
Uniswap v4 Core
Security Assessment

September 5, 2024

Prepared for:

Alice Henshaw
Uniswap

Prepared by: Alexander Remie, Priyanka Bose, Benjamin Samuels, Tarun Bansal,
Guillermo Larregay, Josselin Feist, and Xiangan He

About Trail of Bits

Founded in 2012 and headquartered in New York, Trail of Bits provides technical security
assessment and advisory services to some of the world’s most targeted organizations. We
combine high-end security research with a real-world attacker mentality to reduce risk and
fortify code. With 100+ employees around the globe, we’ve helped secure critical software
elements that support billions of end users, including Kubernetes and the Linux kernel.

We maintain an exhaustive list of publications at https://github.com/trailofbits/publications,
with links to papers, presentations, public audit reports, and podcast appearances.

In recent years, Trail of Bits consultants have showcased cutting-edge research through
presentations at CanSecWest, HCSS, Devcon, Empire Hacking, GrrCon, LangSec, NorthSec,
the O’Reilly Security Conference, PyCon, REcon, Security BSides, and SummerCon.

We specialize in software testing and code review projects, supporting client organizations
in the technology, defense, and finance industries, as well as government entities. Notable
clients include HashiCorp, Google, Microsoft, Western Digital, and Zoom.

Trail of Bits also operates a center of excellence with regard to blockchain security. Notable
projects include audits of Algorand, Bitcoin SV, Chainlink, Compound, Ethereum 2.0,
MakerDAO, Matic, Uniswap, Web3, and Zcash.

To keep up to date with our latest news and announcements, please follow @trailofbits on
Twitter and explore our public repositories at https://github.com/trailofbits. To engage us
directly, visit our “Contact” page at https://www.trailofbits.com/contact, or email us at
info@trailofbits.com.

Trail of Bits, Inc.
497 Carroll St., Space 71, Seventh Floor
Brooklyn, NY 11215
https://www.trailofbits.com
info@trailofbits.com

Trail of Bits 1 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/trailofbits/publications
https://twitter.com/trailofbits
https://github.com/trailofbits
https://www.trailofbits.com/contact
mailto:info@trailofbits.com
mailto:info@trailofbits.com

Notices and Remarks

Copyright and Distribution
© 2024 by Trail of Bits, Inc.

All rights reserved. Trail of Bits hereby asserts its right to be identified as the creator of this
report in the United Kingdom.

This report is considered by Trail of Bits to be public information; it is licensed to Uniswap
under the terms of the project statement of work and has been made public at Uniswap’s
request. Material within this report may not be reproduced or distributed in part or in
whole without the express written permission of Trail of Bits.

The sole canonical source for Trail of Bits publications is the Trail of Bits Publications page.
Reports accessed through any source other than that page may have been modified and
should not be considered authentic.

Test Coverage Disclaimer
All activities undertaken by Trail of Bits in association with this project were performed in
accordance with a statement of work and agreed upon project plan.

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in
this report should not be considered a comprehensive list of security issues, flaws, or
defects in the target system or codebase.

Trail of Bits uses automated testing techniques to rapidly test the controls and security
properties of software. These techniques augment our manual security review work, but
each has its limitations: for example, a tool may not generate a random edge case that
violates a property or may not fully complete its analysis during the allotted time. Their use
is also limited by the time and resource constraints of a project.

Trail of Bits 2 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/trailofbits/publications

Table of Contents

About Trail of Bits 1
Notices and Remarks 2
Table of Contents 3
Project Summary 5
Executive Summary 6
Project Goals 9
Project Targets 10
Project Coverage 11
Automated Testing 15

Stateful Invariants 16
Pool Initialization 16
Swap Action 17
Donate Action 19
Settlement Actions 19
Modify Liquidity Action 20
Take Action 21
End-to-End Properties 21
Inter-Action Properties 22

Stateless Invariants 22
ProtocolFeeLibrary 22
LiquidityMath 22
Differential Testing between V3 and V4 23
Differential Testing between Low-Level Code and High-Level Implementations 23

Static Invariants 24
Codebase Maturity Evaluation 25
Summary of Findings 28
Detailed Findings 29

1. Strict equality on fee comparison can cause fees to exceed 100% 29
2. Incorrect variable usage on swap fee 31
3. Collected protocol fees may count against user’s currency deltas 33
4. Use of incorrect mask to clear higher bits of the protocolFee value 35
5. Insufficient event generation 37
6. Similar-looking pool IDs can be brute-forced through the PoolKey hooks fields 39

Trail of Bits 3 Uniswap v4 Core Security Assessment
PUBLIC

A. Vulnerability Categories 42
B. Code Maturity Categories 44
C. Code Quality Findings 46
D. Invariant Testing and Harness Design 47

Stateless Invariant Testing 47
Stateful Invariant Testing 47

Stateful Invariants Using the End-to-End Harness 48
Stateful Invariants Using the Actions Harness 50

Actions Harness Design 50
Selected Invariants for Discussion 53

Ensuring that a Pool’s FeeGrowthGlobal Cannot Underflow 53
Ensuring that the Singleton Can Always Cover Its Debts 53

Future Work 55
E. Static Invariants 56
F. Fix Review Results 61

Detailed Fix Review Results 61
G. Fix Review Status Categories 63

Trail of Bits 4 Uniswap v4 Core Security Assessment
PUBLIC

Project Summary

Contact Information
The following project manager was associated with this project:

Sam Greenup, Project Manager
sam.greenup@trailofbits.com

The following engineering director was associated with this project:

Josselin Feist, Engineering Director, Blockchain
josselin.feist@trailofbits.com

The following consultants were associated with this project:

Alexander Remie, Consultant Priyanka Bose, Consultant
alexander.remie@trailofbits.com priyanka.bose@trailofbits.com

Benjamin Samuels, Consultant Tarun Bansal, Consultant
benjamin.samuels@trailofbits.com tarun.bansal@trailofbits.com

Guillermo Larregay, Consultant Xiangan He, Consultant
guillermo.larregay@trailofbits.com xiangan.he@trailofbits.com

Project Timeline
The significant events and milestones of the project are listed below.

Date Event

July 15, 2024 Pre-project kickoff call

July 24, 2024 Status update meeting #1

August 5, 2024 Delivery of report draft and readout meeting

September 5, 2024 Delivery of comprehensive report

Trail of Bits 5 Uniswap v4 Core Security Assessment
PUBLIC

Executive Summary

Engagement Overview
Uniswap engaged Trail of Bits to review the security of the Uniswap v4 Core smart
contracts. Uniswap v4 is the next iteration of the popular decentralized exchange. This
fourth iteration builds on the core of Uniswap v3 by adding the following features: a
singleton PoolManager contract; an optional, arbitrary Hooks contract per pool that is
called during various stages in the execution; flash accounting; dynamic LP fees; native ETH
support; and using ERC6909 for optionally storing user balances internally instead of
performing token transfers.

A team of six consultants conducted the review from July 15, 2024 to August 2, 2024, for a
total of six engineer-weeks of effort. Our testing efforts focused on the newly introduced
features in v4 of the protocol and how those changes affect the existing v3 protocol.
Additionally, we focused on the correctness and safety of the numerous usages of inline
assembly throughout the codebase. With full access to source code and documentation, we
performed static and dynamic testing of the Uniswap v4 core codebase, using automated
and manual processes.

Observations and Impact
The Uniswap v4 project is a mature project that builds on top of the Uniswap v3
implementation—in other words, it builds on top of a battle-tested foundation. Every
aspect of this project shows that the Uniswap v4 team has put a lot of effort into its
security. The code quality—of the high-level Solidity as well as the low-level inline
assembly—is high; there is sufficient source-level documentation; there is proper
high-level, user-facing documentation with diagrams and use cases; and the testing suite is
extensive and uses fuzzing.

The extensive testing suite heavily uses foundry fuzzing to extend the tested values, leading
to higher overall testing coverage. Forge test coverage is integrated in the CI and displayed
in each PR. Echidna tests are present to test out the various math libraries.

Since the implementation is significantly geared toward gas optimization, many parts have
been implemented in inline assembly instead of Solidity. This has made the
implementation significantly more difficult to comprehend and presents many more
possible footguns for (future) Uniswap developers. However, while the inline comments of
the assembly code help to lower the complexity, the lack of a Solidity counterpart and the
level of assembly usage increase the risks.

The newly added Hooks feature enables extensive customization by external projects that
previously would have had to fork Uniswap v3 to create their customized version. In v4,
these projects can use the Hooks feature to create a customized pool to their liking.

Trail of Bits 6 Uniswap v4 Core Security Assessment
PUBLIC

However, the flipside of this flexibility is the added complexity of the overall Uniswap v4
project compared to v3. This flexibility also makes it more difficult for users to choose a
non-malicious pool, since they must confront challenges like deciding which pool to use
and determining that it is not malicious.

During this review, we found six issues, of which one is low severity and the remaining five
are informational. In addition, we created 100 invariants, of which eight have been formally
verified by Halmos, 88 checked by Medusa and Echidna, and four statically checked by
Slither. See appendix D for an in-depth overview of how we used fuzzing during this
engagement.

Recommendations
Based on the codebase maturity evaluation and findings identified during the security
review, Trail of Bits recommends that Uniswap take the following steps:

● Remediate the findings disclosed in this report. These findings should be
addressed as part of a direct remediation or as part of any refactor that may occur
when addressing other recommendations.

● Add more documentation throughout the source code. This will help prevent
(new) developers from introducing mistakes because they forget undocumented
assumptions or misunderstand the complex and assembly-heavy implementation.

● Reuse and potentially expand the provided stateful invariants and fuzzing
harnesses that we developed during this engagement. This allows the Uniswap
team to easily perform more advanced stateful fuzzing that supersedes what can be
done using Foundry. The provided stateful invariants can also easily be extended
with new invariants, for which we provide some recommendations in the Future
Work section.

● Write extensive guidelines for users that help them avoid being tricked into
using a malicious pool. As highlighted in TOB-UNI4-6, it is much easier in Uniswap
v4 than in Uniswap v3 for malicious actors to trick users into using malicious pools.
Additionally, it is generally easier to create malicious pools in Uniswap v4 due to the
arbitrary nature of hooks contracts. Guidelines can significantly lower these risks.

Trail of Bits 7 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/a16z/halmos
https://github.com/crytic/medusa
https://github.com/crytic/echidna
https://github.com/crytic/slither

Finding Severities and Categories
The following tables provide the number of findings by severity and category.

