
Uniswap v4 Core
Audit

| security

July 17, 2024

Table of Contents
Table of Contents __    2

Summary ___    4

Scope __    5

System Overview __    7

Security Model and Trust Assumptions ___    9
Privileged Roles 9

Critical Severity __    10
C-01 ERC-20 Representation of Native Currency Can Be Used to Drain Native Currency Pools 10

Medium Severity ___    12
M-01 Unsafe Assembly Blocks 12

M-02 ProtocolFeeController Gas Griefing 12

M-03 Front-Running Pool's Initialization or Initial Deposit Can Lead to Draining Initial Liquidity 13

Low Severity __    14
L-01 Unsafe ABI Encoding 14

L-02 Missing Error Messages in require Statements 15

L-03 Unsafe Casting 15

Notes & Additional Information __    16
N-01 Inconsistent Use of Multiple Solidity Versions 16

N-02 Lack of memory-safe Annotation in Assembly Blocks 16

N-03 Discrepancy Between Implementation and Specification of ERC-6909 17

N-04 Code Clarity 17

N-05 Missing Function Parameters Names 17

N-06 Discrepancies Between Interfaces And Implementation Contracts 18

N-07 Unused Named Return Variables 18

N-08 Unused Imports 19

N-09 Unused Error 20

N-10 Magic Numbers 20

N-11 State Variable Visibility Not Explicitly Declared 20

N-12 Missing Named Parameters in Mappings 21

N-13 Lack of Indexed Event Parameter 21

N-14 Missing Docstrings 21

N-15 Incomplete Docstrings 22

N-16 Lack of Security Contact 24

Uniswap v4 Core Audit − Table of Contents − 2

Client Reported __    24
CR-01 License Limitation Can Be Skipped 24

Conclusion __    25

Uniswap v4 Core Audit − Table of Contents − 3

Type DeFi

Timeline From 2024-05-27
To 2024-06-21

Languages Solidity, Yul

Total Issues 24 (18 resolved, 2 partially resolved)

Critical Severity
Issues

1 (1 resolved)

High Severity
Issues

0 (0 resolved)

Medium Severity
Issues

3 (2 resolved)

Low Severity Issues 3 (2 resolved)

Notes & Additional
Information

16 (12 resolved, 2 partially resolved)

Client Reported
Issues

1 (1 resolved)

Summary

Uniswap v4 Core Audit − Summary − 4

Scope
We audited the Uniswap/v4-core repository at commit d5d4957.

The following files were new and therefore were fully audited:

src
│ ERC6909.sol
│ ERC6909Claims.sol
│ Extsload.sol
│ Exttload.sol
│ NoDelegateCall.sol
│ PoolManager.sol
│ ProtocolFees.sol
├── interfaces/
│ ├── IHooks.sol
│ ├── IExtsload.sol
│ ├── IExttload.sol
│ ├── IPoolManager.sol
│ ├── IProtocolFeeController.sol
│ ├── IProtocolFees.sol
│ ├── external/IERC20Minimal.sol
│ ├── external/IERC6909Claims.sol
│ └── callback/IUnlockCallback.sol
├── libraries/
│ ├── CurrencyDelta.sol
│ ├── CustomRevert.sol
│ ├── FixedPoint128.sol
│ ├── FixedPoint96.sol
│ ├── Hooks.sol
│ ├── LPFeeLibrary.sol
│ ├── LiquidityMath.sol
│ ├── Lock.sol
│ ├── NonZeroDeltaCount.sol
│ ├── ParseBytes.sol
│ ├── Pool.sol
│ ├── ProtocolFeeLibrary.sol
│ ├── Reserves.sol
│ ├── SafeCast.sol
│ ├── StateLibrary.sol
│ ├── TransientStateLibrary.sol
│ └── UnsafeMath.sol
├── types/
│ ├── BalanceDelta.sol
│ ├── BeforeSwapDelta.sol
│ ├── Currency.sol
│ ├── PoolId.sol
│ ├── PoolKey.sol
│ └── Slot0.sol

Uniswap v4 Core Audit − Scope − 5

https://github.com/Uniswap/v4-core
https://github.com/Uniswap/v4-core/tree/d5d4957b35750e8cf1f3db5584e77eef4861c21e

On the other hand, the following files were checked only for their difference against the version

present in the Uniswap/v3-core repository at commit d8b1c63.

├── libraries/
│ ├── BitMath.sol
│ ├── FullMath.sol
│ ├── Position.sol
│ ├── SqrtPriceMath.sol
│ ├── SwapMath.sol
│ ├── TickBitmap.sol
│ └── TickMath.sol

Uniswap v4 Core Audit − Scope − 6

https://github.com/Uniswap/v3-core
https://github.com/Uniswap/v3-core/tree/d8b1c635c275d2a9450bd6a78f3fa2484fef73eb/contracts/libraries

System Overview
Uniswap v4 is an automated market maker (AMM) which uses the concentrated liquidity model

by default but can be customized to use any other model. Such customizations are possible

because of the hooks that are executed before and after every user action. Other significant

changes compared to v3 include singleton architecture, flash accounting, dynamic liquidity

providers fee, donation to liquidity providers, and native token support. Finally, the new version

uses several techniques to reduce gas usage. The entry point to the Uniswap v4 core is the

singleton PoolManager contract which contains all the pools within itself. This contrasts with

the previous versions of the protocol which had the factory contract deploying individual pools

as separate contracts.

