7 OpenZeppelin | security

Uniswap v4 Core
Audit

July 17, 2024



Table of Contents

Table of Contents 2
Summary 4
Scope 5
System Overview 7

Security Model and Trust Assumptions

Privileged Roles 9
Critical Severity 10
C-01 ERC-20 Representation of Native Currency Can Be Used to Drain Native Currency Pools 10

Unsafe Assembly Blocks 12

ProtocolFeeController Gas Griefing 12

Front-Running Pool's Initialization or Initial Deposit Can Lead to Draining Initial Liquidity 13
Low Severity 14
L-01 Unsafe ABI Encoding 14
L-02 Missing Error Messages in require Statements 15
L.-03 Unsafe Casting 15
Notes & Additional Information 16
N-01 Inconsistent Use of Multiple Solidity Versions 16
N-02 Lack of memory-safe Annotation in Assembly Blocks 16
N-03 Discrepancy Between Implementation and Specification of ERC-6909 17
N-04 Code Clarity 17
N-05 Missing Function Parameters Names 17
N-06 Discrepancies Between Interfaces And Implementation Contracts 18
N-07 Unused Named Return Variables 18
N-08 Unused Imports 19
N-09 Unused Error 20
N-10 Magic Numbers 20
N-11 State Variable Visibility Not Explicitly Declared 20
N-12 Missing Named Parameters in Mappings 21
N-13 Lack of Indexed Event Parameter 21
N-14 Missing Docstrings 21
N-15 Incomplete Docstrings 22
N-16 Lack of Security Contact 24

7 OpenZeppelin Uniswap v4 Core Audit — Table of Contents — 2



Client Reported 24
CR-01 License Limitation Can Be Skipped 24

Conclusion 25

7 OpenZeppelin Uniswap v4 Core Audit — Table of Contents — 3



Summary

Type DeFi Total Issues 24 (18resolved, 2 partially resolved)
Timeline From 2024-05-27 Critical Severity 1 (1resolved)
To 2024-06-21 Issues
Languages Solidity, Yul High Severity 0 (Oresolved)
Issues
Medium Severity 3 (2resolved)
Issues

Low Severity Issues 3 (2resolved)

Notes & Additional 16 (12resolved, 2 partially resolved)
Information

Client Reported 1 (1 resolved)
Issues

7 OpenZeppelin Uniswap v4 Core Audit — Summary — 4



Scope

We audited the Uniswap/v4-core repository at commit d5d4957.

The following files were new and therefore were fully audited:

s

|  ERC6909.so0l

|  ERC6909Claims.sol

|  Extsload.sol

|  Exttload.sol

|  NoDelegateCall.sol

|  PoolManager.sol

|  ProtocolFees.sol

interfaces/

— IHooks.sol

— IExtsload.sol

— IExttload.sol

— IPoolManager.sol

— IProtocolFeeController.sol
— IProtocolFees.sol

— external/IERC20Minimal.sol
— external/IERC6909Claims.sol
L— callback/IUnlockCallback.sol

|_
|
|
|
|
|
|
|
|
|
— libraries/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|__
|
|
|
|
|
|

(@)
c
B
=)
0]
>
0
<
o
(0]
—~
~+
o))
(%]
o
—~

CustomRevert.sol
FixedPoint128.sol
FixedPoint96.sol
Hooks.sol
LPFeeLibrary.sol
LiquidityMath.sol
Lock.sol
NonZeroDeltaCount.sol
ParseBytes.sol
Pool.sol
ProtocolFeelLibrary.sol
— Reserves.sol

— SafeCast.sol

— StatelLibrary.sol

— TransientStatelLibrary.sol
L— UnsafeMath.sol

types/

— BalanceDelta.sol

— BeforeSwapDelta.sol
— Currency.sol

— PoolId.sol

— PoolKey.sol

L— Slot@.sol

TTTTTTTTTTT

7 OpenZeppelin Uniswap v4 Core Audit — Scope — 5


https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core/tree/d5d4957b35750e8cf1f3db5584e77eef4861c21e

On the other hand, the following files were checked only for their difference against the version
present in the Uniswap/v3-core repository at commit d8b1c63.

— libraries/

| — BitMath.sol

|  }— FullMath.sol

| |— Position.sol

| — sqrtPriceMath.sol
| |— SwapMath.sol

| }— TickBitmap.sol

| L— TickMath.sol

7 OpenZeppelin Uniswap v4 Core Audit — Scope — 6


https://github.com/Uniswap/v3-core
https://github.com/Uniswap/v3-core/tree/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/libraries

System Overview

Uniswap v4 is an automated market maker (AMM) which uses the concentrated liquidity model
by default but can be customized to use any other model. Such customizations are possible
because of the hooks that are executed before and after every user action. Other significant
changes compared to v3 include singleton architecture, flash accounting, dynamic liquidity
providers fee, donation to liquidity providers, and native token support. Finally, the new version
uses several techniques to reduce gas usage. The entry point to the Uniswap v4 core is the
singleton PoolManager contract which contains all the pools within itself. This contrasts with
the previous versions of the protocol which had the factory contract deploying individual pools
as separate contracts.