EXPOSURE ANALYSIS

Severity Count

High 0

Medium 0

Low 1

Informational 5

Undetermined 0

CATEGORY BREAKDOWN

Category Count

Auditing and Logging 1

Data Validation 3

Undefined Behavior 2

Trail of Bits 8 Uniswap v4 Core Security Assessment
PUBLIC

Project Goals

The engagement was scoped to provide a security assessment of the Uniswap v4 Core
contracts. Specifically, we sought to answer the following non-exhaustive list of questions:

● Is there a way to alter the internal accounting of balances or fees without providing
tokens or Ether? Can a malicious user generate losses or otherwise gain
unauthorized access to funds in pools by providing malicious tokens?

● Can external users or contracts lose funds, receive fewer tokens than expected from
a swap, or have their funds stuck in the pool during normal operation?

● Can malicious hooks get access to funds or block operations of a different pool?

● Are access controls correctly implemented? Can malicious users execute privileged
functions or change system parameters?

● Are arithmetic operations implemented correctly? For low-level implementations, is
it possible to trigger an overflow or unexpected results that can affect pools? Are the
low-level functions equivalent to their high-level counterparts? Are rounding
directions considered and verified for all critical calculations?

● Do all transient storage manipulation functions clean up the state correctly when
the calls return, and if so, can an attacker exploit this? Can a call set a state that is
not cleared before returning? Are locks correctly implemented?

● Are storage slots, structures, and data correctly manipulated? Can storage be
overwritten by malicious users from a different pool or external calls?

● Are fees and deltas correctly calculated and validated in all usages? Are data
structures correctly packed and unpacked, and type casts performed without losing
data or precision? Are custom types and user-defined operators correctly
implemented?

● Are prices and ticks correctly calculated when liquidity is added and removed or
when swaps are performed? Can prices be manipulated?

Trail of Bits 9 Uniswap v4 Core Security Assessment
PUBLIC

Project Targets

The engagement involved a review and testing of the following target.

Uniswap v4 core
Repository https://github.com/Uniswap/v4-core

Version 7a72031574fc4548ca8fce197114cf87d5a2c037

Type Solidity

Platform EVM

Trail of Bits 10 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/tree/7a72031574fc4548ca8fce197114cf87d5a2c037

Project Coverage

This section provides an overview of the analysis coverage of the review, as determined by
our high-level engagement goals. Our approaches included the following:

● Hooks. Hooks are a new feature introduced by Uniswap V4 that enable a high level
of customization by allowing developers to implement specific functionalities at
various stages of a liquidity pool’s lifecycle inside an arbitrary Hooks contract.
During pool creation, an optional Hooks contract can be attached to the pool. The
lower bits of the Hooks contract address determine the enabled/disabled hook calls.
There are hooks for pool initialization, adding liquidity, removing liquidity,
performing a swap, and donating tokens to LPs.

We manually reviewed the pool creation process to see if an invalid Hooks contract
could be configured and if the configured Hooks contract address could be changed
after pool creation. We used unit tests and manual review of the various lifecycle
hooks (swaps, donations, and adding or removing liquidity) to determine if the hook
calls are made at the right place in the lifecycle and if, through reentrancy, tokens
can be stolen from the protocol (including other pools) or the internal accounting
can be incorrectly updated in any way. We reviewed the use of
hooks-returning-deltas throughout the protocol to see if the deltas were applied
correctly. We checked if an upgradeable Hooks contract can in any way lead to
unforeseen problems. We verified the implementation of all hook calls within the
Hooks library and the bitwise operations to enable/disable specific hook calls. We
reviewed the callHook function to assess its correct functioning, the possibility and
effect of a return-bomb attack from the hook, and the use of inline assembly to call
and parse the hook call’s return value. We used static invariants to assess the use of
the noSelfCall modifier and whether there are collisions between the functions in
the PoolManager and the various hooks functions (see Automated Testing: Static
Invariants).

● Flash accounting. Uniswap v4 introduces flash accounting. This entails keeping an
internal delta of tokens owed to a user and tokens owed to the protocol, and only at
the very end of all actions is a user required to pay their debt and withdraw their
credit. Failing to do both of these things will cause the transaction to revert. For a
user to pay their debt, they can call settle (or burn ERC69096 tokens through
burn), and for a user to withdraw their credit, they can call take (or mint ERC6909
tokens through mint).

We manually reviewed the delta mechanism throughout the various lifecycle
functions. We looked for ways to bring the delta to zero without paying the full debt,
such as paying the debt in a different token instead of the expected one; flaws due
to multiple/reentrant calls to sync, settle, and take in various orders; and ways to

Trail of Bits 11 Uniswap v4 Core Security Assessment
PUBLIC

maliciously inflate the credit delta amount or set credit in a different token than the
expected one. We manually reviewed the delta libraries and types (BalanceDelta,
BalanceSwapDelta, CurrencyDelta, NonZeroDeltaCount) for flaws due to the
use of inline assembly, specifically the correct use of arithmetic-related inline
assembly operations.

We also tested flash accounting using stateful invariant testing (UNI-SETTLE-1
through UNI-SETTLE-13).

● (Dynamic) LP fees. Whereas Uniswap v3 had a limited set of possible LP fee tiers,
Uniswap v4 allows a pool to set an arbitrary LP fee up to 100%. A pool can choose to
set a static LP fee or a dynamic LP fee during pool creation. In the case of a dynamic
LP fee, the pool’s configured Hooks contract can at any point update the LP fee by
calling updateDynamicLPFee.

We manually reviewed the updateDynamicLPFee function, LPFeeLibrary, and
the LP fee-related validation inside the Hooks.initialize function to look for
ways to configure an invalid LP fee. We also reviewed the correct application of the
static and dynamic LP fee in the swap function.

● Protocol fees. An optional protocol fee can be enabled by the Uniswap team
through a configured ProtocolFeeController contract.

We manually reviewed the access controls on the functions that update and collect
the protocol fee. We looked for ways in which a malicious
ProtocolFeeController contract could lead to a DoS. We also reviewed the use
of inline assembly (TOB-UNI4-4) and the correct handling of the low-level call result.
We reviewed the effect of withdrawing the protocol fee while the contract is
unlocked (TOB-UNI4-3).

We also tested protocol fees using stateful invariant testing, focusing on assessing
whether the singleton contract always contains enough funds to cover outstanding
protocol fee debts (UNI-ACTION-6, UNI-ACTION-3).

● Native ETH support. Uniswap v4 added back support for native ETH instead of only
WETH.

We verified that ETH is correctly handled as a particular case in all transfer-related
functions. We looked for a way to use ETH to settle an outstanding ERC20 debit and
vice versa.

● Singleton pool contract. The PoolManager in Uniswap v4 is a crucial component
and provides an entrypoint to the protocol. It maintains the state of the pools and
incorporates lifecycle functions like initialize, which configures a new pool;

Trail of Bits 12 Uniswap v4 Core Security Assessment
PUBLIC

swap, which facilitates the exchange of currencies within a pool; and
modifyLiquidity, which allows modifications in the liquidity provided. The
balance functions consist of mint and burn, exclusively dealing with the creation
and destruction of ERC6909 claims; take, for withdrawing a specific amount of
currency; and settle, for compensating outstanding balances.

We manually reviewed whether the pool initialization is done correctly; whether
critical storage variables are updated following an untrusted external call that could
be abused using reentrancy; and whether the currency deltas for the various actions
(swaps, liquidity modifications, mint, take, etc.) are correctly updated. We also
examined the potential for an attacker to abuse the pool ID generation
(TOB-UNI4-6). Furthermore, we explored whether a malicious user could create a
duplicate pool and overwrite the existing liquidity. We also assessed whether the
access control checks for the critical functions in the PoolManager contract are
properly implemented and if sufficient events are emitted (TOB-UNI4-5). We used a
static invariant to ensure that only the settle and settleFor functions are
payable (see Automated Testing: Static Invariants). We additionally used extensive
stateful invariants to test the various actions in the PoolManager (see Automated
Testing: Stateful Invariants).

● ERC6909. This is an implementation of the ERC6909 proposal (which itself is based
on ERC1155, i.e., a multi-token contract). The ERC6909 contract is used to optionally
store user balances internally instead of transferring ERC20 tokens. Users can then,
later on, use their ERC6909 balance instead of transferring tokens.

We used manual review to look for common token-related flaws, compared the
implementation against the reference implementation, and reviewed the correct
updating of account deltas when using the ERC6909 mint and burn functions within
the PoolManager.

● Arithmetic. Uniswap v4 reuses the math from Uniswap v3. However, the high-level
Solidity implementation is (mostly) rewritten in low-level inline assembly (Yul).

We manually reviewed the math-related libraries, focusing on the differences
between Uniswap v3 and Uniswap v4 (i.e., the rewrite into inline assembly). We
additionally used stateless fuzzing on various math functionality (see Automated
Testing: Stateless Invariants) and differential fuzz testing to compare the BitMath,
FullMath, and LiquidityMath libraries (see Automated Testing: Differential
testing between v3 and v4). We also used differential testing between the Uniswap
inline assembly implementation and a rewrite in high-level Solidity (see Automated
Testing: Differential testing between low-level code and high-level implementations).

● Transient storage. Uniswap v4 uses transient storage in multiple contracts/libraries
(Exttload, CurrencyDelta, CurrencyReserves, and NonZeroDeltacount).

Trail of Bits 13 Uniswap v4 Core Security Assessment
PUBLIC

Transient storage is used to store data that should persist between different call
frames but not beyond the current transaction. Using transient storage for these
lowers the gas cost compared to setting and clearing storage variables.

We manually reviewed the correct usage of transient storage, looking for flaws
related to: incorrect validation of set values, not correctly masking set values,
incorrectly overwriting existing values, not clearing out previously set values, and
reusing set transient storage values across multiple call frames that are individual
actions.

● Donation attacks. We manually reviewed the code to determine whether any
donation attacks are present that may cause the fees earned computation to
overflow, or alternatively cause the feeGrowthGlobal to underflow. We looked at
possibilities of manipulating fee growth or currency delta to steal tokens using the
donation function. We also considered the use of fake tokens to create a malicious
pool to manipulate reserves or fees of other legitimate pools using donations. In
addition to manual review, we wrote several invariants that would detect potential
issues with feeGrowthGlobal underflows (UNI-DONATE-1 through UNI-DONATE-9).

Coverage Limitations
The following items were considered out of scope for this engagement:

● Issues previously found in other audits that were not fixed in the target commit of
this engagement.

● Issues already known to the Uniswap team and present in a GitHub issue/PR in the
Uniswap v4 repo.

Trail of Bits 14 Uniswap v4 Core Security Assessment
PUBLIC

Automated Testing

Trail of Bits uses automated techniques to extensively test software's security properties.
We use open-source static analysis and fuzzing utilities, along with tools developed
in-house, to perform automated testing of source code and compiled software.

