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Executive Summary 
Modern application development, particularly involving critical business processes such 
as payment processing, necessitates robust mechanisms to ensure data integrity and 
reliability. While traditional database systems rely on ACID (Atomicity, Consistency, 
Isolation, Durability) properties to guarantee transactional integrity, the architectural shift 
towards distributed systems, notably microservices, introduces significant challenges to 
maintaining these guarantees globally. Atomicity, the "all-or-nothing" principle, is 
particularly difficult to uphold when operations span multiple independent services and 
their respective data stores. 

This report delves into the complexities of achieving atomic-like behavior for critical API 
calls in distributed environments. It elucidates the inherent limitations of traditional ACID 
in such setups, primarily due to data decentralization and the fundamental trade-offs 
imposed by the CAP theorem. The report then presents and analyzes key architectural 
patterns—the Saga pattern (both choreography and orchestration), compensating 
transactions, the transactional outbox pattern, and idempotent API design—as practical 
solutions for managing distributed consistency. Furthermore, it surveys the Node.js 
ecosystem for relevant libraries and frameworks that can facilitate the implementation of 
these patterns. The aim is to provide a comprehensive guide for designing and building 
a robust npm package capable of orchestrating critical API calls with strong atomicity 
guarantees, ensuring system reliability and business continuity even in the face of 
distributed system failures. 

1. Introduction: The Imperative of Atomic API Transactions 
1.1. Understanding ACID Properties, with a Focus on Atomicity 

In the realm of computer science, particularly within database management, ACID 
stands as a foundational acronym representing four critical properties of database 

transactions: Atomicity, Consistency, Isolation, and Durability.1 These properties 
collectively serve to guarantee the validity of data, even when confronted with errors, 

power failures, or other system mishaps.1 Their collective purpose is to ensure 
predictable system behavior, reinforcing the concept that a transaction is an "all-or-none 

proposition".3 



At the heart of this discussion lies Atomicity. This property specifically guarantees that 

each transaction is treated as a single, indivisible "unit of work".2 This means that a 
transaction either completely succeeds, with all its constituent operations being applied, 
or it completely fails, resulting in none of its operations being applied, leaving the 

database in its original state as if the transaction never occurred.1 The importance of 
this guarantee cannot be overstated, as partially completed updates can introduce far 
greater problems and inconsistencies into a system than simply rejecting the entire 

series of operations outright.1 This principle is often described as "indivisibility and 

irreducibility".1 

A classic and highly illustrative example of an atomic transaction involves a monetary 

transfer between two bank accounts, say from Account A to Account B.1 This seemingly 
simple operation is composed of two distinct, interdependent steps: first, withdrawing 
money from Account A, and second, depositing that same amount into Account B. 
Atomicity ensures that these two operations are inextricably linked. If, for any reason, 
the deposit into Account B fails (perhaps due to an invalid account number or a system 
error), the withdrawal from Account A must also be undone. This prevents a scenario 
where money is debited from one account but never credited to the other, thereby 

maintaining the overall financial consistency and integrity of the banking system.1 

While ACID is fundamentally a concept rooted in database theory, the user's request to 
apply these properties to "critical API calls" implies a necessary extension of the 
transactional boundary. An API call, in itself, does not inherently possess ACID 
properties. Instead, it typically acts as a high-level orchestrator, initiating and 
coordinating a sequence of underlying operations that collectively should adhere to 
ACID principles. This means that the "transaction" in this context transcends a purely 
database-centric view; it refers to a broader, application-level business transaction that 
may involve multiple services and their respective databases. The npm package, 
therefore, is envisioned not as a database, but as a facilitator for achieving this 
distributed, ACID-like behavior, particularly atomicity, across an application's various 
components. This conceptual redefinition of "transaction" is crucial for understanding 
the complexities that arise in distributed environments and sets the stage for the 
patterns required to manage them. 

