the fees generated in the liquidity range. Returned for

informational purposes.,!

function modifyLiquidity(PoolKey memory key, ModifyLiquidityParams memory params, bytes calldata

hookData),!

external

- returns (BalanceDelta callerDelta, BalanceDelta feeDelta);

+ returns (BalanceDelta callerDelta, BalanceDelta feesAccrued);

Uniswap: Fixed in PR 846.

Spearbit: Fixed.

5.4.18 memory-safe annotation

Severity: Informational

Context: CurrencyDelta.sol#L20-L22, CurrencyReserves.sol#L25, CurrencyReserves.sol#L31,
CurrencyReserves.sol#L37, CurrencyReserves.sol#L44, CustomRevert.sol#L69-L74

Description/Recommendation:

• CurrencyDelta.sol#L20-L22, CurrencyReserves.sol#L25, CurrencyReserves.sol#L31, CurrencyRe-
serves.sol#L37, CurrencyReserves.sol#L44: missing memory-safe annotation.

• CustomRevert.sol#L69-L74: this assembly block does not follow the memory-safe annotation requirement
since it writes to memory space right passed the scratch memory slots. To be safe one should use the free
memory pointer and write to memory right at and after that location.

Uniswap: Fixed in PR 830.

Spearbit: Verified.

41

https://github.com/Uniswap/v4-core/pull/846
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyDelta.sol#L20-L22
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L25
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L44
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L69-L74
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyDelta.sol#L20-L22
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L25
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L31
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CurrencyReserves.sol#L44
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/CustomRevert.sol#L69-L74
https://github.com/Uniswap/v4-core/pull/830

	About Spearbit
	Introduction
	Risk classification
	Impact
	Likelihood
	Action required for severity levels

	Executive Summary
	Findings
	Medium Risk
	Donations can be stolen by providing just-in-time liquidity

	Low Risk
	tickSpacingToMaxLiquidityPerTick's calculation is not completely accurate
	Mixed use of rounding direction and inaccurate constants in getSqrtPriceAtTick
	The used constants representing the min and max of the errors in getTickAtSqrtPrice are not accurate
	PoolManager.updateDynamicLPFee() doesn't emit an event
	bubbleUpAndRevertWith is prone to returndata bombing and some other minor issues

	Gas Optimization
	A simple upcasting operation can be performed
	toId performs an unnecesary length calculation
	state.sqrtPriceX96 can be used instead of slot0Start.sqrtPriceX96() in Pool.swap
	Unnecessary operations in tickSpacingToMaxLiquidityPerTick can be removed
	Deriving liquidityGrossBefore can be optimised
	msg.sender can be inlined in _burnFrom to save gas
	_fetchProtocolFee can be optimised by using the scratch space
	Gas optimization in clear() function
	Non-assembly version of state.tick setter possibly more gas efficient
	mulDiv() is redundant for fee growth calculation
	More efficient mask derivation in TickBitmap
	BitMath

	Informational
	Some contracts don't follow Uniswap's version convention
	computeSwapStep can be simplified for exactIn swaps when amountIn is greater than amountRemainingLessFee
	Add comments regarding the derivation of SQRT_PRICE_A_B constant
	amountIn is always 0 in an inner branch of computeSwapStep
	Unused code should be removed
	Unnecessary unchecked blocks
	Confusing error message in ERC6909.transferFrom()
	getSqrtPriceAtTick assumes that the allowed tick range is centered at 0
	The current or next tick is not always on the tick spacing grid or within the allowed range
	unchecked blocks
	Dirty bit cleaning
	Named return are unused in settle() and settleFor()
	collectProtocolFees lacks an own event to track fee collections
	Best practices for handling action flows
	Pools with maximum lpFee do not support exact output swaps
	Currency.isZero() is equivalent to Currency.isNative()
	Comment Improvements
	memory-safe annotation