Hooks are functions of the Hooks contract which is specified at the pool initialization time.

These functions are called by the PoolManager before and after each swap, position

modification, donation, and pool initialization. The available hooks are beforeInitialize

and afterInitialize , which are called during pool initialization, beforeAddLiquidity ,

afterAddLiquidity , beforeRemoveLiquidity and afterRemoveLiquidity which

are called when changing liquidity positions, beforeDonate and afterDonate , which are

called when donating assets to LPs, and beforeSwap and afterSwap , which are called

when performing swaps. Some hooks, namely beforeSwap , afterSwap , and

afterModifyLiquidity , return parameters which might influence the PoolManager 's

control flow. The lower bits of the hook address decide which hooks are enabled. Thus, to have

a particular set of hooks enabled, one must brute-force the address whose lower bits are the

desired bit sequence.

Flash accounting means that all operations within the protocol are performed on transient

storage and should be settled only at the end of the transaction. Settlement can be

accomplished by either ERC-20 token transfers or ERC-6909 accounting. The latter allows

users to keep their token inside Uniswap v4 for future use which is cheaper in terms of gas

compared to ERC-20 transfers. One consequence of the flash accounting mechanism is free

flash loans. Furthermore, since all the pools reside in the singleton contract, it is possible to

flash borrow the whole balance of a token at once.

The liquidity provider fee is now more customizable and can be of either static or dynamic type

which is specified at the pool initialization time. Both fees can take values from 0 to 100% with

a precision of 0.01%. The static fee is set once and cannot be changed whereas the dynamic

Uniswap v4 Core Audit − System Overview − 7

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L176
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L176
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L188
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L188
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L230
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L230
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L240
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L240
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L316
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L316
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L328
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L328
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L250
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L250
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L283
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L283
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L26-L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15

fee can be changed by the hook at any time, either for all transactions or per transaction. Note

that a hook might charge its own fees from users and liquidity providers on swaps and position

modifications which is done via a separate mechanism. The donate function can be used to

send tokens to the singleton contract and distribute those to the liquidity providers whose

liquidity is currently in use. Native tokens like ETH are supported, allowing users to avoid

wrapping and unwrapping tokens. Gas optimizations include the already mentioned use of

transient storage as well as more widespread techniques like extensive use of assembly,

custom packed types (both in-storage and in-memory), low-level memory management and

unchecked math.

Whether it is adding or removing liquidity, doing swaps, or donating, the user always needs to

call the unlock function first. This function will set an unlock variable to true and will call

back the msg.sender at a specified function. This callback is what is actually used by the

caller to call either modifyLiquidity , donate or swap . Since these operations might

produce changes in the amount of assets owed to the protocol or the user through the use of

balance deltas, once the callback is done, the unlock function will perform a check on those

deltas and will make sure that they have been zeroed out before finishing the transaction. In

this way, the protocol ensures that no debt or credit is left behind.

Because of all this, the take and settle functions are needed. The take function will

withdraw assets from the protocol so that any asset owed to the user is given to them.

Conversely, the settle function will ensure that the user transfers to the protocol all the

assets owed to it. If one does not want to take or settle , the ERC-6909 mint and burn

functions can be used instead with the same desired effect of balancing the deltas.

Finally, the sync function is used to update the current protocol balance of any particular

asset. This is necessary to be performed before transferring tokens to the protocol and calling

the settle function.

Uniswap v4 Core Audit − System Overview − 8

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L311
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L321
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L115
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L273
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L267

Security Model and Trust
Assumptions
The following observations were made regarding the security model and trust assumptions of

the audited codebase:

The core contract does not have slippage protection and assumes that the periphery

contracts implement it. Hence, having slippage protection on the periphery contracts is

essential.

ERC-20 tokens with non-standard implementation including rebasing tokens, double

entry point tokens, and so forth or outright malicious tokens are not supported by the

protocol and will lead to vulnerabilities in the pools they are used in.

Malicious hooks might steal tokens from users and liquidity providers in multiple ways. A

variety of user risks can be mitigated by implementing slippage protection on periphery

contracts, but liquidity provider risks are not mitigated in the same manner. Thus,

liquidity providers should examine hooks more closely and put more trust into them.

Even though hooks are set at initialization time, they might be upgradeable, and in this

case, be able to change their code at later point in time.

Since Uniswap v4 is permissionless anyone can create a pool with any token. It is up to

the periphery contracts, users and liquidity providers to examine and decide which pools

they want to use. The core contract, however, limits the impact of malicious tokens and

malicious hooks on the pool they are used in by ensuring that each function operates

only within the particular pool and separating the accounting of each pool in storage,

separating also the balance deltas produced by hooks and by users.

Privileged Roles
On the protocol level, there are two privileged roles which are trusted to not behave

maliciously: the protocol fee controller and the owner. The former can set the protocol fee on

any pool but the fee is capped at 0.1%. It also can collect accumulated protocol fees to an

arbitrary address. The latter can change the protocol fee controller.

On the individual pool level, the hook can change the liquidity provider fee but only if the pool

was initialized with the dynamic fee in the first place.

•

•

•

•

Uniswap v4 Core Audit − Security Model and Trust Assumptions − 9

Critical Severity

C-01 ERC-20 Representation of Native Currency
Can Be Used to Drain Native Currency Pools
The settle function, responsible for settling a user's debt, increases the account delta of the

specified currency. There are two settlement flows: one for the native currency and another for

all other currencies. If the currency is native, the amount used for increasing the delta is

msg.value . Otherwise, if the currency is a regular ERC-20 token, the amount is the balance

difference between the last time sync or settle were called and the current settle

invocation.