1.2. Why Atomic Operations are Critical for Business Logic (e.g., Payments) 

For sensitive business processes, such as payment processing, the adherence to 
atomicity is not merely a technical preference but an absolute necessity. A partial 



payment, where funds are successfully debited from a customer's account but fail to be 
credited to the merchant, leads to severe financial discrepancies, significant customer 

dissatisfaction, and potentially substantial financial losses for the business.1 Such 
inconsistencies can quickly erode trust and disrupt core business operations. 

The criticality of atomicity extends far beyond financial transactions, impacting various 
other vital domains. In healthcare systems, for example, ACID transactions are 
fundamental to ensuring the accurate and consistent updating of patient records. When 
a doctor updates a patient's medication, atomicity guarantees that all related changes to 
the patient's history, prescriptions, and billing are recorded as a single, indivisible unit. A 
partial update could lead to incorrect dosages, missed treatments, or even 

life-threatening errors.2 Similarly, e-commerce applications rely heavily on atomicity to 
correctly process customer orders and maintain accurate inventory levels. Without it, a 
customer might be charged for an item that is out of stock, or inventory counts could 

become inaccurate, leading to overselling or unfulfilled orders.2 

The consequences of failing to ensure atomicity in these critical operations are 
profound. Such failures can result in significant data corruption, irreversible data loss, 
and inconsistent system states that are immensely difficult, if not impossible, to recover 

from and reconcile.4 This directly impacts the operational integrity of a business, 
undermines customer trust, and can lead to severe legal and compliance repercussions. 
For instance, in regulated industries like finance or healthcare, non-compliance with 
data integrity standards due to non-atomic operations can incur substantial financial 
penalties and legal liabilities. The ability to guarantee that "nothing happened" in the 
event of a failure is therefore not just a technical aspiration but a critical business 
imperative, safeguarding an organization's reputation, financial stability, and adherence 
to regulatory frameworks. This elevates the technical problem of ensuring atomicity to a 
critical business imperative, underscoring the value proposition of an npm package that 
can reliably manage these distributed operations. 

2. Challenges of Ensuring Atomicity in Distributed Systems 
2.1. Microservices Architecture and Data Decentralization 

Modern application development has increasingly embraced the microservices 
architecture, a paradigm that decomposes large, monolithic applications into smaller, 

independently deployable services.5 A fundamental principle underpinning this 
architecture is the decentralization of data ownership: each microservice typically owns 



and manages its own private data store.5 This design choice confers significant 
advantages, including enhanced independent deployability, improved scalability, and 

reduced coupling between services.7 

However, this decentralized data ownership fundamentally challenges the traditional 
ACID model. ACID properties are inherently designed for single, centralized databases 
where a single transaction coordinator can manage locks and ensure atomicity across 

all operations within that database.7 When a business transaction, such as a payment 
process, spans multiple microservices, each operating with its own isolated database, 

maintaining global transactional integrity becomes inherently difficult.6 The monolithic 
world, with its single service boundary and shared database, allowed for effortless 

commits and rollbacks.7 This is no longer the case in a distributed environment where 
data is fragmented across multiple, autonomous data stores. 

The database-per-service pattern frequently leads to data redundancy, where the same 

piece of information might be replicated across different data stores.8 For example, 
customer data might be stored in a transactional service's database and duplicated in 
an analytics service's database for reporting purposes. This duplication or partitioning of 
data introduces complex challenges related to data integrity and consistency. Unlike 
traditional data modeling, which strictly adheres to the rule of "one fact in one place" to 
avoid consistency problems, microservices architectures necessitate careful 
consideration of how updates are propagated across services. This often requires 
managing 

eventual consistency, where data converges to a consistent state over time rather than 

being immediately consistent across all replicas.8 Traditional referential integrity 
mechanisms, which rely on shared schemas and joins, are no longer applicable, making 

consistency an application-level problem that developers must explicitly address.8 The 
architectural choice to decentralize data fundamentally shifts the burden of consistency 
management from the database system to the application layer, requiring different 
design patterns that explicitly manage consistency trade-offs rather than relying on 
inherent database guarantees. 