Test Harness Configuration
We used the following tools in the automated testing phase of this project:

Tool Description Policy

Echidna A smart contract fuzzer that can rapidly test
security properties via malicious,
coverage-guided test case generation

400,000,000 runs, split
across four machines with a
maximum sequence length
of 150. (Approximately 24
hours)

Medusa A cross-platform go-ethereum-based fuzzer
providing parallelized fuzz testing of smart
contracts, heavily inspired by Echidna

800,000,000 runs, split
across four machines with a
maximum sequence length
of 150. (Approximately 24
hours)

Slither A static analyzer platform used to write custom
static invariants

No explicitly policy as the
rules created run under a
few seconds (Appendix E)

Halmos A symbolic testing tool for EVM smart contracts Timeout of 2 hours

Trail of Bits 15 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/trailofbits/echidna
https://github.com/crytic/medusa
https://github.com/crytic/slither
https://github.com/a16z/halmos

Summary of Invariants

Component Invariant Type Total Number

Pool initialization Stateful invariants 10

Swap action Stateful invariants 24

Donate action Stateful invariants 9

Settlement actions Stateful invariants 13

Modify liquidity action Stateful invariants 11

Take action Stateful invariants 3

End-to-end properties Stateful invariants 3

Inter-Action properties Stateful invariants 6

ProtocolFeeLibrary Stateless invariants 2

LiquidityMath Stateless invariants 2

Differential fuzzing between V3 and V4 math
libraries

Stateless differential invariants 5

Differential testing between low-level code
and high-level implementations

Stateless differential invariants 8

PoolManager and Hooks Static invariants 4

Stateful Invariants
Pool Initialization

ID Property Result

UNI-INIT-1 initialize() should not revert when it is passed a valid set of
parameters (tick spacing, price, fee, pool key, non-existing pool).

Passed

UNI-INIT-2 initialize() must not throw PoolAlreadyInitialized() when
there is no pre-existing pool initialized with the same PoolKey.

Passed

UNI-INIT-3 initialize() must not throw InvalidSqrtPrice() when
provided a price within the valid range.

Passed

UNI-INIT-4 initialize() must not throw LPFeeTooLarge() when the fee is in Passed

Trail of Bits 16 Uniswap v4 Core Security Assessment
PUBLIC

the valid range.

UNI-INIT-5 initialize() must not throw TickSpacingTooLarge() when the
tick spacing is in the valid range.

Passed

UNI-INIT-6 initialize() must not throw TickSpacingTooSmall() when the
tick spacing is in the valid range.

Passed

UNI-INIT-7 initialize() must revert if the provided pool key is already
initialized.

Passed

UNI-INIT-8 initialize() must construct a pool whose tick is greater than or
equal to MIN_TICK.

Passed

UNI-INIT-9 initialize() must construct a pool whose tick is less than or equal
to MAX_TICK.

Passed

UNI-INIT-10 initialize() must never create a pool with an initial sqrtPrice of
zero.

Passed

Swap Action

ID Property Result

UNI-SWAP-1 After a swap, if the pool’s active tick did not change, its liquidity must
be the same as it was before the swap.

Passed

UNI-SWAP-2 The pool’s sqrtPriceX96 should decrease or stay the same after
making a zeroForOne swap.

Passed

UNI-SWAP-3 The pool’s sqrtPriceX96 should increase or stay the same after
making a oneForZero swap.

Passed

UNI-SWAP-4 The pool’s new sqrtPriceX96 must not be lower than the
transaction's price limit after making a zeroForOne swap.

Passed

UNI-SWAP-5 The pool’s new sqrtPriceX96 must not exceed the transaction's price
limit after making a oneForZero swap.

Passed

UNI-SWAP-6 The pool’s active tick should decrease or stay the same after making
a zeroForOne swap.

Passed

UNI-SWAP-7 The pool’s active tick should increase or stay the same after making a
oneForZero swap.

Passed

UNI-SWAP-8 After a zeroForOne swap, the fee growth for currency1 should not
change.

Passed

Trail of Bits 17 Uniswap v4 Core Security Assessment
PUBLIC

UNI-SWAP-9 After a oneForZero swap, the fee growth for currency0 should not
change.

Passed

UNI-SWAP-10 The swap action must revert if the swap amount is zero. Passed

UNI-SWAP-11 The pool’s new price after a swap must be less than
MAX_SQRT_PRICE.

Passed

UNI-SWAP-12 The pool’s new price after a swap must be greater than or equal to
MIN_SQRT_PRICE.

Passed

UNI-SWAP-13 The pool’s new tick after a swap must be less than or equal to
MAX_TICK.

Passed

UNI-SWAP-14 The pool’s new tick after a swap must be greater than or equal to
MIN_TICK.

Passed

UNI-SWAP-15 Swaps respect the sqrtPriceLimit ahead of the need to consume
exactInput or exactOutput.

Passed

UNI-SWAP-16 For exact input swaps where the price limit is not reached, the
fromBalanceDelta must match the exact input amount.

Passed

UNI-SWAP-17 For exact output swaps where the price limit is not reached, the
toBalanceDelta must match the exact output amount.

Passed

UNI-SWAP-18 If the fromBalanceDelta of a swap is zero, the toBalanceDelta
must also be zero (rounding).

Passed

UNI-SWAP-19 For any swap, the amount credited to the user is greater than or
equal to zero.

Passed

UNI-SWAP-20 For any swap, the amount debited from the user is greater than or
equal to zero.

Passed

UNI-SWAP-21 For a zeroForOne swap, the amount credited to the user must be
less than or equal to the total number of tradeable tokens in the
pool.

Passed

UNI-SWAP-22 For a oneForZero swap, the amount credited to the user must be
less than or equal to the total number of tradeable tokens in the
pool.

Passed

UNI-SWAP-23 After a swap, the user’s currencyDelta for amount0 should match
the expected delta based on BalanceDelta.

Passed

UNI-SWAP-24 After a swap, the user’s currencyDelta for amount1 should match
the expected delta based on BalanceDelta.

Passed

Trail of Bits 18 Uniswap v4 Core Security Assessment
PUBLIC

Donate Action

ID Property Result

UNI-DONATE-1 After a donation with a non-zero amount0, the pool’s
feeGrowthGlobal0X128 should match the expected value based
on donate()’s inputs.

Passed

UNI-DONATE-2 After a donation with a non-zero amount1, the pool’s
feeGrowthGlobal1X128 should match the expected value based
on donate()’s inputs.

Passed

UNI-DONATE-3 After a donation with a zero amount0, the pool’s
feeGrowthGlobal0X128 should not change.

Passed

UNI-DONATE-4 After a donation with a zero amount1, the pool’s
feeGrowthGlobal1X128 should not change.

Passed

UNI-DONATE-5 Donating to a pool with zero liquidity should result in a revert. Passed

UNI-DONATE-6 A donate() call must not return a positive BalanceDelta for
currency0.

Passed

UNI-DONATE-7 A donate() call must not return a positive BalanceDelta for
currency1.

Passed

UNI-DONATE-8 The donate() call BalanceDelta must match the amount
donated for amount0.

Passed

UNI-DONATE-9 The donate() call BalanceDelta must match the amount
donated for amount1.

Passed

Settlement Actions

ID Property Result

UNI-SETTLE-1 The user must not be owed more tokens after a settle() or
settleFor() than they were owed before the settlement.

Passed

UNI-SETTLE-2 The amount paid during a settle() or settleFor() must equal
the difference in the user's currency deltas before and after the
settle() call.

Passed

UNI-SETTLE-3 The amount paid during a settle() or settleFor() must equal
the remittances paid to the singleton.

Passed

UNI-SETTLE-4 After a burn, the sender’s currency delta should increase to reflect
the decreased debt. (Weak)

Passed

Trail of Bits 19 Uniswap v4 Core Security Assessment
PUBLIC

UNI-SETTLE-5 After a burn, the difference between the sender’s previous and
new currency delta should equal the burn amount. This is a strong
version of UNI-SETTLE-4.

Passed

UNI-SETTLE-6 After a burn, the from actor’s ERC6909 balance should decrease to
reflect the burned amount. (Weak)

Passed

UNI-SETTLE-7 After a burn, the difference between the from actor’s previous and
new ERC6909 balance should equal the burn amount. This is a
strong version of UNI-SETTLE-6.

Passed

UNI-SETTLE-8 After a mint, the sender’s currency delta should decrease to reflect
increased debt. (Weak)

Passed

UNI-SETTLE-9 After a mint, the difference between the sender’s previous and new
currency delta should match the mint amount. This is a strong
version of UNI-SETTLE-8.

Passed

UNI-SETTLE-10 After a mint, the recipient’s ERC6909 balance should increase.
(Weak)

Passed

UNI-SETTLE-11 After a mint, the recipient’s ERC6909 balance should increase by
the mint amount This is a strong version of UNI-SETTLE-10.

Passed

UNI-SETTLE-12 After a clear, the actor’s currency delta should go down or be equal
to zero. (Weak)

Passed

UNI-SETTLE-13 After a clear, the actor’s currency delta should equal the amount
cleared. This is a strong version of UNI-SETTLE-12.

Passed

Modify Liquidity Action

ID Property Result

UNI-MODLIQ-1 For a specific position, getPositionInfo must return the same
liquidity as getPosition.

Passed

UNI-MODLIQ-2 For a specific position, getPositionInfo must return the same
feeGrowthInside0 as getPosition.

Passed

UNI-MODLIQ-3 For a specific position, getPositionInfo must return the same
feeGrowthInside1 as getPosition.

Passed

UNI-MODLIQ-4 The amount0 of fees accrued from modifyPosition() must be
non-negative.

Passed

UNI-MODLIQ-5 The amount1 of fees accrued from modifyPosition() must be
non-negative.

Passed

Trail of Bits 20 Uniswap v4 Core Security Assessment
PUBLIC

UNI-MODLIQ-6 The singleton must be able to credit the user for their
feesAccrued.amount0.

Passed

UNI-MODLIQ-7 The singleton must be able to credit the user for their
feesAccrued.amount1.

Passed

UNI-MODLIQ-8 The pool must have enough currency0 to return the LP's liquidity
balance.

Passed

UNI-MODLIQ-9 The pool must have enough currency1 to return the LP's liquidity
balance.

Passed

UNI-MODLIQ-10 The singleton must have enough currency0 to return the LP’s
liquidity balance.

Passed

UNI-MODLIQ-11 The singleton must have enough currency1 to return the LP’s
liquidity balance.

Passed

Take Action

ID Property Result

UNI-TAKE-1 After executing take(), the user's currencyDelta should be the
difference between their previous delta and the amount taken.

Passed

UNI-TAKE-2 After executing take(), the user's balance should increase by the
amount taken.

Passed

UNI-TAKE-3 After executing take(), the singleton's balance should decrease by
the amount taken.

Passed

End-to-End Properties

ID Property Result

UNI-E2E-1 Outstanding deltas must be zero after the singleton is re-locked. Passed

UNI-E2E-2 When swapping through a pair in one direction, then swapping in
the opposite direction, the user must not have more fromTokens
than they started with.