This implementation is vulnerable to attacks if the given token has two addresses. This is

particularly dangerous since the protocol supports native tokens and operates on chains where

the native token has a corresponding ERC-20 token. Examples of such chains include Celo

with CELO, Polygon with MATIC, and zkSync Era with ETH. There is a caveat concerning

MATIC on Polygon and ETH on zkSync Era: while it is possible to manipulate balance deltas,

we have not found a way to withdraw them from the pool since the former has the ERC-20

transfer function that fails if msg.value != value and the latter does not have the ERC-20

transfer function at all. However, there is a way to withdraw CELO on Celo from the pool.

To demonstrate the vulnerability, we will use the CELO token as an example. The attack

consists of two phases: manipulate the balance deltas and take the tokens out of the pool

using these deltas.

The attacker starts with 1000 CELO. To manipulate the balance deltas to their advantage, they

would perform the following steps within a single transaction.

Call manager.sync(0x471ece3750da237f93b8e339c536989b8978a438) , where

0x471ece3750da237f93b8e339c536989b8978a438 is the address of the CELO

token and manager is the PoolManager contract. This loads the current CELO

balance of manager to transient storage.

Call manager.settle{value: 1000}(address(0x0)) , which increases the

address(0x0) balance delta of the attacker by 1000 and transfers 1000 CELO to

manager .

1.

2.

Uniswap v4 Core Audit − Critical Severity − 10

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282-L293
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282-L293
https://celoscan.io/address/0x471ece3750da237f93b8e339c536989b8978a438
https://polygonscan.com/token/0x0000000000000000000000000000000000001010
https://era.zksync.network/token/0x000000000000000000000000000000000000800a
https://polygonscan.com/token/0x0000000000000000000000000000000000001010#code#L518
https://polygonscan.com/token/0x0000000000000000000000000000000000001010#code#L518

Call manager.settle(0x471EcE3750Da237f93B8E339c536989b8978a438) ,

which increases the 0x471EcE3750Da237f93B8E339c536989b8978a438 balance

delta of the attacker by 1000 without any need of transferring tokens since the balance

of the CELO token has increased in step 2.

At this point, the attacker has increased their balance deltas by 2000 for 1000 CELO tokens. To

take out the profit, they would perform the following steps within the same transaction.

Call manager.take(0x471EcE3750Da237f93B8E339c536989b8978a438,

address(0x1337), 1000) , where address(0x1337) is the attacker's address.

This decreases the 0x471EcE3750Da237f93B8E339c536989b8978a438 balance

delta by 1000 and transfers 1000 CELO tokens to the attacker via the ERC-20

transfer function.

Call manager.take(address(0x0), address(0x1337), 1000) , which

decreases the address(0x0) balance delta by 1000 and transfers 1000 CELO tokens

to the attacker via the value attached to the call. Even though there might be no pool

with the native currency, this step still works because the take function just performs a

call with a value attached. Since the CELO balance is there, the call succeeds.

The attacker has 2000 CELO and zero balance deltas, allowing them to finish the transaction

with a profit of 1000 CELO. By repeating the steps above, it is possible to completely drain the

native currency pool.

Note that, at first glance, a native token with an ERC-20 representation might look like a double

entry point ERC-20 token from the perspective of this issue. However, there is an important

difference: double entry point ERC-20 tokens, along with other non-standard ERC-20 tokens,

are not supported by Uniswap v4, as explicitly stated by the Uniswap team. Native tokens,

however, are supported since they are considered safe and are preferred due to gas savings.

Consider changing the way native currency pools work on chains where the native currency

has a corresponding ERC-20 token. For example, make the NATIVE variable immutable and

set it to the ERC-20 token address for chains where native currency has a corresponding

ERC-20 token.

Update: Resolved in pull request #779. The team re-worked how sync and settle work.

Whenever a sync is called, the very next settle call will settle the previously synced

currency, otherwise the transaction will revert. This makes this attack impossible now, because

one wouldn't be able to settle the native currency (point 2) before settling the corresponding

ERC-20 version (point 3).

3.

1.

2.

Uniswap v4 Core Audit − Critical Severity − 11

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/pull/779

Medium Severity

M-01 Unsafe Assembly Blocks
Throughout the codebase, some assembly blocks that are marked as safe do not follow the

Solidity memory model outlined in the Memory Safety section of the Solidity documentation.

This might lead to incorrect and undefined behavior.

In Hooks.sol , on lines 138-139, the return data can be longer than 64 bytes, thus

potentially overriding the free memory pointer. This might happen if hooks return more

than 64 bytes. For example, the beforeSwap hook returns three values, which means

that it will require 32 * 3 = 96 bytes as ABI-encoding allocates 32 bytes for each

value, which exceeds the scratch space.

In TickBitmap.sol , on lines 55-60, the error signature and parameters take 96 bytes,

which is more than the scratch space.

In CustomRevert.sol , on lines 45-63, the error signature and parameters take 96

bytes, which is more than the scratch space.

In Currency.sol , on lines 52-53, the top 4 bytes of the free memory pointer are

overridden.

Consider removing the memory-safe annotations from assembly blocks that do not follow

the Solidity memory model. Alternatively, consider adjusting the assembly blocks to follow the

memory model.