2.2. The CAP Theorem and its Implications for Consistency 



The CAP theorem, also known as Brewer's theorem, is a foundational concept in 

theoretical computer science concerning distributed data stores.11 It posits that in the 
event of a network partition, a distributed system can guarantee at most two of the 
following three properties: Consistency (every read receives the most recent write or an 
error), Availability (every request received by a non-failing node results in a response), 

and Partition tolerance (the system continues to operate despite network failures).11 

Network failures, characterized by messages being dropped or delayed between nodes, 

are an unavoidable reality in distributed systems.12 Consequently, Partition Tolerance 

(P) is a non-negotiable guarantee for any reliable distributed system.11 This inherent 
necessity forces a critical design choice during a network partition: prioritize 

Consistency (C) or Availability (A).11 A system prioritizing consistency might block 
writes or return errors during a partition to prevent inconsistencies, sacrificing 
availability. Conversely, a system prioritizing availability might allow operations to 

proceed, risking temporary data mismatches.16 

It is crucial to distinguish between "Consistency" in the CAP theorem and "Consistency" 
within ACID properties. CAP consistency refers to all nodes in a distributed system 

seeing the most up-to-date information.11 ACID consistency, however, ensures that any 
new transaction transforms the database from one valid state to another, preserving 

predefined integrity rules.1 This distinction is vital for understanding the trade-offs. 

In practice, systems designed with traditional ACID guarantees (e.g., relational 

databases) often choose Consistency over Availability during a partition.12 Conversely, 
systems adhering to the BASE philosophy (Basically Available, Soft state, Eventually 
consistent), common in the NoSQL movement, prioritize Availability over 

Consistency.12 For critical applications like financial systems, strong consistency 
(CAP-C) is typically paramount, as users expect to see the exact, up-to-date account 

balance rather than a potentially stale value.11 

The PACELC theorem extends CAP by stating that even in the absence of network 
partitioning (ELse), there remains a trade-off between Latency (L) and Consistency 

(C).12 This means that even under ideal network conditions, achieving strong 



consistency might introduce higher latency due to the need for global synchronization. 
The CAP theorem is not merely a theoretical constraint; it is a fundamental design 
principle that dictates the achievable properties of distributed systems. For critical API 
calls, particularly those requiring atomicity like payments, the implication is that strict 
global ACID consistency is often impractical or impossible to achieve without sacrificing 
availability or incurring significant performance penalties. This means the npm package 
cannot simply "enforce ACID" globally in the traditional sense. Instead, it must 
implement patterns that 

manage consistency trade-offs, prioritizing atomicity and rollback within a carefully 
managed consistency model, which will likely be eventual consistency. 

2.3. Impact of Network Latency and Partitions 

Network realities, characterized by latency and partitions, are not merely infrequent 
edge cases but inherent and frequent challenges in distributed environments. High 
network latency between geographically dispersed nodes significantly impacts 
distributed database performance by increasing the time required for data operations 

and coordination.2 This effect is particularly pronounced in operations requiring 
synchronous replication or protocols like Two-Phase Commit (2PC), where every write 
must be confirmed by all replicas before the operation completes. If even one replica is 

in a high-latency region, the entire operation stalls until its acknowledgment arrives.18 

When network partitions occur, nodes or clusters lose communication, effectively 

splitting the system into isolated groups.15 This can lead to a cascade of detrimental 
effects: 

●​ Data Inconsistency: Different partitions might continue operating independently, 
leading to conflicting updates. For example, in a banking system, one partition 
might process a withdrawal while another does not see the updated balance, 

resulting in incorrect account states.15 

●​ Reduced System Availability: Critical services may become unreachable if a 
partition isolates their nodes. In a microservices system, if the authentication 

service is cut off, users might be unable to log in.15 

●​ Increased Latency: Systems attempting to reroute traffic through backup nodes 

or retry failed requests will experience increased response times.15 



●​ Potential Data Loss or Overwrites: When an isolated node temporarily stores 
updates and later rejoins the network, newer data from another partition might 

overwrite its changes.15 

●​ Failure in Consensus Algorithms: Distributed consensus protocols (e.g., 
Paxos, Raft) may stall if they cannot reach a quorum, preventing the system from 