Hooks are functions of the Hooks contract which is specified at the pool initialization time.
These functions are called by the PoolManager before and after each swap, position
modification, donation, and pool initialization. The available hooks are beforeInitialize
and afterInitialize, which are called during pool initialization, beforeAddLiquidity,
afterAddliquidity, beforeRemoveliquidity and afterRemovel iquidity which
are called when changing liquidity positions, beforeDonate and afterDonate, which are
called when donating assets to LPs, and beforeSwap and afterSwap, which are called
when performing swaps. Some hooks, namely beforeSwap, afterSwap, and

afterModifylLiquidity, return parameters which might influence the PoolManager's
control flow. The lower bits of the hook address decide which hooks are enabled. Thus, to have
a particular set of hooks enabled, one must brute-force the address whose lower bits are the
desired bit sequence.

Flash accounting means that all operations within the protocol are performed on transient
storage and should be settled only at the end of the transaction. Settlement can be
accomplished by either ERC-20 token transfers or ERC-6909 accounting. The latter allows
users to keep their token inside Uniswap v4 for future use which is cheaper in terms of gas
compared to ERC-20 transfers. One consequence of the flash accounting mechanism is free
flash loans. Furthermore, since all the pools reside in the singleton contract, it is possible to
flash borrow the whole balance of a token at once.

The liquidity provider fee is now more customizable and can be of either static or dynamic type
which is specified at the pool initialization time. Both fees can take values from 0 to 100% with
a precision of 0.01%. The static fee is set once and cannot be changed whereas the dynamic

7 OpenZeppelin Uniswap v4 Core Audit — System Overview — 7


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L176
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L176
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L188
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L188
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L230
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L230
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L240
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L240
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L316
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L316
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L328
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L328
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L250
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L250
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L283
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L283
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L26-L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15

fee can be changed by the hook at any time, either for all transactions or per transaction. Note
that a hook might charge its own fees from users and liquidity providers on swaps and position
modifications which is done via a separate mechanism. The donate function can be used to
send tokens to the singleton contract and distribute those to the liquidity providers whose
liquidity is currently in use. Native tokens like ETH are supported, allowing users to avoid
wrapping and unwrapping tokens. Gas optimizations include the already mentioned use of
transient storage as well as more widespread techniques like extensive use of assembly,
custom packed types (both in-storage and in-memory), low-level memory management and
unchecked math.

Whether it is adding or removing liquidity, doing swaps, or donating, the user always needs to
call the unlock function first. This function will set an unlock variable to true and will call
back the msg.sender at a specified function. This callback is what is actually used by the
caller to call either modifyLiquidity, donate or swap. Since these operations might
produce changes in the amount of assets owed to the protocol or the user through the use of
balance deltas, once the callback is done, the unlock function will perform a check on those

deltas and will make sure that they have been zeroed out before finishing the transaction. In
this way, the protocol ensures that no debt or credit is left behind.

Because of all this, the take and settle functions are needed. The take function will
withdraw assets from the protocol so that any asset owed to the user is given to them.
Conversely, the settle function will ensure that the user transfers to the protocol all the
assets owed to it. If one does not want to take or settle, the ERC-6909 mint and burn
functions can be used instead with the same desired effect of balancing the deltas.

Finally, the sync function is used to update the current protocol balance of any particular
asset. This is necessary to be performed before transferring tokens to the protocol and calling
the settle function.

7 OpenZeppelin Uniswap v4 Core Audit — System Overview — 8


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L311
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L321
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L115
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L273
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L267

Security Model and Trust
Assumptions

The following observations were made regarding the security model and trust assumptions of
the audited codebase:

» The core contract does not have slippage protection and assumes that the periphery
contracts implement it. Hence, having slippage protection on the periphery contracts is
essential.

+ ERC-20 tokens with non-standard implementation including rebasing tokens, double
entry point tokens, and so forth or outright malicious tokens are not supported by the
protocol and will lead to vulnerabilities in the pools they are used in.

» Malicious hooks might steal tokens from users and liquidity providers in multiple ways. A
variety of user risks can be mitigated by implementing slippage protection on periphery
contracts, but liquidity provider risks are not mitigated in the same manner. Thus,
liquidity providers should examine hooks more closely and put more trust into them.
Even though hooks are set at initialization time, they might be upgradeable, and in this
case, be able to change their code at later point in time.

+ Since Uniswap v4 is permissionless anyone can create a pool with any token. It is up to
the periphery contracts, users and liquidity providers to examine and decide which pools
they want to use. The core contract, however, limits the impact of malicious tokens and
malicious hooks on the pool they are used in by ensuring that each function operates
only within the particular pool and separating the accounting of each pool in storage,
separating also the balance deltas produced by hooks and by users.

Privileged Roles

On the protocol level, there are two privileged roles which are trusted to not behave
maliciously: the protocol fee controller and the owner. The former can set the protocol fee on
any pool but the fee is capped at 0.1%. It also can collect accumulated protocol fees to an
arbitrary address. The latter can change the protocol fee controller.

On the individual pool level, the hook can change the liquidity provider fee but only if the pool
was initialized with the dynamic fee in the first place.