Update: Resolved in pull request #759.

M-02 ProtocolFeeController Gas Griefing
The ProtocolFees contract implements the logic of retrieving a fee from the

protocolFeeController external contract. The call to protocolFeeController is

limited by the defined controllerGasLimit value. In case the call fails (e.g., by consuming

all the gas), the returned value of the fee is 0. However, a malicious

protocolFeeController can execute a gas griefing attack by returning a large amount of

data that will be implicitly loaded into memory, thereby significantly increasing the gas cost or

even preventing the transaction from executing. Considering how important it is for the

Uniswap team to build unstoppable and permissionless code, this might represent a threat to

the protocol.

•

•

•

•

Uniswap v4 Core Audit − Medium Severity − 12

https://docs.soliditylang.org/en/v0.8.26/assembly.html#memory-safety
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L138-L139
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L108
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickBitmap.sol#L55-L60
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L45-L63
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L52-L53
https://github.com/Uniswap/v4-core/pull/759
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L72-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L76

Consider using assembly to execute the call and manually copy only 32 bytes from the return

data to memory.

Update: Resolved in pull request #771.

M-03 Front-Running Pool's Initialization or Initial
Deposit Can Lead to Draining Initial Liquidity
The pool's sqrtPriceX96 can be manipulated either by front-running the initialization of the

pool or by an initial deposit of liquidity. The initialize function allows initializing a pool whose

stored ID is obtained by conversion of the PoolKey struct that is passed as an argument in the

function call. Since the sqrtPriceX96 is never used for the ID calculation, anyone can front-

run the initialization function call and provide their own value for sqrtPriceX96 , which will

then be used for setting the tick.

Another way to manipulate the sqrtPriceX96 is by front-running the initial deposit of a

recently initialized pool. The swap function does not check for liquidity before a swap occurs

and, if this happens, the sqrtPriceX96 value stored will change. Consequently, a malicious

actor can move the sqrtPriceX96 of the pool to any value if the current position has zero

liquidity. As a result, to take advantage of the LP's liquidity, an attacker could manipulate the

sqrtPriceX96 right after the pool initialization and before any deposit is done, establishing a

different price in the pool that does not reflect the market price, thereby opening it up to

arbitrage opportunities.

The aforementioned two cases lead to an exploitation scenario that allows draining the initial

liquidity if it is performed on a separate transaction from the one that initializes the pool. In the

case of front-running the initial liquidity deposit, consider the following scenario:

The LP creates a new pool and sets sqrtPriceX96 to

79228162514264337593543950336 (1 tokenA per 1 tokenB).

The LP calls modifyLiquidity to add liquidity to the pool for the price range 0.5

<=> 3 .

The attacker calls the swap function to move the sqrtPriceX96 to a random high

value before the LP's modifyLiquidity transaction is executed.

The LP's modifyLiquidity transaction is then executed and liquidity is added.

Now, the attacker can swap 1 tokenA for 3 tokenB using the LP's liquidity.

In the case of front-running the pool's initialization, one could front-run step 1 of the above

scenario so that the LP creation fails (because it will be already initialized by the front-runner)

and then skip step 3. This will lead to the same result.

1.

2.

3.

4.

5.

Uniswap v4 Core Audit − Medium Severity − 13

https://github.com/Uniswap/v4-core/pull/771
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L120-L146
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/PoolId.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/PoolKey.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L139
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L106-L109
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L187
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L431

Consider documenting this issue, specifically, the fact that the initialization of a pool can be

front-run. In addition, consider whether it should be allowed for a swap to occur with no

liquidity at all in the pool or whether it makes sense to provide initialization with initial liquidity

within the same transaction. Under the assumption that the PoolManager contract will be

used through periphery contracts, this issue is not easy to exploit. However, such an

assumption might not hold in some circumstances, making the issue more severe.

Update: Acknowledged, not resolved. The team stated:

This attack vector is prevented by peripheral contracts adding slippage protection when

users add liquidity to a pool.

Low Severity

L-01 Unsafe ABI Encoding
It is not uncommon to use abi.encodeWithSignature or abi.encodeWithSelector to

generate calldata for a low-level call. However, the first option is not typo-safe and the second

option is not type-safe. As such, both of these methods are error-prone and ought to be

considered unsafe.

Within Hooks.sol , there are multiple uses of unsafe ABI encodings:

The use of abi.encodeWithSelector within beforeInitialize function

The use of abi.encodeWithSelector within afterInitialize function

The use of abi.encodeWithSelector within beforeModifyLiquidity function

The use of abi.encodeWithSelector within beforeModifyLiquidity function

The use of abi.encodeWithSelector within beforeDonate function

The use of abi.encodeWithSelector within afterDonate function

Consider replacing all the occurrences of unsafe ABI encodings with abi.encodeCall which

checks whether the supplied values actually match the types expected by the called function

and also avoids errors caused by typos.

Update: Resolved in pull request #770.

•

•

•

•

•

•

Uniswap v4 Core Audit − Low Severity − 14

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L182
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L182
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L194
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L194
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L207
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L210
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L322
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L322
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L334
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L334
https://github.com/Uniswap/v4-core/pull/770

L-02 Missing Error Messages in require
Statements
Throughout the codebase, there are require statements that lack error messages:

The require statement in line 14 of BitMath.sol

The require statement in line 56 of BitMath.sol

The require statement in line 30 of FullMath.sol

The require statement in line 113 of FullMath.sol

To improve overall code clarity and facilitate troubleshooting, consider including specific,

informative error messages in require statements. Alternatively, consider using custom

errors to maintain consistency throughout the codebase.