Passed

UNI-E2E-3 When swapping through a pair in one direction, then swapping in
the opposite direction, the user must not have more toTokens
than they started with.

Passed

Trail of Bits 21 Uniswap v4 Core Security Assessment
PUBLIC

Inter-Action Properties

ID Property Result

UNI-ACTION-1 The amount owed to an actor in a single-actor system must always
be less than or equal to the balance of the singleton. (Weak)

Passed

UNI-ACTION-2 The amount owed to an actor in a single-actor system must always
be less than or equal to the balance of the singleton, less protocol
fees and LP fees. (Strong)

Passed

UNI-ACTION-3 The amount of protocol fees owed may not exceed the singleton’s
balance (less its deployed liquidity) while the currency has a positive
or zero delta.

Passed

UNI-ACTION-4 An actor’s debited delta must not exceed int256.max for any
single action.

Passed

UNI-ACTION-5 An actor’s credited delta must not exceed int256.max for any
single action.

Passed

UNI-ACTION-6 collectProtocolFees() must not revert on valid input. Passed

Stateless Invariants
ProtocolFeeLibrary

ID Property Result

UNI-PROTOFEE-
1

The swap fee cannot exceed 100%. Verified

UNI-PROTOFEE-
2

ValidProtocolFee is equivalent to getZeroForOneFee(self) <=
MAX_PROTOCOL_FEE && getOneForZeroFee(self) <=
MAX_PROTOCOL_FEE.

Verified

LiquidityMath

ID Property Result

UNI-LIQMATH-1 addDelta increases/decreases based on y. Verified

UNI-LIQMATH-2 addDelta reverts if it underflows/overflows. Verified

Trail of Bits 22 Uniswap v4 Core Security Assessment
PUBLIC

Differential Testing between V3 and V4
To check the equivalence of the V3 components (Solidity 0.7) against their V4 counterparts
(Solidity 0.8), we implemented a harness using a bytecode-based differential testing
approach. We compiled the V3 library using Solidity 0.7, and deployed their raw bytecodes
in a harness compiled with Solidity 0.8, allowing us to compare both versions.

ID Property Result

UNI-DIFFV3-1 FullMath.mulDiv() behaves the same on V3 and V4. Verified

UNI-DIFFV3-2 * FullMath.mulDivRoundingUp() behaves the same on V3 and
V4.

Passed
(*)

UNI-DIFFV3-3 BitMath.mostSignificantBit() behaves the same on V3 and
V4.

Verified

UNI-DIFFV3-4 BitMath.leastSignificantBit() behaves the same on V3 and
V4.

Verified

UNI-DIFFV3-5 LiquidityMath.addDelta behaves the same on V3 and V4. Verified

(*) UNI-DIFFV3-2 could not be verified by Halmos (timeout two hours) and was checked with Echidna
(500,000 calls).

Differential Testing between Low-Level Code and High-Level Implementations
To verify the equivalence between low-level (assembly) gas-optimized implementations and
their high-level counterparts, a fuzzing harness was added. Functions in this contract
contain snippets of functions using assembly from Uniswap V4, and implementations of the
same functions using pure Solidity.

Where possible, the Solidity equivalents were taken from the comments of the assembly
implementations, and in the remaining cases, the code was reconstructed from the
intended goal of the function.

ID Property Result

UNI-LOWLEVEL-
1

Low-level implementation of Position.get() should match its
high-level implementation.

Passed

UNI-LOWLEVEL-
2

Low-level implementation of CurrencyDelta.computeSlot()
should match its high-level implementation.

Passed

UNI-LOWLEVEL-
3

Low-level implementation of LiquidityMath.addDelta() should
match its high-level implementation.

Passed

Trail of Bits 23 Uniswap v4 Core Security Assessment
PUBLIC

https://secure-contracts.com/program-analysis/echidna/advanced/testing-bytecode.html
https://secure-contracts.com/program-analysis/echidna/advanced/testing-bytecode.html

UNI-LOWLEVEL-
4

Low-level implementation of
Pool.tickSpacingToMaxLiquidityPerTick() should match
its high-level implementation.

Passed

UNI-LOWLEVEL-
5

Low-level implementation of
ProtocolFeeLibrary.isValidProtocolFee() should match
its high-level implementation.

Passed

UNI-LOWLEVEL-
6

Low-level implementation of
ProtocolFeeLibrary.calculateSwapFee() should match its
high-level implementation.

Passed

UNI-LOWLEVEL-
7

Low-level implementation of SwapMath.getSqrtPriceTarget()
should match its high-level implementation.

Passed

UNI-LOWLEVEL-
8

Low-level implementation of TickBitmap.compress() should
match its high-level implementation.

Passed

Static Invariants
Through the review, we identified multiple code patterns that require to be enforced
through the codebase. To ensure their correctness, we wrote a linter tool based on slither.

The following checks were implemented and were all passing:

ID Property Why Result

noSelfCall_shou
ld_not_return

Functions that use
noSelfCall do not have
any return variable

The modifier is a no-op; any return
variable would always be its
default value.

Passed

callHook Functions that call
callHook are protected
against self-calls

This ensures that the hook will not
re-enter to itself.

Passed

pool_manager_fu
nction_ids

PoolManager’s functions
do not collide with the
Hooks function

A function collision could lead to
setting a hook to be the pool
manager itself and executing
unexpected code (e.g., having the
manager swap assets).

Passed

pool_manager_pa
yable

Only settle/settleFor
are payable in the pool
manager

Only these two functions should
receive funds.

Passed

Trail of Bits 24 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/crytic/slither

Codebase Maturity Evaluation

Trail of Bits uses a traffic-light protocol to provide each client with a clear understanding of
the areas in which its codebase is mature, immature, or underdeveloped. Deficiencies
identified here often stem from root causes within the software development life cycle that
should be addressed through standardization measures (e.g., the use of common libraries,
functions, or frameworks) or training and awareness programs.

Category Summary Result

Arithmetic New compiler versions are used for the high-level code;
therefore, all high-level operations use checked
arithmetic by default. The low-level arithmetic is correct,
and the results match their high-level counterparts.
Rounding directions are considered and explicitly
documented. There is widespread usage of unchecked
arithmetic to make the code gas-efficient. However,
special consideration is made for operations that could
overflow or otherwise revert, and edge cases are
documented.

Strong

Auditing In general, events are properly emitted for most of the
state changes and other critical functions. However, we
found a few instances (TOB-UNI4-5) where the event is
missing.

Satisfactory

Authentication /
Access Controls

The protocol fees contract, used to establish and collect
the fees belonging to the protocol, is privileged. Access
control is implemented. However, there is no two-step
procedure to change ownership. There is no indication of
multisignature or hardware key usage for the privileged
address.

Satisfactory

Complexity
Management

In general, functions follow the established good
practices: they are short, have little or no redundancy or
duplication, and have a clear and limited scope. The
naming scheme is also clear.

Given the optimizations in the code, assembly code is
extensively used, and it can sometimes be quite complex
to follow or analyze. Some functions do not validate input
parameters to save gas (for example, there are no zero

Moderate

Trail of Bits 25 Uniswap v4 Core Security Assessment
PUBLIC

address checks in the code; see Code Quality).

There are several usages of custom types and
user-defined operators that simplify the understanding
of functions and contracts.

All these points can impact the onboarding of new
developers to the team: the complexity of the system and
the low-level optimizations make a steep learning curve,
and it is highly likely that an inexperienced developer will
introduce bugs inadvertently.

Decentralization The protocol is built to be decentralized. The only
privileged access functions are the ones related to the
protocol fees, which are capped at max 0.1% if they were
to be enabled.

Strong

Documentation The documentation clearly shows the differences
between V3 and V4 and uses diagrams to summarize
information. Reading the documentation can help one
gain a high-level understanding of how the different
system components in V4 work. Developers integrating
with Uniswap V4 have code snippets and examples.
Not all contracts are covered in V4 docs.

Code documentation is extensive, both in NatSpec and
in-line comments.

A minor deviation between documentation and code was
found in the Hooks library. See the Code Quality
appendix.

Satisfactory

Low-Level
Manipulation

Assembly and low-level structures are used extensively to
save gas. Low-level blocks commonly reimplement
higher-level code.

Assembly usage is correct. Most blocks have a NatSpec or
inline documentation specifying what the code is doing,
how it is implemented, and what the higher-level
equivalence would be. Stateless fuzz tests showed that
both results match for several functions.

In other cases, where the code is borrowed from other
projects, this is documented, and links to the original

Satisfactory

Trail of Bits 26 Uniswap v4 Core Security Assessment
PUBLIC

repositories are provided.

Some arithmetic operations are also fully implemented in
assembly.

Testing and
Verification

A total of 590 tests were provided. The test suite runs
“out of the box,” and there are no failing tests. However,
test coverage is not 100% for some files and functions.
Contracts and libraries have unitary and basic fuzzing
tests. The tests run in the CI/CD pipeline for new pull
requests and merge operations. Additionally, forge test
coverage is integrated in the CI and displayed in each PR.

Satisfactory

Transaction
Ordering

The lock/unlock mechanism makes all actions inside a
transaction atomic, minimizing the risks of front-running
and malicious MEV actors.

The only transaction ordering risk present in the
codebase is considered out of scope, as it was already
reported and consists of front-running the pool
initialization transaction.

Satisfactory

Trail of Bits 27 Uniswap v4 Core Security Assessment
PUBLIC

Summary of Findings

The table below summarizes the findings of the review, including type and severity details.

ID Title Type Severity

1 Strict equality on fee comparison can cause fees
to exceed 100%

Data Validation Informational

2 Incorrect variable usage on swap fee Data Validation Informational

3 Collected protocol fees may count against user’s
currency deltas

Undefined
Behavior

Low

4 Use of incorrect mask to clear higher bits of the
protocolFee value

Data Validation Informational

5 Insufficient event generation Auditing and
Logging

Informational

6 Similar-looking pool IDs can be brute-forced
through the PoolKey hooks fields

Undefined
Behavior

Informational

Trail of Bits 28 Uniswap v4 Core Security Assessment
PUBLIC

Detailed Findings

1. Strict equality on fee comparison can cause fees to exceed 100%

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-UNI4-1

Target: libraries/Pool.sol

Description
The usage of strict equality on the max fee validation can lead to acceptance of an incorrect
fee.

When performing a swap, the fee comprises a protocol and an LP fee, and is calculated
through the calculateSwapFee function:

swapFee = protocolFee == 0 ? lpFee : uint16(protocolFee).calculateSwapFee(lpFee);

Figure 1.1: src/libraries/Pool.sol#L307

swapFee is represented as a percentage. It is checked to not be equal to 100%
(MAX_LP_FEE):

if (swapFee == LPFeeLibrary.MAX_LP_FEE && !exactInput) {
InvalidFeeForExactOut.selector.revertWith();

}

Figure 1.2: src/libraries/Pool.sol#L312-L314

Due to the usage of a strict equality (==), if the fee exceeds 100%, the validation passes,
causing the fee to be greater than expected.