7 OpenZeppelin Uniswap v4 Core Audit — Security Model and Trust Assumptions — 9



Critical Severity

C-01 ERC-20 Representation of Native Currency
Can Be Used to Drain Native Currency Pools

The settle function, responsible for settling a user's debt, increases the account delta of the

specified currency. There are two settlement flows: one for the native currency and another for
all other currencies. If the currency is native, the amount used for increasing the delta is
msg.value. Otherwise, if the currency is a regular ERC-20 token, the amount is the balance
difference between the last time sync or settle were called and the current settle
invocation.

This implementation is vulnerable to attacks if the given token has two addresses. This is
particularly dangerous since the protocol supports native tokens and operates on chains where
the native token has a corresponding ERC-20 token. Examples of such chains include Celo
with CELO, Polygon with MATIC, and zkSync Era with ETH. There is a caveat concerning
MATIC on Polygon and ETH on zkSync Era: while it is possible to manipulate balance deltas,
we have not found a way to withdraw them from the pool since the former has the ERC-20
transfer function that fails if msg.value != value and the latter does not have the ERC-20
transfer function at all. However, there is a way to withdraw CELO on Celo from the pool.

To demonstrate the vulnerability, we will use the CELO token as an example. The attack
consists of two phases: manipulate the balance deltas and take the tokens out of the pool

using these deltas.

The attacker starts with 1000 CELO. To manipulate the balance deltas to their advantage, they
would perform the following steps within a single transaction.

1. Call manager.sync(0x471lece3750da237f93b8e339¢c536989b8978a438) , where
0x471ece3750da237f93b8e339c536989b8978a438 is the address of the CELO
token and manager is the PoolManager contract. This loads the current CELO
balance of manager to transient storage.

2. Call manager.settle{value: 1000} (address(0x0)) , which increases the
address (0x0) balance delta of the attacker by 1000 and transfers 1000 CELO to
manager .

7 OpenZeppelin Uniswap v4 Core Audit — Critical Severity — 10


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282-L293
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282-L293
https://celoscan.io/address/0x471ece3750da237f93b8e339c536989b8978a438
https://polygonscan.com/token/0x0000000000000000000000000000000000001010
https://era.zksync.network/token/0x000000000000000000000000000000000000800a
https://polygonscan.com/token/0x0000000000000000000000000000000000001010#code#L518
https://polygonscan.com/token/0x0000000000000000000000000000000000001010#code#L518

3. Call manager.settle(0x471EcE3750Da237f93B8E339¢c536989b8978a438) ,
which increases the 0x471EcE3750Da237f93B8E339¢c536989b8978a438 balance
delta of the attacker by 1000 without any need of transferring tokens since the balance
of the CELO token has increased in step 2.

At this point, the attacker has increased their balance deltas by 2000 for 1000 CELO tokens. To
take out the profit, they would perform the following steps within the same transaction.

1. Call manager.take(0x471EcE3750Da237f93B8E339¢c536989b8978a438,
address(0x1337), 1000), where address(0x1337) is the attacker's address.
This decreases the 0x471EcE3750Da237f93B8E339¢c536989b8978a438 balance
delta by 1000 and transfers 1000 CELO tokens to the attacker via the ERC-20
transfer function.

2. Call manager.take(address(0x0), address(0x1337), 1000), which
decreases the address (0x0) balance delta by 1000 and transfers 1000 CELO tokens
to the attacker via the value attached to the call. Even though there might be no pool
with the native currency, this step still works because the take function just performs a
call with a value attached. Since the CELO balance is there, the call succeeds.

The attacker has 2000 CELO and zero balance deltas, allowing them to finish the transaction
with a profit of 1000 CELO. By repeating the steps above, it is possible to completely drain the
native currency pool.

Note that, at first glance, a native token with an ERC-20 representation might look like a double
entry point ERC-20 token from the perspective of this issue. However, there is an important
difference: double entry point ERC-20 tokens, along with other non-standard ERC-20 tokens,
are not supported by Uniswap v4, as explicitly stated by the Uniswap team. Native tokens,
however, are supported since they are considered safe and are preferred due to gas savings.

Consider changing the way native currency pools work on chains where the native currency
has a corresponding ERC-20 token. For example, make the NATIVE variable immutable and
set it to the ERC-20 token address for chains where native currency has a corresponding
ERC-20 token.

Update: Resolved in pull request #779. The team re-worked how sync and settle work.

Whenever a sync is called, the very next settle call will settle the previously synced
currency, otherwise the transaction will revert. This makes this attack impossible now, because
one wouldn't be able to settle the native currency (point 2) before settling the corresponding
ERC-20 version (point 3).

7 OpenZeppelin Uniswap v4 Core Audit — Critical Severity — 11


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/pull/779

Unsafe Assembly Blocks

Throughout the codebase, some assembly blocks that are marked as safe do not follow the
Solidity memory model outlined in the Memory Safety section of the Solidity documentation.

This might lead to incorrect and undefined behavior.

*In Hooks.sol, on lines 138-139, the return data can be longer than 64 bytes, thus
potentially overriding the free memory pointer. This might happen if hooks return more
than 64 bytes. For example, the beforeSwap hook returns three values, which means

that it will require 32 * 3 = 96 bytes as ABIl-encoding allocates 32 bytes for each
value, which exceeds the scratch space.