making progress.15 

●​ Cascading Failures: A partition preventing one service from functioning can 

cause dependent services to fail as well.15 

Traditional distributed transactions, such as 2PC, are particularly vulnerable to network 
latency and partitions. They require all participating services to be available and confirm 
actions synchronously, which can lead to blocking issues, indefinite resource locks, and 

severe performance bottlenecks.17 This makes them largely impractical for modern, 

scalable microservices architectures.19 

The prevalence of network issues means that any npm package aiming for "atomic API 
calls" must be designed with resilience and fault tolerance as core tenets. It must 
anticipate and gracefully handle these network issues, rather than assuming perfect 
connectivity. This often translates to designing with asynchronous communication 
patterns, robust retry mechanisms, and, most importantly, explicit compensation logic to 
undo partial operations when failures inevitably occur. The goal is to ensure that even if 
intermediate steps fail or are delayed, the overall business transaction can either 
complete successfully or be fully rolled back to a consistent state, fulfilling the "nothing 
happened" requirement. 

3. Key Patterns for Distributed Transaction Management 
Given the inherent challenges of achieving traditional ACID properties in distributed 
systems, several architectural patterns have emerged to manage transactional integrity 
and consistency. These patterns typically embrace eventual consistency and rely on 
application-level coordination rather than global database locks. 

3.1. The Saga Pattern: Choreography vs. Orchestration 

The Saga pattern is a widely adopted architectural approach for managing distributed 
transactions across multiple services, particularly in microservices architectures where 

each service maintains its own independent database.6 Since traditional local ACID 
transactions cannot span different databases, the Saga pattern provides a robust 



alternative for maintaining data consistency across service boundaries.23 A saga is 
defined as a sequence of local, atomic transactions. Each local transaction updates its 
respective service's database and subsequently publishes a message or event to trigger 

the next local transaction in the sequence.6 If any local transaction within the saga 
fails—for instance, due to a business rule violation—the saga initiates a series of 
compensating transactions. These compensating transactions are specifically designed 
to undo the changes made by previously successful local transactions, effectively 
restoring the system to a consistent state as if the overall business transaction never 

occurred.6 

There are two primary approaches to coordinating sagas: 

●​ Choreography-based Saga: In this model, each participating service involved in 
the saga publishes domain events upon the completion of its local transaction. 
These events then trigger subsequent local transactions in other services, 
allowing services to coordinate autonomously without the need for a central 

orchestrator.6 This approach fosters loose coupling between services and offers 
a decentralized control flow, which aligns well with the core principles of 

microservices architecture.24 However, a drawback is that the global system 
state and coordination logic become scattered across all participating 
microservices, making it more challenging to track dependencies, debug issues, 

and understand the overall flow.7 This can also lead to potential cyclic 
dependencies and inherently results in eventual consistency, meaning the 

system may be temporarily inconsistent before reaching its final state.7 

●​ Orchestration-based Saga: This method involves a central orchestrator service 

or object that explicitly manages and coordinates the transaction flow.6 The 
orchestrator defines and sequences the steps, instructing each participating 

service which local transactions to execute based on the predefined workflow.9 
This approach provides centralized control and offers clearer visibility of the 
overall workflow, simplifying the process of adding new participants and steps to 

the transaction.7 A significant disadvantage, however, is that the orchestrator 
itself can become a single point of failure. If the orchestrator crashes, the entire 

distributed transaction can be left in an indeterminate state.7 Furthermore, this 
centralized coordination can introduce increased complexity within the 



orchestrator service and may incur performance overhead due to the additional 

communication and state management.7 

The Saga pattern is a direct architectural response to the fundamental limitations of 

traditional ACID transactions in distributed microservices environments.23 It represents 
a paradigm shift, moving the burden of achieving atomicity from a global, synchronous, 
lock-based mechanism to an application-level, asynchronous, and compensating one. 
This implies that an npm package designed for distributed transactions will not provide 
"true" ACID across services in the traditional sense, but rather a 

simulated atomicity through complex coordination and rollback logic, inherently 
accepting eventual consistency. The choice between choreography and orchestration 
will significantly influence the package's design, particularly its API for defining 
transactional flows (e.g., event-driven versus command-driven interfaces). 