Note that the issue is not currently exploitable, as:

● We could not find a realistic way to increase the fee above 100%.

● The following operations in computeSwapStep would revert (e.g.,: MAX_FEE_PIPS
- _feePips).

This issue’s severity can be higher if combined with TOB-UNI4-2.

Trail of Bits 29 Uniswap v4 Core Security Assessment
PUBLIC

Recommendations
Short term, use >= instead of == when comparing the swap fee against its max value.

Long term, create tests for which the different fee limits are not set to 100%.

Trail of Bits 30 Uniswap v4 Core Security Assessment
PUBLIC

2. Incorrect variable usage on swap fee

Severity: Informational Difficulty: High

Type: Data Validation Finding ID: TOB-UNI4-2

Target: libraries/Pool.sol

Description
The swap fee is compared against the max LP fee constant instead of the max swap fee
constant.

The swap fee is composed of two components: the protocol fee and the LP fee. swapFee is
represented as a percentage. It is checked to not be equal to 100%:

if (swapFee == LPFeeLibrary.MAX_LP_FEE && !exactInput) {
InvalidFeeForExactOut.selector.revertWith();

}

Figure 2.1: src/libraries/Pool.sol#L312-L314

However, the variable used for the comparison is the max LP fee (MAX_LP_FEE) instead of
the max swap fee (MAX_FEE_PIPS):

/// @notice the lp fee is represented in hundredths of a bip, so the max is 100%
uint24 public constant MAX_LP_FEE = 1000000;

Figure 2.2: src/libraries/LPFeeLibrary.sol#L24-L25

library SwapMath {
uint256 internal constant MAX_FEE_PIPS = 1e6;

Figure 2.3: src/libraries/SwapMath.sol#L9-L10

Both constants have the same value (10**6), so this issue is not an immediate threat to the
protocol. However, this issue’s severity would be higher if combined with TOB-UNI4-1.

Exploit scenario
The LP fee is updated to be at maximum 10%, and the protocol fee is expected to be 5%. As
the swap fee is capped at the LP fee amount (10%), the swap fee is incorrect.

Recommendations
Short term, use SwapMath.MAX_FEE_PIPS instead of LPFeeLibrary.MAX_LP_FEE when
comparing the swap fee against its max value.

Trail of Bits 31 Uniswap v4 Core Security Assessment
PUBLIC

Long term, create tests for which the different fee limits are not set to 100%.

Trail of Bits 32 Uniswap v4 Core Security Assessment
PUBLIC

3. Collected protocol fees may count against user’s currency deltas

Severity: Low Difficulty: High

Type: Undefined Behavior Finding ID: TOB-UNI4-3

Target: PoolManager.sol

Description
Uniswap v4’s protocol-level fee collection operates outside of the currencyDelta model
used by the rest of the protocol. This creates an opportunity for erroneous settle
calculations if protocol fee collection is performed after sync is called, ultimately leading to
an unexpected revert.

When a user conducts a swap, position adjustment, or other action, it generates
currencyDeltas for that user to represent the amount owed to the user or owed to the
protocol. These currencyDeltas are cleared by calling sync(currency), paying the
amount of debt owed, then calling settle.

The sync and settle functions determine how much the user has paid by comparing the
difference between currency.balanceOfSelf when both sync and settle are called. If
the user calls collectProtocolFees between sync and settle, the amount of fees paid
to the recipient will erroneously count against the user’s currencyDelta, as if the user
had called take or mint for the amount of fees paid.

Exploit scenario
The Uniswap DAO votes to turn on the protocol fee switch, and creates a contract that will
harvest protocol fees and then swap them for the Uniswap Protocol governance token. The
contract erroneously calls the collectProtocolFees function between sync and
settle, and when determining how much needs to be paid to successfully settle the
transaction, it manually calculates the currencyDelta.

In this situation, the fee collection process either: 1. becomes a no-op that collects fees and
burns them by sending them to the v4 singleton, or 2. the transaction reverts.

Recommendations
Short term, add a guard to the collectProtocolFees() function to prevent it from being
called while the contract is unlocked, and add a guard to sync to ensure it can only be
called when the singleton is unlocked. Alternatively, add comments or documentation
regarding the safe use of collectPoolFees.

Trail of Bits 33 Uniswap v4 Core Security Assessment
PUBLIC

Long term, add stateful properties to detect this kind of balance tampering attack in the
future.

Trail of Bits 34 Uniswap v4 Core Security Assessment
PUBLIC

4. Use of incorrect mask to clear higher bits of the protocolFee value

Severity: Informational Difficulty: Low

Type: Data Validation Finding ID: TOB-UNI4-4

Target: libraries/ProtocolFeeLibrary.sol

Description
The calculateSwapFee function of the ProtocolFeeLibrary contract uses an incorrect
mask of 0xffff to clear higher bits of the protocolFee value, which is a 12-bit value.

The swap function of the Pool library contract loads the protocol fee from the storage
variable slot0 of the singleton contract and calls one of the getZeroForOneFee or
getOneForZeroFee functions to obtain the protocol fee percentage value:

uint256 protocolFee =
zeroForOne ? slot0Start.protocolFee().getZeroForOneFee() :

slot0Start.protocolFee().getOneForZeroFee();

Figure 4.1: libraries/Pool.sol#L291-L292

The getZeroForOneFee function of the ProtocolFeeLibrary contract captures the
lower 12 bits of the storage value and returns them in a uint16 type value:

function getZeroForOneFee(uint24 self) internal pure returns (uint16) {
return uint16(self & 0xfff);

}

Figure 4.2: libraries/ProtocolFeeLibrary.sol#L17-L19

Next, the swap function of the Pool library contract calls the calculateSwapFee function
on the protocolFee variable of type uint16 to compute the swap fee amount, combining
the protocol fee and liquidity provider fee. However, the calculateSwapFee function
assumes the value of the self variable, which is the protocolFee variable, to be of 16-bit
length instead of 12-bit length and uses a mask of 0xffff instead of 0xfff to clear higher
bits of the provided value:

function calculateSwapFee(uint16 self, uint24 lpFee) internal pure returns (uint24
swapFee) {

// protocolFee + lpFee - (protocolFee * lpFee / 1_000_000). Div rounds up to
favor LPs over the protocol.

assembly ("memory-safe") {
self := and(self, 0xffff)

Trail of Bits 35 Uniswap v4 Core Security Assessment
PUBLIC

lpFee := and(lpFee, 0xffffff)
let numerator := mul(self, lpFee)
let divRoundingUp := add(div(numerator, PIPS_DENOMINATOR), gt(mod(numerator,

PIPS_DENOMINATOR), 0))
swapFee := sub(add(self, lpFee), divRoundingUp)

}
}

Figure 4.3: libraries/ProtocolFeeLibrary.sol#L38-L47

Usage of an incorrect mask does not lead to incorrect calculations or financial loss in the
current implementation because of correct masking in the getZeroForOneFee or
getOneForZeroFee functions. It could lead to a higher fee being charged to the user if the
calculateSwapFee function was called on a uint16 value that did not have its upper four
bits cleared.

Recommendations
Short term, use the correct mask 0xfff to clear higher bits of the protocolFee value and
document this behavior in inline code comments.

Long term, consider actual limits of values instead of the types when sanitizing the values
for arithmetic operations.

Trail of Bits 36 Uniswap v4 Core Security Assessment
PUBLIC

5. Insufficient event generation

Severity: Informational Difficulty: Low

Type: Auditing and Logging Finding ID: TOB-UNI4-5

Target: Various

Description
Multiple critical operations do not emit events. As a result, it will be difficult to review the
correct behavior of the contracts once they have been deployed.

Events generated during contract execution aid in monitoring, baselining of behavior, and
detection of suspicious activity. Without events, users and blockchain-monitoring systems
cannot easily detect behavior that falls outside the baseline conditions; malfunctioning
contracts and attacks could go undetected.

The following operation should trigger events:

● PoolManager
○ updateDynamicLPFee

The following operation should modify events:

● PoolManager
○ The initialize function should include sqrtPriceX96 as an event

parameter if it emits.

The following operations may also be considered to trigger events. If they do not, they
should be documented properly.

● PoolManager
○ donate
○ settle
○ take

Recommendations
Short term, add events for all operations that could contribute to a higher level of
monitoring and alerting. If certain operations are not set up to emit events to optimize gas
usage, they should be comprehensively documented.

Long term, consider using a blockchain-monitoring system to track any suspicious behavior
in the contracts. The system relies on several contracts to behave as expected. A

Trail of Bits 37 Uniswap v4 Core Security Assessment
PUBLIC

monitoring mechanism for critical events would quickly detect any compromised system
components.

Trail of Bits 38 Uniswap v4 Core Security Assessment
PUBLIC

6. Similar-looking pool IDs can be brute-forced through the PoolKey hooks
fields

Severity: Informational Difficulty: High

Type: Undefined Behavior Finding ID: TOB-UNI4-6

Target: types/PoolId.sol, types/PoolKey.sol

Description
Similar-looking pool IDs can be brute-forced by using the PoolKey.hooks field as a nonce.
Attackers could use this to trick users into using their malicious pools. This does not affect
the Uniswap v4 protocol; however, this does impact third-party integrators, which should
try to minimize users falling victim to using malicious pools.

Pools can be freely created in Uniswap v4 through the PoolManager.initialize
function. Each Pool has five fields (see figure 6.1), and the hash of these results in the pool’s
ID (see figure 6.2).

8 struct PoolKey {
9 /// @notice The lower currency of the pool, sorted numerically
10 Currency currency0;
11 /// @notice The higher currency of the pool, sorted numerically
12 Currency currency1;
13 /// @notice The pool swap fee, capped at 1_000_000. If the highest bit is
1, the pool has a dynamic fee and must be exactly equal to 0x800000
14 uint24 fee;
15 /// @notice Ticks that involve positions must be a multiple of tick
spacing
16 int24 tickSpacing;
17 /// @notice The hooks of the pool
18 IHooks hooks;
19 }

Figure 6.1: The PoolKey struct in types/PoolKey.sol#L8-L19

9 library PoolIdLibrary {
10 /// @notice Returns value equal to keccak256(abi.encode(poolKey))
11 function toId(PoolKey memory poolKey) internal pure returns (PoolId
poolId) {
12 assembly ("memory-safe") {
13 poolId := keccak256(poolKey, mul(32, 5))
14 }
15 }
16 }

Trail of Bits 39 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/PoolKey.sol#L8-L19

Figure 6.2: Hashing of the PoolKey struct in types/PoolId.sol#L9-L16

An attacker can create a pool with a malicious Hooks contract that looks similar to a
legitimate victim pool by fulfilling the following requirements:

1. The currency0, currency1, fee, and tickSpacing fields are identical to the
victim pool. This can be easily achieved since multiple pools with the same
currency0, currency1, fee, and tickSpacing fields can exist as long as they
have a different hooks field (which happens to be one of the attacker’s other
requirements; see below).