Update: Acknowledged, not resolved.

L-03 Unsafe Casting
CurrencyLibrary creates currency by using the fromId function which creates a currency

address from a uint256 value. This might lead to unsafe casting within the mint or burn

functions. While this feature might be interesting as it allows traders to create some form of

namespaces for the tokens, it could lead to issues during third-party integrations. The

corresponding toId function converts the currency into an ID by casting the currency

address into a uint256 . This means that while the functions fromId and toId are

expected to be inverse functions, they are not, since the upper 12 bytes are lost during the

conversion to currency in the fromId function.

Consider masking the upper bits in the mint and burn functions to ensure the uint256 ID

value fits into uint160 . Alternatively, consider thoroughly documenting this behavior.

Update: Resolved in pull request #776. The team decided to add a bit masking to the fromId

function so that upper 12 bytes are always shaved off from the id.

•

•

•

•

Uniswap v4 Core Audit − Low Severity − 15

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L56
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/BitMath.sol#L56
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L113
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/FullMath.sol#L113
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L96-L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L96-L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L302
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L296-L302
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L305-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L305-L308
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L92-L94
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L92-L94
https://github.com/Uniswap/v4-core/pull/776

Notes & Additional
Information

N-01 Inconsistent Use of Multiple Solidity
Versions
The protocol is inconsistently using multiple Solidity versions. As such, the following issues

have been identified:

There are multiple contracts with floating pragmas such as in ERC6909.sol .

There are pragma statements that use an outdated version of Solidity such as in

Extsload.sol and IExtsload.sol .

There are contracts such as CustomRevert.sol or ERC6909 that use a pragma

statement that spans several minor Solidity versions. This can lead to unpredictable

behavior due to differences in features, bug fixes, deprecations, and compatibility

between minor versions.

Consider pinning the Solidity version more specifically throughout the codebase to ensure

predictable behavior and maintain compatibility across various compilers. It is recommended

to take advantage of the latest Solidity version to improve the overall readability and security of

the codebase. Regardless of which version of Solidity is used, consistently pin the version

throughout the codebase to prevent bugs caused by incompatible future releases.

Update: Resolved in pull request #784. The team addressed standardization. The code has

been changed to reflect version ^0.8.0 for any imported contract, library or interface in order

to allow integrators flexibility. Contracts that rely on transient storage are marked with version

^0.8.24 while PoolManager , which will be the main contract, has been set to a specific

0.8.26 version.

N-02 Lack of memory-safe Annotation in
Assembly Blocks
In the codebase, there is extensive use of the memory-safe annotation for assembly blocks.

However, the BalanceDelta and BeforeSwapDelta types are missing this annotation.

Consider being consistent with the use of the memory-safe annotation.

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 16

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/CustomRevert.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L2
https://github.com/ethereum/solidity/releases
https://github.com/Uniswap/v4-core/pull/784
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L23-L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L23-L30
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L26-L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L26-L28

Update: Resolved in pull request #778.

N-03 Discrepancy Between Implementation and
Specification of ERC-6909
There is a discrepancy between the implementation of the ERC-6909 transferFrom

function and its specification. In particular, the specification states that it MUST revert when

the caller is not an operator for the sender and the caller's allowance for the token id for

the sender is insufficient. This implies that if sender is msg.sender and they did not set

themselves as an operator then transferFrom should revert. However, this is not the case

as transferFrom skips operator and allowance checks in such a case.

Consider adjusting the implementation to follow the specification. Alternatively, consider

adjusting the specification if this is a desirable property.

Update: The team reached out to the EIP-6909 creators and a fix was pushed to the

specitifcation.

N-04 Code Clarity
In the Pool contract, there are several places which might benefit from slight refactoring.

!exactInput can be turned into just exactInput if the true and false branches

are swapped.

!zeroForOne can be turned into just zeroForOne if the true and false branches

are swapped.

state.amountCalculated can use compound operators to shorten the expressions.

Consider refactoring the above to improve code readability.

Update: Partially resolved in pull request #777. Only the third item has been addressed.

N-05 Missing Function Parameters Names
Multiple functions declared in the IProtocolFees interface are missing parameter names.

This makes the code less clear and more difficult to understand.

Consider naming all function parameters.

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 17

https://github.com/Uniswap/v4-core/pull/778
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/ethereum/ERCs/blob/46b98a6101126af1dcbcfbb61b6a18b2665cd0e7/ERCS/erc-6909.md#transferfrom
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L46
https://github.com/ethereum/ERCs/commit/67bc8cc5b8fb1fcd6afcac729d8fc8f006e61326
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L366-L377
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L366-L377
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L436-L441
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L436-L441
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L370
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L370
https://github.com/Uniswap/v4-core/pull/777
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35

Update: Resolved in pull request #772.

N-06 Discrepancies Between Interfaces And
Implementation Contracts
Throughout the codebase, multiple discrepancies have been identified between interfaces and

implementation contracts.

Within the IExtsload interface, the first parameter of the extsload function is called

slot whereas in the implementation contract, startSlot is used.

Within the IERC6909Claims interface, the first parameter of the setOperator

function is called spender whereas in the implementation contract, operator is

used.

Within the IPoolManager interface, the parameter of the settle function is called

token whereas in the implementation contract, currency is used.