«In TickBitmap.sol, on lines 55-60, the error signature and parameters take 96 bytes,
which is more than the scratch space.

«In CustomRevert.sol, on lines 45-63, the error signature and parameters take 96
bytes, which is more than the scratch space.

«In Currency.sol, on lines 52-53, the top 4 bytes of the free memory pointer are
overridden.

Consider removing the memory-safe annotations from assembly blocks that do not follow
the Solidity memory model. Alternatively, consider adjusting the assembly blocks to follow the
memory model.

Update: Resolved in pull request #759.

ProtocolFeeController Gas Griefing

The ProtocolFees contract implements the logic of retrieving a fee from the
protocolFeeController external contract. The callto protocolFeeController is
limited by the defined controllerGaslLimit value. In case the call fails (e.g., by consuming
all the gas), the returned value of the fee is 0. However, a malicious

protocolFeeController can execute a gas griefing attack by returning a large amount of
data that will be implicitly loaded into memory, thereby significantly increasing the gas cost or
even preventing the transaction from executing. Considering how important it is for the
Uniswap team to build unstoppable and permissionless code, this might represent a threat to
the protocol.

7 OpenZeppelin Uniswap v4 Core Audit — Medium Severity — 12


https://docs.soliditylang.org/en/v0.8.26/assembly.html#memory-safety
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L138-L139
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L108
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickBitmap.sol#L55-L60
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L45-L63
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L52-L53
https://github.com/Uniswap/v4-core/pull/759
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L72-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L76

Consider using assembly to execute the call and manually copy only 32 bytes from the return
data to memory.

Update: Resolved in pull request #771.

Front-Running Pool's Initialization or Initial
Deposit Can Lead to Draining Initial Liquidity

The pool's sqrtPriceX96 can be manipulated either by front-running the initialization of the
pool or by an initial deposit of liquidity. The initialize function allows initializing a pool whose
stored ID is obtained by conversion of the PoolKey struct that is passed as an argument in the
function call. Since the sqrtPriceX96 is never used for the ID calculation, anyone can front-
run the initialization function call and provide their own value for sqrtPricex96, which will
then be used for setting the tick.

Another way to manipulate the sqrtPriceX96 is by front-running the initial deposit of a
recently initialized pool. The swap function does not check for liquidity before a swap occurs
and, if this happens, the sqrtPricex96 value stored will change. Consequently, a malicious
actor can move the sqrtPriceX96 of the pool to any value if the current position has zero
liquidity. As a result, to take advantage of the LP's liquidity, an attacker could manipulate the
sqrtPriceX96 right after the pool initialization and before any deposit is done, establishing a
different price in the pool that does not reflect the market price, thereby opening it up to
arbitrage opportunities.

The aforementioned two cases lead to an exploitation scenario that allows draining the initial
liquidity if it is performed on a separate transaction from the one that initializes the pool. In the
case of front-running the initial liquidity deposit, consider the following scenario:

1. The LP creates a new pool and sets sqrtPricex96 to
79228162514264337593543950336 (1 tokenA per 1 tokenB).

2. The LP calls modifyLiquidity to add liquidity to the pool for the price range 0.5
<=> 3.

3. The attacker calls the swap function to move the sqrtPricex96 to a random high
value before the LP's modifylLiquidity transaction is executed.

4. The LP's modifyLiquidity transaction is then executed and liquidity is added.

5. Now, the attacker can swap 1 tokenA for 3 tokenB using the LP's liquidity.

In the case of front-running the pool's initialization, one could front-run step 1 of the above
scenario so that the LP creation fails (because it will be already initialized by the front-runner)
and then skip step 3. This will lead to the same result.

7 OpenZeppelin Uniswap v4 Core Audit — Medium Severity — 13


https://github.com/Uniswap/v4-core/pull/771
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L120-L146
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/PoolId.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/PoolKey.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L139
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L106-L109
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L187
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L431

Consider documenting this issue, specifically, the fact that the initialization of a pool can be
front-run. In addition, consider whether it should be allowed for a swap to occur with no
liquidity at all in the pool or whether it makes sense to provide initialization with initial liquidity
within the same transaction. Under the assumption that the PoolManager contract will be
used through periphery contracts, this issue is not easy to exploit. However, such an
assumption might not hold in some circumstances, making the issue more severe.

Update: Acknowledged, not resolved. The team stated:

This attack vector is prevented by peripheral contracts adding slippage protection when

users add liquidity to a pool.

Low Severity

L-01 Unsafe ABI Encoding

It is not uncommon to use abi.encodeWithSignature or abi.encodeWithSelector to
generate calldata for a low-level call. However, the first option is not typo-safe and the second
option is not type-safe. As such, both of these methods are error-prone and ought to be
considered unsafe.

Within Hooks.sol, there are multiple uses of unsafe ABI encodings:

« The use of abi.encodeWithSelector within beforeInitialize function

« The use of abi.encodeWithSelector within afterInitialize function

» The use of abi.encodeWithSelector within beforeModifyLiquidity function
« The use of abi.encodeWithSelector within beforeModifyLiquidity function
« The use of abi.encodeWithSelector within beforeDonate function

* The use of abi.encodeWithSelector within afterDonate function

Consider replacing all the occurrences of unsafe ABI encodings with abi.encodeCall which
checks whether the supplied values actually match the types expected by the called function

and also avoids errors caused by typos.