2. The ID of the malicious pool is similar to the ID of the victim pool (i.e., the first
and last X characters are identical). This can be achieved by treating the hooks
field as a nonce and brute-forcing it until a desired keccak256 hash (= pool ID) is
generated. UIs tend to shorten long strings of hexadecimal characters, in which case
having an identical first and last X character could be enough to trick users.

3. The attacker’s custom Hooks contract is deployed at the generated hooks
address. This can be achieved by using a CREATE2 (or CREATE3) factory to
precompute a deployment address that, when placed in the PoolKey.hooks field,
generates a pool ID that is similar to the victim pool’s ID.

4. The address of the Hooks contract has the right flags enabled (present in the
lower 14 bits). This can be achieved by requiring that the CREATE2 (or CREATE3)
precomputed address has the lower 14 bits set as desired to enable the right flags.

In Uniswap v3, this problem did not exist since each pool was deployed separately, there
was no field that could be used as a nonce to generate a desired address, and only one
token pair per fee tier (of which there are only a handful) could be created. In Uniswap v4,
these limitations do not exist.

This begs the question: how do web/mobile apps display pools to users so that they know
which is “the right one”? One solution is, of course, by showing the liquidity in a pool, which
should immediately make clear which pool is the right pool to use (i.e., due to a large
amount of liquidity). However, for newly created pools, there may not be a lot of liquidity
upon (or within a short timeframe after) pool creation. Also, a well-funded attacker might
actually create a pool and add a substantial amount of liquidity, which then later is
withdrawn again.

Recommendations
Short term, there is no silver bullet solution to this problem. We therefore recommend
documenting this issue in the official Uniswap v4 docs so that users and integrators are
made aware.

Trail of Bits 40 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/PoolId.sol#L9-L16

Long term:

● Design a checklist (or flow chart) for users that helps them to determine if a
pool is likely safe to interact with. This will not be easy since simply saying, “do
not interact with a pool with less than 5 LPs” may actually filter out pools that are
not malicious. The same goes for “do not interact with pools created less than 7
days ago,” which filters out new projects that are not malicious. The best solution
could be creating a list of things to check that add up to a certain score, indicating
that the pool is probably not safe to interact with.

● Design guidelines for integrators that explain what information to display in
the UI for each pool. These guidelines should be aligned to the checklist from the
above point so that users can easily follow the checklist.

● Consider creating a allowlist of pool IDs that are known to be non-malicious,
and only display these by default in the Uniswap v4 UI.

● Consider creating a allowlist of hook contract addresses and/or hashes of
runtime bytecode of hook contracts. This could be used to show to users which
hooks are known not to be malicious (although, due to the arbitrary nature of hooks
contracts, they may still perform external calls that lead to malicious behavior). The
flexibility of hooks contracts is both a plus—it provides flexibility for projects to build
custom integrations—and a negative, due to all the ways hooks contracts can act
maliciously.

● Consider using a different way to determine a pool ID. For example, an
incrementing integer as ID would prevent this issue entirely. However, this would
incur more gas costs since then the PoolKey struct field would need to be stored
within the contract storage (and SLOADed during every action). And since lower gas
costs is one of the design goals of Uniswap v4, this is probably not a valid solution.
However, there may be other creative ways to generate a pool ID that we did not
think of and that would prevent this issue.

Trail of Bits 41 Uniswap v4 Core Security Assessment
PUBLIC

A. Vulnerability Categories

The following tables describe the vulnerability categories, severity levels, and difficulty
levels used in this document.

Vulnerability Categories

Category Description

Access Controls Insufficient authorization or assessment of rights

Auditing and Logging Insufficient auditing of actions or logging of problems

Authentication Improper identification of users

Configuration Misconfigured servers, devices, or software components

Cryptography A breach of system confidentiality or integrity

Data Exposure Exposure of sensitive information

Data Validation Improper reliance on the structure or values of data

Denial of Service A system failure with an availability impact

Error Reporting Insecure or insufficient reporting of error conditions

Patching Use of an outdated software package or library

Session Management Improper identification of authenticated users

Testing Insufficient test methodology or test coverage

Timing Race conditions or other order-of-operations flaws

Undefined Behavior Undefined behavior triggered within the system

Trail of Bits 42 Uniswap v4 Core Security Assessment
PUBLIC

Severity Levels

Severity Description

Informational The issue does not pose an immediate risk but is relevant to security best
practices.

Undetermined The extent of the risk was not determined during this engagement.

Low The risk is small or is not one the client has indicated is important.

Medium User information is at risk; exploitation could pose reputational, legal, or
moderate financial risks.

High The flaw could affect numerous users and have serious reputational, legal,
or financial implications.

Difficulty Levels

Difficulty Description

Undetermined The difficulty of exploitation was not determined during this engagement.

Low The flaw is well known; public tools for its exploitation exist or can be
scripted.

Medium An attacker must write an exploit or will need in-depth knowledge of the
system.

High An attacker must have privileged access to the system, may need to know
complex technical details, or must discover other weaknesses to exploit this
issue.

Trail of Bits 43 Uniswap v4 Core Security Assessment
PUBLIC

B. Code Maturity Categories

The following tables describe the code maturity categories and rating criteria used in this
document.

Code Maturity Categories

Category Description

Arithmetic The proper use of mathematical operations and semantics

Auditing The use of event auditing and logging to support monitoring

Authentication /
Access Controls

The use of robust access controls to handle identification and
authorization and to ensure safe interactions with the system

Complexity
Management

The presence of clear structures designed to manage system complexity,
including the separation of system logic into clearly defined functions

Cryptography and
Key Management

The safe use of cryptographic primitives and functions, along with the
presence of robust mechanisms for key generation and distribution

Decentralization The presence of a decentralized governance structure for mitigating
insider threats and managing risks posed by contract upgrades

Documentation The presence of comprehensive and readable codebase documentation

Low-Level
Manipulation

The justified use of inline assembly and low-level calls

Testing and
Verification

The presence of robust testing procedures (e.g., unit tests, integration
tests, and verification methods) and sufficient test coverage

Transaction
Ordering

The system’s resistance to transaction-ordering attacks

Rating Criteria

Rating Description

Strong No issues were found, and the system exceeds industry standards.

Satisfactory Minor issues were found, but the system is compliant with best practices.

Moderate Some issues that may affect system safety were found.

Trail of Bits 44 Uniswap v4 Core Security Assessment
PUBLIC

Weak Many issues that affect system safety were found.

Missing A required component is missing, significantly affecting system safety.

Not Applicable The category is not applicable to this review.

Not Considered The category was not considered in this review.

Further
Investigation
Required

Further investigation is required to reach a meaningful conclusion.

Trail of Bits 45 Uniswap v4 Core Security Assessment
PUBLIC

C. Code Quality Findings

This appendix contains findings that do not have immediate or obvious security
implications. However, they may facilitate exploit chains targeting other vulnerabilities,
become easily exploitable in future releases, or decrease code readability. We recommend
fixing the issues reported here.

● Use two-step ownership transfer in ProtocolFees. The ProtocolFees contract
inherits from solmate’s Owned contract, which features a single-step ownership
transfer. The effect is that it is possible to lose access to the ProtocolFeeController
setter. Given that this function is not meant to be called often, having an additional
step for ownership transfer does not affect the runtime gas optimizations.
Additionally, we recommend that the initial owner be different from the deployer.

● Rename the state variable in Pool.modifyLiquidity. The Pool library defines
a State structure that contains the pool state. Later, in the same file, the
modifyLiquidity function defines a local variable called state, of type
ModifyLiquidityState. Given that the first argument to the function is a State
structure, the similarity in names between the State structure and state variable
makes the code difficult to read.

● Fix the hashed value for the NonZeroDeltaCount slot. The library name is
NonZeroDeltaCount, and the value used to calculate the slot hash is
NonzeroDeltaCount.

● Fix incorrect comments in Currency data type. The comments in the transfer
function of the Currency library are incorrect.

● Upgrade OpenZeppelin contracts to the latest version. The OpenZeppelin
contracts submodule uses version 4.4.2 of the contracts, while the latest release is
version 5.0.2.

● Fix the documentation for the Hooks library. The official documentation website
for hook deployment, mentions that the higher-order bits of the hook address are
used as flags. However, the Hooks library code uses the lower-order bits.

● Include zero-value checks for certain function arguments. Certain function
parameters do not contain zero-value checks, leading to token loss. More
specifically, the function argument to in the take function, and the function
argument recipient in collectProtocolFees, should be checked for the zero
address.

Trail of Bits 46 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L34-L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/ProtocolFees.sol#L34-L37
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L79-L88
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Pool.sol#L156
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/NonZeroDeltaCount.sol#L8-L10
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/types/Currency.sol#L80-L81
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/.gitmodules#L7-L10
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/.gitmodules#L7-L10
https://docs.uniswap.org/contracts/v4/concepts/hook-deployment
https://github.com/Uniswap/v4-core/blob/7a72031574fc4548ca8fce197114cf87d5a2c037/src/libraries/Hooks.sol#L26-L46

D. Invariant Testing and Harness Design

When reviewing protocols with a large potential state space, Trail of Bits creates various
stateful and stateless fuzz testing harnesses to verify system properties that would be
challenging or even impossible to verify using manual review.

We performed automated testing using a combination of stateful fuzz testing harnesses
run using Echidna and Medusa, and a set of stateless invariants tested using both fuzzing
and formal methods.

Stateless Invariant Testing
As a general rule, we recommend favoring fuzzing over formal methods (see Why fuzzing
over formal verification?). However, given the critical and low complexity of some
invariants, we decided to use Halmos to check for their correctness. These invariants did
not require any special harness and are documented in the Automated Testing section.

Stateful Invariant Testing
Stateful invariant testing involves initializing a system, then using a fuzzer to run various
public functions with specially selected parameters in order to break user-defined
invariants. The fuzzer runs up to N selected functions for a given EVM context before
resetting the context and starting over. Stateful invariant testing is “stateful” because the
EVM context is reused for the next transaction in the sequence, meaning each invariant
may be run against exotic system states produced by the previous transactions.

Stateful invariant testing, while it does use a fuzzer, should not be confused with
parameterized fuzzing provided by tools like foundry fuzz. Parameterized fuzzing allows
invariants to be tested only against a very specific subset of the state space—specifically,
whatever state the system is in after setUp is completed. This means that the amount of
state space that can be verified by a parameterized fuzzing test is astronomically smaller
than the state space that can be verified by a stateful invariant test.