Consider using the same parameter names across interfaces and implementation contracts.

Update: Resolved in pull request #762.

N-07 Unused Named Return Variables
Named return variables are a way to declare variables that are meant to be used within a

function's body for the purpose of being returned as that function's output. They are an

alternative to explicit in-line return statements.

Throughout the codebase, there are unused named return variables:

The delta return variable in the callHookWithReturnDelta function in

Hooks.sol

The sqrtQX96 return variable in the getNextSqrtPriceFromInput function in

SqrtPriceMath.sol

The sqrtQX96 return variable in the getNextSqrtPriceFromOutput function in

SqrtPriceMath.sol

The amount0 return variable in the getAmount0Delta function in

SqrtPriceMath.sol

The amount0 return variable in the secondary getAmount0Delta function in

SqrtPriceMath.sol

•

•

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 18

https://github.com/Uniswap/v4-core/pull/772
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/Extsload.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L282
https://github.com/Uniswap/v4-core/pull/762
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L127
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L127
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L153
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L153
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L180
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L180
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L255
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L255

The amount1 return variable in the getAmount1Delta function in

SqrtPriceMath.sol

The slot return variable in the _getPositionInfoSlot function in

StateLibrary.sol

Consider either using or removing any unused named return variables.

Update: Resolved in pull request #758.

N-08 Unused Imports
Throughout the codebase, there are imports that are unused and could be removed:

The import import {BalanceDelta} from "./BalanceDelta.sol"; imports

unused alias BalanceDelta in BeforeSwapDelta.sol .

The import import {Pool} from "../libraries/Pool.sol"; imports unused

alias Pool in IPoolManager.sol .

The import import {Position} from "../libraries/Position.sol";

imports unused alias Position in IPoolManager.sol .

The import import {PoolKey} from "../types/PoolKey.sol"; imports

unused alias PoolKey in LPFeeLibrary.sol .

The import import {IHooks} from "../interfaces/IHooks.sol"; imports

unused alias IHooks in Lock.sol .

The import import {IHooks} from "../interfaces/IHooks.sol"; imports

unused alias IHooks in NonZeroDeltaCount.sol .

The import import {BalanceDelta, BalanceDeltaLibrary,

toBalanceDelta} from "./types/BalanceDelta.sol"; imports unused alias

toBalanceDelta in PoolManager.sol .

The import import {Currency} from "../types/Currency.sol"; imports

unused alias Currency in StateLibrary.sol .

The import import {PoolId} from "../types/PoolId.sol"; imports unused

alias PoolId in TransientStateLibrary.sol .

The import import {Position} from "./Position.sol"; imports unused alias

Position in TransientStateLibrary.sol .

Consider removing unused imports to improve the overall clarity and readability of the

codebase.

Update: Resolved in pull request #763.

•

•

•

•

•

•

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 19

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L272
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/SqrtPriceMath.sol#L272
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L341
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L341
https://github.com/Uniswap/v4-core/pull/758
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L12
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L12
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L4
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L7
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L7
https://github.com/Uniswap/v4-core/pull/763

N-09 Unused Error
The TickNotInitialized error in Pool.sol is defined but never used.

To improve the overall clarity and readability of the codebase, consider either using or

removing any currently unused error.

Update: Resolved in pull request #764.

N-10 Magic Numbers
Throughout the codebase, there are a few instances where literal values are used directly for

arithmetic operations:

The 255738958999603826347141 literal number in TickMath.sol

The 3402992956809132418596140100660247210 literal number in

TickMath.sol

The 291339464771989622907027621153398088495 literal number in

TickMath.sol

In order to improve code readability, consider using a constant to define such values and

document its purpose.

Update: Acknowledged, not resolved.

N-11 State Variable Visibility Not Explicitly
Declared
Throughout the codebase, there are state variables that lack an explicitly declared visibility:

The IS_UNLOCKED_SLOT state variable in Lock.sol

The NONZERO_DELTA_COUNT_SLOT state variable in NonZeroDeltaCount.sol

The RESERVES_OF_SLOT state variable in Reserves.sol

For clarity, consider always explicitly declaring the visibility of variables, even when the default

visibility matches the intended visibility.

Update: Resolved in pull request #766.

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 20

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L47
https://github.com/Uniswap/v4-core/pull/764
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L264
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L264
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L266
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L266
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TickMath.sol#L267
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/NonZeroDeltaCount.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L11
https://github.com/Uniswap/v4-core/pull/766/

N-12 Missing Named Parameters in Mappings
Since Solidity 0.8.18, developers can utilize named parameters in mappings. This means

mappings can take the form of mapping(KeyType KeyName? => ValueType

ValueName?) . This updated syntax provides a more transparent representation of a

mapping's purpose.

Within ERC6909.sol , there are multiple mappings without named parameters:

The isOperator state variable

The balanceOf state variable

The allowance state variable

Consider adding named parameters to mappings in order to improve the readability and

maintainability of the codebase.

Update: Resolved in pull request #767.

N-13 Lack of Indexed Event Parameter
Within IProtocolFees.sol , the ProtocolFeeControllerUpdated event does not

have an indexed parameter.

To improve the ability of off-chain services to search and filter for specific events, consider

indexing event parameters.

Update: Resolved in pull request #768.