Update: Resolved in pull request #770.

7 OpenZeppelin Uniswap v4 Core Audit — Low Severity — 14


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L182
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L182
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L194
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L194
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L322
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L322
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L334
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L334
https://github.com/Uniswap/v4-core/pull/770

L-02 Missing Error Messages in require
Statements

Throughout the codebase, there are require statements that lack error messages:

* The require statementin line 14 of BitMath.sol

+ The require statementin line 56 of BitMath.sol

+ The require statementin line 30 of FullMath.sol
* The require statementin line 113 of FullMath.sol

To improve overall code clarity and facilitate troubleshooting, consider including specific,
informative error messages in require statements. Alternatively, consider using custom
errors to maintain consistency throughout the codebase.

Update: Acknowledged, not resolved.

L-03 Unsafe Casting

CurrencylLibrary creates currency by using the fromId function which creates a currency

address from a uint256 value. This might lead to unsafe casting within the mint or burn
functions. While this feature might be interesting as it allows traders to create some form of
namespaces for the tokens, it could lead to issues during third-party integrations. The
corresponding tolId function converts the currency into an ID by casting the currency
address into a uint256. This means that while the functions fromId and toId are

expected to be inverse functions, they are not, since the upper 12 bytes are lost during the
conversion to currency in the fromId function.

Consider masking the upper bits in the mint and burn functions to ensure the uint256 ID
value fits into uint160 . Alternatively, consider thoroughly documenting this behavior.

Update: Resolved in pull request #776. The team decided to add a bit masking to the fromId
function so that upper 12 bytes are always shaved off from the id.

7 OpenZeppelin Uniswap v4 Core Audit — Low Severity — 15


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L56
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L56
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L113
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L113
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L96-L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L96-L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L302
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L302
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L305-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L305-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L92-L94
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L92-L94
https://github.com/Uniswap/v4-core/pull/776

Notes & Additional
Information

N-01Inconsistent Use of Multiple Solidity
Versions

The protocol is inconsistently using multiple Solidity versions. As such, the following issues

have been identified:

* There are multiple contracts with floating pragmas such as in ERC6909.sol.

* There are pragma statements that use an outdated version of Solidity such as in
Extsload.sol and IExtsload.sol.

« There are contracts such as CustomRevert.sol or ERC6909 that use a pragma
statement that spans several minor Solidity versions. This can lead to unpredictable
behavior due to differences in features, bug fixes, deprecations, and compatibility

between minor versions.

Consider pinning the Solidity version more specifically throughout the codebase to ensure
predictable behavior and maintain compatibility across various compilers. It is recommended
to take advantage of the latest Solidity version to improve the overall readability and security of
the codebase. Regardless of which version of Solidity is used, consistently pin the version
throughout the codebase to prevent bugs caused by incompatible future releases.

Update: Resolved in pull request #784. The team addressed standardization. The code has
been changed to reflect version ~0.8.0 for any imported contract, library or interface in order
to allow integrators flexibility. Contracts that rely on transient storage are marked with version
~0.8.24 while PoolManager, which will be the main contract, has been set to a specific
0.8.26 version.

N-02 Lack of memory-safe Annotation in
Assembly Blocks

In the codebase, there is extensive use of the memory-safe annotation for assembly blocks.
However, the BalanceDelta and BeforeSwapDelta types are missing this annotation.

Consider being consistent with the use of the memory-safe annotation.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 16


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/ethereum/solidity/releases
https://github.com/Uniswap/v4-core/pull/784
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L23-L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L23-L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L26-L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L26-L28

Update: Resolved in pull request #778.

N-03 Discrepancy Between Implementation and
Specification of ERC-6909

There is a discrepancy between the implementation of the ERC-6909 transferFrom
function and its specification. In particular, the specification states that it MUST revert when
the caller is not an operator for the sender and the caller's allowance for the token id for
the sender is insufficient. This implies that if sender is msg.sender and they did not set
themselves as an operator then transferFrom should revert. However, this is not the case

as transferFrom skips operator and allowance checks in such a case.

Consider adjusting the implementation to follow the specification. Alternatively, consider
adjusting the specification if this is a desirable property.

Update: The team reached out to the EIP-6909 creators and a fix was pushed to the
specitifcation.

N-04 Code Clarity

In the Pool contract, there are several places which might benefit from slight refactoring.

« lexactInput can be turned into just exactInput ifthe true and false branches
are swapped.

« !zeroFor0One can be turned into just zeroForOne if the true and false branches
are swapped.

« state.amountCalculated can use compound operators to shorten the expressions.

Consider refactoring the above to improve code readability.

Update: Partially resolved in pull request #777. Only the third item has been addressed.

N-05 Missing Function Parameters Names

Multiple functions declared in the IProtocolFees interface are missing parameter names.
This makes the code less clear and more difficult to understand.