For stateful invariant testing, we use two fuzzers, Echidna and Medusa, both maintained by
Trail of Bits. These fuzzers are used in conjunction with a test harness: a special contract
that sits in front of the system under test, and is called by the fuzzers to produce
transaction sequences that explore the state space, as measured by code coverage.

Since there is no canonical way of performing stateful invariant tests, designing a test
harness is more of an art than a science. In the following sections, we provide details about
each harness we wrote, the design decisions that went into each harness, and the kinds of
properties we expect to verify with each harness design.

Trail of Bits 47 Uniswap v4 Core Security Assessment
PUBLIC

https://blog.trailofbits.com/2024/03/22/why-fuzzing-over-formal-verification/
https://blog.trailofbits.com/2024/03/22/why-fuzzing-over-formal-verification/
https://github.com/a16z/halmos

Stateful Invariants Using the End-to-End Harness
At the beginning of the engagement, we started with a targeted end-to-end harness that
could be used to verify the properties of specific user flows, such as swapping, providing
liquidity, and donating. The goal of this harness is not only to test those specific flows, but
also to help acquaint us with v4’s new lock/unlock model, its existing test suite, and to
determine whether parts of the existing unit test suite can be repurposed into a more
generalized fuzzing harness.

Figure C.1 shows a harness diagram. The harness revolves around the End2End contract,
which is used to initialize the harness, to deploy actor/ancillary contracts, and as an
entrypoint for the fuzzer to trigger actions within the system. We borrowed much of the
initialization and callback logic from Uniswap’s Deployer, PoolSwapTest,
PoolDonateTest, and similar contracts, drastically reducing the amount of time required
to set up the harness.

The end-to-end harness may be initialized with a specified number of currencies, a
specified number of distinct actors, and a dynamic number of pools that are initialized
using fuzzed values. The full supply of each currency is minted to the end-to-end contract,
and actors can borrow funds from the contract as needed for their tests. This allows actors
to use funds up to the totalSupply for each currency, where if the values for each
currency were distributed to each actor, each actor would only be able to test up to
totalSupply/numActors tokens.

Trail of Bits 48 Uniswap v4 Core Security Assessment
PUBLIC

Figure C.1: Diagram of the end-to-end fuzzing harness

Trail of Bits 49 Uniswap v4 Core Security Assessment
PUBLIC

Stateful Invariants Using the Actions Harness
Shortly after completing the end-to-end harness, we noted severe limitations on the kinds
of properties that could be verified by an end-to-end harness. Uniswap v4 lacks the atomic
properties that its priors and most other smart contract protocols have, meaning the fuzzer
cannot simply use swap or modifyPosition as entrypoints—they must be orchestrated
with multiple other actions to produce a valid transaction. The end-to-end harness, by its
nature, automatically performs this overhead action orchestration, thus preventing
action-level properties from being directly verified.

This detail necessitated a drastically different harness design—one that could verify
Uniswap v4’s non-atomic “actions” in addition to its end-to-end properties.

We began designing a new harness that could address the following requirements:

1. The ability to test the state transition/side effects of each individual Uniswap v4
action (swap, modifyPosition, donate, settle, etc.)

2. The ability to test multiple unlock/lock contexts during the same transaction to
verify that failing to clean transient storage does not cause issues.

3. The ability to detect unexpected overflows/underflows in v4’s new arithmetic.

4. The ability to implement lock-wide properties, including properties defined in the
previous end-to-end harness.

5. The ability to address shortcomings in the system’s previous formal
analysis—specifically the assumption that all loops iterate at most once.

6. Allow as many values to be parameterized as possible (e.g., variable number of
currencies, variable number of pools, variable pool configuration).

Actions Harness Design
The core principle of the harness is to use the fuzzer to generate random sequences of
actions with parameters, using one transaction for each action to be added to the
sequence. Each action and its parameters are stored in the actions and params lists of
ActionFuzzEntrypoint. One of the functions exposed to the fuzzer is runActions,
which takes the actions and params lists and calls into ActionsRouter.executeActions
to execute all of the actions in the same transaction.

ActionsRouter is a pre-existing contract used by the v4 test suite to run arbitrary lists of
actions against the v4 singleton. When
ActionsRouter.executeActions(actions,params) is called, it locks the v4 singleton,
and then in its unlockCallback(), it sequentially runs each action.

Trail of Bits 50 Uniswap v4 Core Security Assessment
PUBLIC

We modified ActionsRouter to add a HARNESS_CALLBACK action. This action calls back
into ActionFuzzEntrypoint instead of calling the v4 singleton, allowing our test harness
to observe the state of the v4 singleton before it is called with an action, and compare it to
the singleton’s state after the call.

Figure C.2 shows a sequence diagram for the Actions Harness, and figure C.3 shows a block
diagram of the harness.

Figure C.2: Sequence diagram of the Actions fuzzing harness

Note that in figure C.2, that there are technically three touchpoints where the system’s
properties can be verified:

1. Before an action is called, we can verify that the system was left in a valid state. We
can also capture the system’s state before the action is called.

Trail of Bits 51 Uniswap v4 Core Security Assessment
PUBLIC

2. After an action is called, we can verify its side effects and ensure that the values
returned by the action are correct.

3. After the system is relocked, we can verify unlock-wide, end-to-end properties. If
multiple unlock/lock cycles occur during a given runActions transaction, we can
verify properties relating to transient storage reuse.

Trail of Bits 52 Uniswap v4 Core Security Assessment
PUBLIC

Figure C.3: Block diagram of the Actions fuzzing harness, including a characterization of
addSwap's behavior

Selected Invariants for Discussion
At the beginning of the engagement, the client flagged several potential issues for which no
known exploit existed, but there was also no proof that an exploit did not exist. The
primary issue is #60 - Investigate Overflow Safety of Donate and feeGrowthGlobal.

The fundamental concern behind this issue is that it may be possible to overflow or
underflow certain functions/variables in the system, causing one of the following effects:

1. An LP position’s liquidity or fees become worth more than they should be.

2. A user may artificially increase or decrease their currencyDelta outside the
intended functionality.

Since Uniswap v4 is implemented so that all pool balances are stored on the same contract,
either of these issues would be of critical severity, since they would allow the malicious
actor to steal liquidity belonging to another pool.

We decided to tackle this issue using two sets of properties: one set that ensures a pool’s
FeeGrowthGlobal cannot underflow, and one set that ensures there are always enough
tokens in a given pool to pay out owed debts to liquidity providers and protocol fees.

Ensuring that a Pool’s FeeGrowthGlobal Cannot Underflow
We implemented six properties to ensure that a pool’s FeeGrowthGlobal does not
underflow through the donate function; two to verify that the call’s BalanceDelta is
always zero or negative; two to verify that the fee growth matches the expected values
based on the change in BalanceDelta; and two to verify that the BalanceDeltas
returned by donate match the amount0 and amount1 that donate was called with
(UNI-DONATE-1, UNI-DONATE-2, UNI-DONATE-6, UNI-DONATE-7, UNI-DONATE-8,
UNI-DONATE-9). An abridged version of the code is shown in figure C.4.

Ensuring that the Singleton Can Always Cover Its Debts
At any one point, the debt owed by the singleton contract to creditors can be broken down
into four categories:

1. Balances owed to creditors through their currencyDelta

2. Balances owed to the DAO through protocol fees

3. Accrued LP fees owed to liquidity providers

4. Liquidity owed to liquidity providers

Trail of Bits 53 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/issues/60

After each action is executed, we can check these properties to ensure that they hold, using
_verifyGlobalProperties. This function contains properties UNI-ACTION-1,
UNI-ACTION-2, and UNI-ACTION-3, which ensure that the sum of all debts and credits does
not exceed the singleton’s balance.

There are some additional properties related to individual categories of debt, such as
UNI-MODLIQ-8 and UNI-MODLIQ-9, which verify the amount of liquidity being withdrawn
by a liquidity provider does not exceed the amount of liquidity available for the pool. This
effectively verifies that when withdrawing liquidity, that amount will not be “taken” from
another pool.

These are accompanied by UNI-MODLIQ-6 and UNI-MODLIQ-7, which verify that the
singleton has adequate balance to credit the liquidity provider for their accrued fees. These
two properties make more sense by scoping them down from the singleton level to the
pool level, but due to time constraints, we were unable to complete this.

function _afterDonate(BalanceDelta delta) internal {
// UNI-DONATE-6
assertLte(delta.amount0(), 0, "A donate() call must not return a positive

BalanceDelta for currency0");
// UNI-DONATE-8
assertEq(_donateAmount0, -delta.amount0, "The donate() call BalanceDelta must

match the amount donated for amount0");
[...]
// how far until the 128x128 overflows
uint256 growth0OverheadX128 = type(uint256).max -

_feeGrowthGlobalBeforeDonate0X128;

// the expected change in fee growth based on delta
uint256 feeGrowthDelta0X128 =

FullMath.mulDiv(uint256(uint128(-delta.amount0())), FixedPoint128.Q128, liquidity);

uint256 feeGrowth0ExpectedX128 = _calculateExpectedFeeDelta(
feeGrowthDelta0X128,
_feeGrowthGlobalBeforeDonate0X128

);
(uint256 feeGrowth0AfterX128, uint256 feeGrowth1AfterX128) =

manager.getFeeGrowthGlobals(donatePoolId);
[...]
if (liquidity > 0) {

if(_donateAmount0 > 0) {
// UNI-DONATE-1
assertEq(feeGrowth0ExpectedX128, feeGrowth0AfterX128 , "After a donation

with a non-zero amount0, the pool's feeGrowthGlobal0X128 be equal to the amount0
BalanceDelta, accounting for overflows.");

Trail of Bits 54 Uniswap v4 Core Security Assessment
PUBLIC

Figure C.4: An abridged reproduction of the donation properties verified in _afterDonate.
(audit-uniswap-v4/test/trailofbits/actionprops/DonateActionProps.sol)

Future Work
There are several areas for potential future work to further improve the invariant test suite
that we could not accomplish during this engagement due to time constraints.

1. Some critical properties, such as UNI-MODLIQ-6 and UNI-MODLIQ-7, are
over-generalized, and would greatly benefit from being tightened up.

2. Some properties were not implemented due to time constraints, such as
calculations for the change in feeGrowthGlobal resulting from a swap call.

3. Many properties of modifyLiquidity and settleNative remain incomplete, and
are tested only at discrete points in the state space using the unit test suite.

4. Properties that verify that a function call should not revert. Due to time constraints,
only several of these could be implemented, and only for the initialize()
function.