N-14 Missing Docstrings
Throughout the codebase, there are multiple code instances that do not have docstrings:

The OperatorSet , Approval and Transfer events, the isOperator ,

balanceOf and allowance state variables, and the transfer , transferFrom ,

approve , setOperator and supportsInterface functions in ERC6909.sol

The IERC6909Claims interface in IERC6909Claims.sol

The IExtsload interface and the IExttload interface in IExtsload.sol

The IPoolManager interface in IPoolManager.sol

The IProtocolFeeController interface in IProtocolFeeController.sol

•

•

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 21

https://github.com/ethereum/solidity/releases/tag/v0.8.18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/pull/767
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://solidity.readthedocs.io/en/latest/contracts.html#events
https://github.com/Uniswap/v4-core/pull/768
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L27
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L35-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L35-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L45-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L45-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L60-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L60-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L68-L74
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L80-L83
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ERC6909.sol#L80-L83
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L4-L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L4-L47
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L4-L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExtsload.sol#L4-L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExttload.sol#L4-L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IExttload.sol#L4-L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L16-L169
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L16-L169
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L6-L11
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L6-L11

The IProtocolFees interface, the ProtocolFeeControllerUpdated ,

ProtocolFeeUpdated , and the protocolFeeController functions in

IProtocolFees.sol

The IUnlockCallback interface in IUnlockCallback.sol

The LPFeeLibrary library and the DYNAMIC_FEE_FLAG , OVERRIDE_FEE_FLAG ,

REMOVE_OVERRIDE_MASK , and MAX_LP_FEE state variables in LPFeeLibrary.sol

The Pool library in Pool.sol

The ProtocolFeeLibrary library and the MAX_PROTOCOL_FEE state variable in

ProtocolFeeLibrary.sol

The ProtocolFees abstract contract and the protocolFeesAccrued and

protocolFeeController state variables in ProtocolFees.sol

The Reserves library in Reserves.sol

The Slot0Library library in Slot0.sol

The StateLibrary library and the POOLS_SLOT , FEE_GROWTH_GLOBAL0_OFFSET ,

FEE_GROWTH_GLOBAL1_OFFSET , LIQUIDITY_OFFSET , TICKS_OFFSET ,

TICK_BITMAP_OFFSET and POSITIONS_OFFSET state variables in

StateLibrary.sol

The TransientStateLibrary library and the NONZERO_DELTA_COUNT_SLOT and

IS_UNLOCKED_SLOT state variables in TransientStateLibrary.sol

The BalanceDeltaLibrary library and the ZERO_DELTA state variable in

BalanceDelta.sol

The BeforeSwapDeltaLibrary library and the ZERO_DELTA state variable in

BeforeSwapDelta.sol

The NATIVE state variable in Currency.sol

Consider thoroughly documenting all functions (and their parameters) that are part of any

contract's public API. Functions implementing sensitive functionality, even if not public, should

be clearly documented as well. When writing docstrings, consider following the Ethereum

Natural Specification Format (NatSpec).

Update: Partially resolved in pull request #773. Only the first item of the list has not been

addressed.

N-15 Incomplete Docstrings
Throughout the codebase, there are several instances of incomplete docstrings:

The return value is not documented for the transfer , transferFrom , approve ,

setOperator functions in IERC6909Claims.sol .

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 22

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L9-L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L34
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L34
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/callback/IUnlockCallback.sol#L4-L9
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/callback/IUnlockCallback.sol#L4-L9
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L19-L611
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Pool.sol#L19-L611
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L4-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L4-L43
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/ProtocolFeeLibrary.sol#L6
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L14-L95
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L14-L95
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L20
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/ProtocolFees.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L7-L42
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Reserves.sol#L7-L42
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Slot0.sol#L31-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Slot0.sol#L31-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L9-L351
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L9-L351
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L14
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L17
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L19
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L22
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L25
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L31
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/StateLibrary.sol#L31
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L9-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L9-L58
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L14-L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L14-L15
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/TransientStateLibrary.sol#L18
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L56-L70
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L56-L70
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L57
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BalanceDelta.sol#L57
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L20-L38
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L20-L38
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L21
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/BeforeSwapDelta.sol#L21
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/types/Currency.sol#L36
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/Uniswap/v4-core/pull/773
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L28
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L35
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L41
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L41
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/external/IERC6909Claims.sol#L46

The delta parameter is not documented for the afterAddLiquidity and

afterRemoveLiquidity functions in IHooks.sol .

The return value is not documented for the MAX_TICK_SPACING and

MIN_TICK_SPACING functions in IPoolManager.sol .

The currency parameter and the return value are not documented for the sync

function in IPoolManager.sol .

The key , sqrtPriceX96 , and hookData parameters and the return value are not

documented for the initialize function in IPoolManager.sol .

The key , amount0 , amount1 , and hookData parameters and the return value are

not documented for the donate function in IPoolManager.sol .

The currency , to , and amount parameters are not documented for the take

function in IPoolManager.sol .

The to , id , and amount parameters are not documented for the mint function in

IPoolManager.sol .

The from , id , and amount parameters are not documented for the burn function in

IPoolManager.sol .

The token parameter and the return value are not documented for the settle

function in IPoolManager.sol .

The key and newDynamicLPFee parameters are not documented for the

updateDynamicLPFee function in IPoolManager.sol .

The return value is not documented for the protocolFeeForPool function in

IProtocolFeeController.sol .

The parameter and the return value are not documented for the

protocolFeesAccrued function in IProtocolFees.sol .

The key and the second parameter are not documented for the setProtocolFee

function in IProtocolFees.sol .