Consider naming all function parameters.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 17


https://github.com/Uniswap/v4-core/pull/778
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L46
https://github.com/ethereum/ERCs/commit/67bc8cc5b8fb1fcd6afcac729d8fc8f006e61326
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L366-L377
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L366-L377
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L436-L441
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L436-L441
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L370
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L370
https://github.com/Uniswap/v4-core/pull/777
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35

Update: Resolved in pull request #772.

N-06 Discrepancies Between Interfaces And
Implementation Contracts

Throughout the codebase, multiple discrepancies have been identified between interfaces and
implementation contracts.

« Within the IExtsload interface, the first parameter of the extsload function is called
slot whereas in the implementation contract, startSlot is used.

« Within the IERC6909C1laims interface, the first parameter of the setOperator
function is called spender whereas in the implementation contract, operator is

used.
« Within the IPoolManager interface, the parameter of the settle function is called
token whereas in the implementation contract, currency is used.

Consider using the same parameter names across interfaces and implementation contracts.

Update: Resolved in pull request #762.

N-07 Unused Named Return Variables

Named return variables are a way to declare variables that are meant to be used within a
function's body for the purpose of being returned as that function's output. They are an
alternative to explicit in-line return statements.

Throughout the codebase, there are unused named return variables:

« The delta return variable in the callHookWithReturnDelta function in
Hooks.sol

* The sqrtQX96 return variable in the getNextSqrtPriceFromInput function in
SqrtPriceMath.sol

+ The sqrtQX96 return variable in the getNextSqrtPriceFromOutput function in
SgrtPriceMath.sol

« The amount@ return variable in the getAmountODelta function in
SqrtPriceMath.sol

« The amount@ return variable in the secondary getAmount@Delta function in
SqrtPriceMath.sol

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 18


https://github.com/Uniswap/v4-core/pull/772
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/pull/762
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L127
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L127
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L153
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L153
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L180
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L180
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L255
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L255

« The amount] return variable in the getAmountlDelta function in
SqrtPriceMath.sol

* The slot return variable inthe getPositionInfoSlot function in
StatelLibrary.sol

Consider either using or removing any unused named return variables.

Update: Resolved in pull request #758.

N-08 Unused Imports

Throughout the codebase, there are imports that are unused and could be removed:

« The import import {BalanceDelta} from "./BalanceDelta.sol"; imports
unused alias BalanceDelta in BeforeSwapDelta.sol.

* The import import {Pool} from "../librari Pool.sol"; imports unused
alias Pool in IPoolManager.sol.

* The import import {Position} from "../libraries/Position.sol";
imports unused alias Position in IPoolManager.sol.

* The import import {PoolK from ", ./t PoolKey.sol"; imports

unused alias PoolKey in LPFeelLibrary.sol.
* The import import {IHooks} from "../interfaces/IHooks.sol"; imports
unused alias THooks in Lock.sol.
* The import import {IHooks} from "../interfaces/IHooks.sol"; imports
unused alias IHooks in NonZeroDeltaCount.sol.
« The import import {BalanceDelt BalanceDeltalibrar
toBalanceDelta} from "./types/BalanceDelta.sol"; imports unused alias
toBalanceDelta in PoolManager.sol.

* The import import rren from "../t rrency.sol"; imports
unused alias Currency in StatelLibrary.sol.

* The import import {PoolId} from "../types/Poolld.sol"; imports unused
alias PoolId in TransientStatelLibrary.sol.

* The import import {Position} from "./Position.sol"; imports unused alias
Position in TransientStatelLibrary.sol.

Consider removing unused imports to improve the overall clarity and readability of the
codebase.

Update: Resolved in pull request #763.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 19


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L272
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L272
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L341
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L341
https://github.com/Uniswap/v4-core/pull/758
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L12
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L12
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L7
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L7
https://github.com/Uniswap/v4-core/pull/763

N-09 Unused Error

The TickNotInitialized errorin Pool.sol is defined but never used.

To improve the overall clarity and readability of the codebase, consider either using or

removing any currently unused error.

Update: Resolved in pull request #764.

N-10 Magic Numbers

Throughout the codebase, there are a few instances where literal values are used directly for

arithmetic operations:

* The 255738958999603826347141 literal numberin TickMath.sol
6140100660247210 literal number in

TickMath.sol
* The 291339464771989622907027621153398088495 literal number in

TickMath.sol

In order to improve code readability, consider using a constant to define such values and

document its purpose.

Update: Acknowledged, not resolved.

N-11 State Variable Visibility Not Explicitly
Declared

Throughout the codebase, there are state variables that lack an explicitly declared visibility:

« The IS UNLOCKED SLOT state variable in Lock.sol
+ The NONZERO DELTA COUNT SLOT state variable in NonZeroDeltaCount.sol
+ The RESERVES OF SLOT state variable in Reserves.sol

For clarity, consider always explicitly declaring the visibility of variables, even when the default
visibility matches the intended visibility.

Update: Resolved in pull request #766.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 20


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L47
https://github.com/Uniswap/v4-core/pull/764
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L264
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L264
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L266
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L266
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L11
https://github.com/Uniswap/v4-core/pull/766/

N-12 Missing Named Parameters in Mappings

Since Solidity 0.8.18, developers can utilize named parameters in mappings. This means
mappings can take the form of mapping(KeyType KeyName? => ValueType
ValueName?) . This updated syntax provides a more transparent representation of a
mapping's purpose.