5. Some potential properties could be added to better verify that the singleton’s debts
never exceed its assets by verifying the levels of debt of each individual pool instead
of those in the singleton as a whole. Adding properties that operate at the pool-level
will provide higher assurance and will be easier for the fuzzer to discover.
UNI-MODLIQ-8 and UNI-MODLIQ-9 provide some examples for what this would look
like, and it should be straightforward to expand to other forms of debt.

Trail of Bits 55 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/trailofbits/audit-uniswap-v4/blob/b8361a0b9f4673e62915a03f42d0804b5034f928/test/trailofbits/actionprops/DonateActionProps.sol#L53-L92

E. Static Invariants

Throughout the review, we identified multiple code patterns that require to be enforced
through the codebase. To ensure their correctness, we wrote a linter tool based on slither.

The linter checks the following:

ID Property Why Result

noSelfCall_sh
ould_not_retu
rn

Functions that use
noSelfCall do not
return any variable

The modifier is a no-op; any
return variable would always be
its default value.

Passed

callHook Functions that calls
callHook are protected
against self-calls

This ensures that the hook will
not re-enter to itself.

Passed

pool_manager_
function_ids

PoolManager’s functions
do not collide with the
Hooks function

A function collision could lead to
setting a hook to be the pool
manager itself and executing
unexpected code (e.g., having the
manager swap assets).

Passed

pool_manager_
payable

Only
settle/settleFor are
payable in the pool
manager

Only these two functions should
receive funds.

Passed

The code of the linter is provided below. We recommend that Uniswap add the tool in the
CI, and extend it with further analysis:

from collections import defaultdict
from slither import Slither
from slither.core.declarations import Function
from slither.slithir.operations import TypeConversion, Binary, BinaryType
from slither.core.solidity_types.elementary_type import ElementaryType
from slither.core.declarations.solidity_variables import SolidityVariableComposed
from slither.utils.function import get_function_id

def noSelfCall_should_not_return(sl: Slither):
Check that the function that use noSelfCall don't return variable
Given than the modifier is a no-op, that would lead to function to return

Trail of Bits 56 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/crytic/slither

default values

no_finding_or_error = True
hook_contracts = sl.get_contract_from_name("Hooks")

for hook_contract in hook_contracts:
noSelfCall = None
for modifier in hook_contract.modifiers:

if modifier.full_name == "noSelfCall(IHooks)":
noSelfCall = modifier

if not noSelfCall:
print(f"noSelfCall not found in {hook_contract}")
no_finding_or_error = False

for function in hook_contract.functions:
if noSelfCall in function.modifiers and function.returns:

print(f"{function} has the {noSelfCall} modifier and return
variables")

no_finding_or_error = False

if no_finding_or_error:
print(f" - [X] noSelfCall_should_not_return analyzed (no finding)")

else:
print(

f" - [] noSelfCall_should_not_return analyzed (incomplete or with
finding)"

)

def _has_msg_sender_self_check(function: Function) -> bool:

self = []
for ir in function.slithir_operations:

if (
isinstance(ir, TypeConversion)
and ir.variable.name == "self"
and ir.type == ElementaryType("address")

):
self.append(ir.lvalue)

for ir in function.slithir_operations:
if isinstance(ir, Binary) and ir.type == BinaryType.EQUAL:

if (
ir.variable_left == SolidityVariableComposed("msg.sender")
and ir.variable_right in self

):
return True

return False

def callHook(sl: Slither):

Trail of Bits 57 Uniswap v4 Core Security Assessment
PUBLIC

Check that the function that calls callHook have either
- The noSelfCall modifier
- Or compare msg.sender with self

no_finding_or_error = True
hook_contracts = sl.get_contract_from_name("Hooks")

for hook_contract in hook_contracts:

callHook =
hook_contract.get_function_from_signature("callHook(address,bytes)")

noSelfCall = None
for modifier in hook_contract.modifiers:

if modifier.full_name == "noSelfCall(IHooks)":
noSelfCall = modifier

if not callHook or not noSelfCall:
print(f"callHook or noSelfCall not found in {hook_contract}")
no_finding_or_error = False

for function in hook_contract.functions:
Allowlist callHookWithReturnDelta
if function.name in ["callHookWithReturnDelta"]:

continue

if callHook in function.all_internal_calls():
if noSelfCall in function.modifiers:

continue
if _has_msg_sender_self_check(function):

continue

print(f"{function} has is missing noSelfCall or msg.sender==self
check")

no_finding_or_error = False

if no_finding_or_error:
print(f" - [X] callHook analyzed (no finding)")

else:
print(

f" - [] callHook analyzed (incomplete or with finding)"
)

def pool_manager_function_ids(sl: Slither):
Check that all the public functions of PoolManager dont collide with the hooks

functions (func id)
This is to prevent a hook to point to the pool manager to executed unexpected

code
(ex: having the manager swapping assets)

no_finding_or_error = True
pool_manager_contracts = sl.get_contract_from_name("PoolManager")

Trail of Bits 58 Uniswap v4 Core Security Assessment
PUBLIC

hooks = sl.get_contract_from_name("IHooks")

entry_ids = defaultdict(set)
hooks_ids = defaultdict(set)
for pool_manager_contract in pool_manager_contracts:

for entry_point in pool_manager_contract.functions_entry_points:
entry_ids[get_function_id(entry_point.solidity_signature)].add(

entry_point.solidity_signature
)

for hook_contract in hooks:

for hook in hook_contract.functions_entry_points:
hooks_ids[get_function_id(hook.solidity_signature)].add(

hook.solidity_signature
)

inter = set(entry_ids.keys()).intersection(set(hooks_ids.keys()))
for i in inter:

print(f"ID collision between {entry_ids[i]} and {hooks_ids[i]}")
no_finding_or_error = False

if no_finding_or_error:
print(f" - [X] pool_manager_function_ids analyzed (no finding)")

else:
print(f" - [] pool_manager_function_ids analyzed (with finding)")

def pool_manager_payable(sl: Slither):
Check that only settle/settleFor are payable in the pool manager

no_finding_or_error = True
pool_manager_contracts = sl.get_contract_from_name("PoolManager")

for manager in pool_manager_contracts:
for function in manager.functions:

if function.payable and not function.name in ["settle", "settleFor"]:
print(f"{function} should not be payable")
no_finding_or_error = False

if no_finding_or_error:
print(f" - [X] pool_manager_payable analyzed (no finding)")

else:
print(f" - [] pool_manager_payable analyzed (with finding)")

def main() -> None:

Run with python linters/linter.py
If call from another path, update "." to point to the top level directory of

the project
sl = Slither(".")

Trail of Bits 59 Uniswap v4 Core Security Assessment
PUBLIC

noSelfCall_should_not_return(sl)
callHook(sl)
pool_manager_function_ids(sl)
pool_manager_payable(sl)

if __name__ == "__main__":
main()

Figure E.1: Slither script

Trail of Bits 60 Uniswap v4 Core Security Assessment
PUBLIC

F. Fix Review Results

When undertaking a fix review, Trail of Bits reviews the fixes implemented for issues
identified in the original report. This work involves a review of specific areas of the source
code and system configuration, not comprehensive analysis of the system.

On August 30, 2024, Trail of Bits reviewed the fixes and mitigations implemented by the
Uniswap team for the issues identified in this report. We reviewed each fix to determine its
effectiveness in resolving the associated issue.

In summary, of the six issues described in this report, Uniswap has resolved four issues,
partially resolved one issue, and decided to not resolve one issue. For additional
information, please see the Detailed Fix Review Results below.

ID Title Status

1 Strict equality on fee comparison can lead the fees to be greater than
100%

Resolved

2 Incorrect variable usage on swap fee Resolved

3 Collected protocol fees may count against user’s currency deltas Resolved

4 Use of incorrect mask to clear higher bits of the protocolFee value Resolved

5 Insufficient event generation Partially
Resolved

6 Similar-looking pool IDs can be brute forced through the PoolKey
hooks fields

Unresolved

Detailed Fix Review Results

TOB-UNI4-1: Strict equality on fee comparison can cause fees to exceed 100%
Resolved in PR 836. The comparison was updated from is-equal-to (==) to
is-greater-than-or-equal-to (>=).

TOB-UNI4-2: Incorrect variable usage on swap fee
Resolved in PR 831. A new constant (SwapMath.MAX_SWAP_FEE) was added to the
implementation. Introducing a new constant named MAX_SWAP_FEE is more explicit than
using the MAX_FEE_PIPS constant, which we originally recommended. All places where the
max swap fee is needed now use this new constant. In other words, the use of the

Trail of Bits 61 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/pull/836
https://github.com/Uniswap/v4-core/pull/831

LPFeeLibrary.MAX_LP_FEE and SwapMath.MAX_FEE_PIPS constants was replaced by
using the SwapMath.MAX_SWAP_FEE constant in all applicable locations.

TOB-UNI4-3: Collected protocol fees may count against user’s currency deltas
Resolved in PR 856. A guard was added to the sync function to ensure it can only be called
when the contract is in the unlocked state. Additionally, a check was added in the
collectProtocolFees function to prevent it from being called when the contract is
unlocked, throwing a custom error (ContractUnlocked) if this check fails. Additionally,
new tests were added to specifically test for this edge case and to ensure that the updated
implementation correctly handles it.

TOB-UNI4-4: Use of incorrect mask to clear higher bits of the protocolFee value
Resolved in PR 835. The implementation was updated to use a 12-bit mask instead of a
16-bit mask.

TOB-UNI4-5: Insufficient event generation
Partially resolved in PR 845 and PR 808. The implementation was updated to emit an event
in the donate function, and the existing Initialized event was updated to include the
sqrtPriceX96 value. The Uniswap team decided against adding an event in the
updateDynamicLPFee function since hooks can also return a dynamic LP fee amount,
which would not necessarily be emitted in an event. To normalize the behavior across all
changes of updated dynamic LP fees, no event will be emitted from the
updateDynamicLPFee function.

TOB-UNI4-6: Similar-looking pool IDs can be brute-forced through the PoolKey
hooks fields
Unresolved. The Uniswap team decided to not resolve this issue.

Trail of Bits 62 Uniswap v4 Core Security Assessment
PUBLIC

https://github.com/Uniswap/v4-core/pull/856
https://github.com/Uniswap/v4-core/pull/835
https://github.com/Uniswap/v4-core/pull/845/files
https://github.com/Uniswap/v4-core/pull/808

G. Fix Review Status Categories

The following table describes the statuses used to indicate whether an issue has been
sufficiently addressed.

Fix Status

Status Description

Undetermined The status of the issue was not determined during this engagement.

Unresolved The issue persists and has not been resolved.

Partially Resolved The issue persists but has been partially resolved.

Resolved The issue has been sufficiently resolved.

Trail of Bits 63 Uniswap v4 Core Security Assessment
PUBLIC