The parameter for the setProtocolFeeController function in

IProtocolFees.sol is not documented.

The parameters and the return value are not documented for the

collectProtocolFees function in IProtocolFees.sol .

The fee parameter is not documented for the isValidHookAddress function in

Hooks.sol .

The return values for all functions in LPFeeLibrary.sol are not documented.

Consider thoroughly documenting all functions/events (and their parameters or return values)

that are part of a contract's public API. When writing docstrings, consider following the

Ethereum Natural Specification Format (NatSpec).

Update: Resolved in pull request #775.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Uniswap v4 Core Audit − Notes & Additional Information − 23

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L59-L65
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L59-L65
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L87-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IHooks.sol#L87-L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L90
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L90
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L93
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L98
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L101-L103
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L101-L103
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L150-L152
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L150-L152
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L156
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L156
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L159
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L162
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L162
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L165
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L168
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IPoolManager.sol#L168
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFeeController.sol#L10
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L23
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L23
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L26
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L26
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L32
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/interfaces/IProtocolFees.sol#L32
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Hooks.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/LPFeeLibrary.sol#L7-L66
https://solidity.readthedocs.io/en/latest/natspec-format.html
https://github.com/Uniswap/v4-core/pull/775

N-16 Lack of Security Contact
Providing a specific security contact (such as an email or ENS name) within a smart contract

significantly simplifies the process for individuals to communicate if they identify a vulnerability

in the code. This practice is quite beneficial as it permits the code owners to dictate the

communication channel for vulnerability disclosure, eliminating the risk of miscommunication

or failure to report due to a lack of knowledge on how to do so. In addition, if the contract

incorporates third-party libraries and a bug surfaces in those, it becomes easier for their

maintainers to contact the appropriate person about the problem and provide mitigation

instructions.

Throughout the codebase, all contracts do not have a security contact specified.

Consider adding a NatSpec comment containing a security contact above each contract

definition. Using the @custom:security-contact convention is recommended as it has

been adopted by the OpenZeppelin Wizard and the ethereum-lists.

Update: Resolved in pull request #774. The team decided to create a SECURITY.md

markdown file in the root of the project repository with the necessary security contacts.

Client Reported

CR-01 License Limitation Can Be Skipped
The purpose of the noDelegateCall modifier in the unlock function is to prevent proxy

contracts from making delegate calls to the Uniswap v4 core contracts. This restriction is

mainly due to license limitations. However, during the audit, the team was notified that this

limitation can be bypassed by creating a custom contract that implements the same unlock

function and writes to the same slot for the lock value, thereby allowing delegate calls to all

other external functions, effectively circumventing the restriction.

The Uniswap team might consider adding the noDelegateCall modifier to all external

functions, rather than only using it in the unlock function.

Update: Resolved in pull request #743. The team added the noDelegateCall modifier to all

relevant external functions.

Uniswap v4 Core Audit − Client Reported − 24

https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/
https://wizard.openzeppelin.com/
https://github.com/ethereum-lists/contracts#tracking-new-deployments
https://github.com/Uniswap/v4-core/pull/774
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/NoDelegateCall.sol#L29
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/PoolManager.sol#L107
https://github.com/Uniswap/v4-core/blob/d5d4957b35750e8cf1f3db5584e77eef4861c21e/src/libraries/Lock.sol#L10
https://github.com/Uniswap/v4-core/pull/743

Conclusion
Uniswap v4 is an AMM that uses the concentrated liquidity model by default and can

customize the model along with other parts of the protocol through the use of hooks. It also

introduces singleton architecture, flash accounting, dynamic liquidity providers fee, donation to

liquidity providers, and native token support.

One critical- and several medium-severity vulnerabilities were discovered along with some

other issues of lower severity. In addition, suggestions were also made to improve the

readability and clarity of the codebase in order to facilitate future audits and development. The

codebase was found to be robust and generally well-documented. However, extensive use of

assembly and other optimization techniques has significantly increased code complexity,

thereby leaving room for undiscovered issues.

The Uniswap team was exceptionally responsive and provided us with extensive

documentation about the project.

Uniswap v4 Core Audit − Conclusion − 25

	Uniswap v4 Core Audit
	Table of Contents
	Summary
	Scope
	System Overview
	Security Model and Trust Assumptions
	Privileged Roles

	Critical Severity
	ERC-20 Representation of Native Currency Can Be Used to Drain Native Currency Pools

	Medium Severity
	Unsafe Assembly Blocks
	ProtocolFeeController Gas Griefing
	Front-Running Pool's Initialization or Initial Deposit Can Lead to Draining Initial Liquidity

	Low Severity
	Unsafe ABI Encoding
	Missing Error Messages in require Statements
	Unsafe Casting

	Notes & Additional Information
	Inconsistent Use of Multiple Solidity Versions
	Lack of memory-safe Annotation in Assembly Blocks
	Discrepancy Between Implementation and Specification of ERC-6909
	Code Clarity
	Missing Function Parameters Names
	Discrepancies Between Interfaces And Implementation Contracts
	Unused Named Return Variables
	Unused Imports
	Unused Error
	Magic Numbers
	State Variable Visibility Not Explicitly Declared
	Missing Named Parameters in Mappings
	Lack of Indexed Event Parameter
	Missing Docstrings
	Incomplete Docstrings
	Lack of Security Contact

	Client Reported
	License Limitation Can Be Skipped

	Conclusion