Within ERC6909.sol, there are multiple mappings without named parameters:

« The isOperator state variable

* The balanceOf state variable
*« The allowance state variable

Consider adding named parameters to mappings in order to improve the readability and
maintainability of the codebase.

Update: Resolved in pull request #767.

N-13 Lack of Indexed Event Parameter

Within IProtocolFees.sol, the Prot 1F ntroller t event does not
have an indexed parameter.

To improve the ability of off-chain services to search and filter for specific events, consider
indexing event parameters.

Update: Resolved in pull request #768.

N-14 Missing Docstrings
Throughout the codebase, there are multiple code instances that do not have docstrings:

+ The OperatorSet, Approval and Transfer events, the isOperator,
balanceOf and allowance state variables, and the transfer, transferFrom,

approve, setOperator and supportsInterface functionsin ERC6909.sol
* The IERC6909C1laims interface in IERC6909Claims.sol
« The IExtsload interface and the IExttload interface in IExtsload.sol
« The IPoolManager interface in IPoolManager.sol
* The IProtocolFeeController interface in IProtocolFeeController.sol

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 21


https://github.com/ethereum/solidity/releases/tag/v0.8.18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/pull/767
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://solidity.readthedocs.io/en/latest/contracts.html#events
https://github.com/Uniswap/v4-core/pull/768
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L35-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L35-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L45-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L45-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L60-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L60-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L80-L83
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L80-L83
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L4-L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L4-L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L4-L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L4-L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExttload.sol#L4-L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExttload.sol#L4-L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L16-L169
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L16-L169
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L6-L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L6-L11

« The IProtocolFees interface, the ProtocolFeeControllerUpdated,
ProtocolFeeUpdated, and the protocolFeeController functionsin

IProtocolFees.sol

+ The IUnlockCallback interface in IUnlockCallback.sol

* The LPFeelibrary library and the DYNAMIC FEE FLAG, OVERRIDE FEE FLAG,
REMOVE OVERRIDE MASK, and MAX LP FEE state variablesin LPFeeLibrary.sol

* The Pool library in Pool.sol

* The ProtocolFeelibrary library and the MAX PROTOCOL FEE state variable in
ProtocolFeelLibrary.sol

- The ProtocolFees abstract contract and the protocolFeesAccrued and
protocolFeeController state variables in ProtocolFees.sol

+ The Reserves library in Reserves.sol

+ The SlotOLibrary libraryin Slot0.sol

- The Statelibrary library and the POOLS SLOT, FEE_GROWTH GLOBAL® OFFSET,
TICK BITMAP_OFFSET and POSITIONS OFFSET state variables in
StatelLibrary.sol

« The TransientStatelibrary library and the NONZERQO DELTA COUNT SLOT and
IS UNLOCKED SLOT state variables in TransientStatelLibrary.sol

+ The BalanceDeltalibrary library and the ZERO DELTA state variable in
BalanceDelta.sol

+ The BeforeSwapDeltalibrary library and the ZERO DELTA state variable in
BeforeSwapDelta.sol

« The NATIVE state variable in Currency.sol

Consider thoroughly documenting all functions (and their parameters) that are part of any
contract's public API. Functions implementing sensitive functionality, even if not public, should
be clearly documented as well. When writing docstrings, consider following the Ethereum
Natural Specification Format (NatSpec).

Update: Partially resolved in pull request #773. Only the first item of the list has not been

addressed.

N-15 Incomplete Docstrings

Throughout the codebase, there are several instances of incomplete docstrings:

« The return value is not documented for the transfer, transferFrom, approve,
setOperator functionsin IERC6909Claims.sol.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 22


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L34
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L34
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/callback/IUnlockCallback.sol#L4-L9
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/callback/IUnlockCallback.sol#L4-L9
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L19-L611
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L19-L611
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L4-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L4-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L14-L95
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L14-L95
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L7-L42
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L7-L42
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Slot0.sol#L31-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Slot0.sol#L31-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L9-L351
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L9-L351
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L31
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L31
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L9-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L9-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L14-L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L14-L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L56-L70
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L56-L70
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L57
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L57
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L20-L38
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L20-L38
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L21
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L21
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/Uniswap/v4-core/pull/773
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L41
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L41
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46

+ The delta parameter is not documented for the afterAddLiquidity and
afterRemoveliquidity functionsin IHooks.sol.

* The return value is not documented for the MAX_TICK SPACING and
MIN TICK SPACING functionsin IPoolManager.sol.

* The currency parameter and the return value are not documented for the sync

function in IPoolManager.sol.

+ The key, sqrtPricexX96, and hookData parameters and the return value are not
documented for the initialize functionin IPoolManager.sol.

* The key, amount@, amountl, and hookData parameters and the return value are
not documented for the donate functionin IPoolManager.sol.

«The currency, to,and amount parameters are not documented for the take
function in IPoolManager.sol.

«The to, id, and amount parameters are not documented for the mint function in
IPoolManager.sol.

«The from, id, and amount parameters are not documented for the burn function in
IPoolManager.sol.

« The token parameter and the return value are not documented for the settle
function in IPoolManager.sol.

+ The key and newDynamicLPFee parameters are not documented for the

updateDynamiclPFee functionin IPoolManager.sol.

* The return value is not documented for the protocolFeeForPool functionin
IProtocolFeeController.sol.

* The parameter and the return value are not documented for the
protocolFeesAccrued functionin IProtocolFees.sol.

+ The key and the second parameter are not documented for the setProtocolFee
function in IProtocolFees.sol.

* The parameter for the setProtocolFeeController functionin

IProtocolFees.sol is not documented.

* The parameters and the return value are not documented for the
collectProtocolFees functionin IProtocolFees.sol.

+ The fee parameter is not documented for the isValidHookAddress functionin
Hooks.sol.

* The return values for all functions in LPFeelibrary.sol are not documented.

Consider thoroughly documenting all functions/events (and their parameters or return values)
that are part of a contract's public APl. When writing docstrings, consider following the
Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #775.

7 OpenZeppelin Uniswap v4 Core Audit — Notes & Additional Information — 23


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L59-L65
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L59-L65
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L87-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L87-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L90
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L90
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L101-L103
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L101-L103
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L150-L152
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L150-L152
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L156
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L156
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L162
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L162
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L168
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L168
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L23
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L23
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L26
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L26
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L32
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L32
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/Uniswap/v4-core/pull/775

N-16 Lack of Security Contact

Providing a specific security contact (such as an email or ENS name) within a smart contract
significantly simplifies the process for individuals to communicate if they identify a vulnerability
in the code. This practice is quite beneficial as it permits the code owners to dictate the
communication channel for vulnerability disclosure, eliminating the risk of miscommunication
or failure to report due to a lack of knowledge on how to do so. In addition, if the contract
incorporates third-party libraries and a bug surfaces in those, it becomes easier for their
maintainers to contact the appropriate person about the problem and provide mitigation
instructions.

Throughout the codebase, all contracts do not have a security contact specified.

Consider adding a NatSpec comment containing a security contact above each contract
definition. Using the @custom:security-contact convention is recommended as it has
been adopted by the OpenZeppelin Wizard and the ethereum-lists.

Update: Resolved in pull request #774. The team decided to create a SECURITY.md
markdown file in the root of the project repository with the necessary security contacts.

Client Reported

CR-01 License Limitation Can Be Skipped

The purpose of the noDelegateCall modifier in the unlock function is to prevent proxy
contracts from making delegate calls to the Uniswap v4 core contracts. This restriction is
mainly due to license limitations. However, during the audit, the team was notified that this
limitation can be bypassed by creating a custom contract that implements the same unlock
function and writes to the same slot for the lock value, thereby allowing delegate calls to all
other external functions, effectively circumventing the restriction.

The Uniswap team might consider adding the noDelegateCall modifier to all external
functions, rather than only using it in the unlock function.

Update: Resolved in pull request #743. The team added the noDelegateCall modifier to all

relevant external functions.

7 OpenZeppelin Uniswap v4 Core Audit — Client Reported — 24


https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://wizard.openzeppelin.com/
https://github.com/ethereum-lists/contracts#tracking-new-deployments
https://github.com/Uniswap/v4-core/pull/774
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/NoDelegateCall.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/pull/743

Conclusion

Uniswap v4 is an AMM that uses the concentrated liquidity model by default and can
customize the model along with other parts of the protocol through the use of hooks. It also
introduces singleton architecture, flash accounting, dynamic liquidity providers fee, donation to
liquidity providers, and native token support.

One critical- and several medium-severity vulnerabilities were discovered along with some
other issues of lower severity. In addition, suggestions were also made to improve the
readability and clarity of the codebase in order to facilitate future audits and development. The
codebase was found to be robust and generally well-documented. However, extensive use of
assembly and other optimization techniques has significantly increased code complexity,
thereby leaving room for undiscovered issues.

The Uniswap team was exceptionally responsive and provided us with extensive

documentation about the project.

7 OpenZeppelin Uniswap v4 Core Audit — Conclusion — 25



	Uniswap v4 Core Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Security Model and Trust Assumptions
	Privileged Roles

	Critical Severity
	ERC-20 Representation of Native Currency Can Be Used to Drain Native Currency Pools

	Medium Severity
	Unsafe Assembly Blocks
	ProtocolFeeController Gas Griefing
	Front-Running Pool's Initialization or Initial Deposit Can Lead to Draining Initial Liquidity

	Low Severity
	Unsafe ABI Encoding
	Missing Error Messages in require Statements
	Unsafe Casting

	Notes & Additional Information
	Inconsistent Use of Multiple Solidity Versions
	Lack of memory-safe Annotation in Assembly Blocks
	Discrepancy Between Implementation and Specification of ERC-6909
	Code Clarity
	Missing Function Parameters Names
	Discrepancies Between Interfaces And Implementation Contracts
	Unused Named Return Variables
	Unused Imports
	Unused Error
	Magic Numbers
	State Variable Visibility Not Explicitly Declared
	Missing Named Parameters in Mappings
	Lack of Indexed Event Parameter
	Missing Docstrings
	Incomplete Docstrings
	Lack of Security Contact

	Client Reported
	License Limitation Can Be Skipped

	Conclusion