3.2. Compensating Transactions for Rollback 

Compensating transactions are a fundamental and indispensable component of the 
Saga pattern, directly addressing the user's requirement to "rollback that thing like 
nothing happened" in a distributed context. When a local transaction within a saga fails, 
a series of pre-defined compensating transactions are executed to undo the effects of 

any previously successful local transactions.6 The primary goal of this process is to 
restore the system to a consistent state, effectively negating the impact of the 
incomplete distributed operation. 

This mechanism stands in stark contrast to the automatic rollback feature inherent in 
traditional ACID transactions. In a monolithic system with a single database, a 
transaction can simply be aborted, and the database management system automatically 
reverts all changes. However, in a distributed microservices architecture, where each 
service has committed its local transaction to its own database, there is no global 

transaction coordinator to perform an automatic rollback.23 Consequently, the 
responsibility for defining and implementing these undo operations falls explicitly on the 

application developer.23 Developers must proactively anticipate potential failure points 
within the distributed workflow and meticulously define the specific compensating 
actions required for each step. 

A practical example illustrates this concept clearly: in an online booking system, if a 
customer attempts to book a room and a subsequent payment service encounters an 
issue (e.g., payment decline), the booking service would then execute a compensating 



transaction to cancel the previously reserved room.27 Similarly, if an initial action 
involved debiting a user's account for a purchase, the corresponding compensating 

action would be to credit the account back, ensuring the financial state is restored.26 

The necessity of explicit compensating transactions underscores that achieving 
distributed atomicity is inherently more complex and demands a proactive approach to 
error handling compared to monolithic ACID. The npm package designed for this 
purpose must provide robust mechanisms for defining, executing, and monitoring these 
compensating actions. This shifts error handling from an afterthought to a central design 
concern, requiring developers to think about failure scenarios from the outset. 
Furthermore, it is critical that these compensating actions themselves are designed to 
be idempotent. This ensures that if a compensation operation needs to be retried (due 
to network issues or transient failures), its repeated execution will not cause unintended 
side effects, maintaining the integrity of the rollback process. 

3.3. Transactional Outbox Pattern for Reliable Event Publishing 

In distributed systems, a prevalent and critical challenge is ensuring that a database 
update and a corresponding message or event publication (e.g., to a message broker) 

occur as a single, atomic operation.6 This is commonly referred to as the "dual write 
problem." If one of these operations succeeds while the other fails, it leads to data 
inconsistency across the system. For instance, a service's internal database might be 
updated, but the event notifying other services of this change might never be sent, or 

conversely, an event might be published even if the local database transaction failed.28 
Such scenarios can result in an inconsistent global state and significant debugging 
challenges. 

The Transactional Outbox pattern provides an elegant solution to this dual write problem 
by combining the local database update and the recording of the event to be published 

into a single, local ACID transaction within the microservice.6 Instead of directly 
publishing the event to a message broker, the event is first written to a special "outbox" 
table within the same database transaction as the primary business data change. This 
ensures that either both the data change and the event record are committed, or both 
are rolled back, guaranteeing atomicity at this crucial juncture. A separate, independent 
process, often referred to as a "relay" or "publisher," is then responsible for continuously 
reading these events from the outbox table and reliably publishing them to the 

appropriate message broker.6 Once an event is successfully published, the relay 



process updates its status in the outbox table (e.g., marks it as "published") or deletes 

the entry, preventing duplicate publications.6 

This pattern offers several key benefits. Its primary advantage is guaranteeing the 
atomicity of the local database update and the event recording, thereby ensuring 

reliable message delivery.6 This is crucial for maintaining eventual consistency across 
services, as it prevents scenarios where a service's internal state is updated, but other 
services are not notified of this change. The pattern also promotes improved scalability 
by decoupling transactional logic from the message-sending process, allowing services 
to commit local changes quickly without waiting for external communication to complete, 

thus reducing latency.24 Furthermore, it fosters loose coupling between services, as 
they only need to be aware of their local transactions and the messages they publish to 

the outbox.24 The Transactional Outbox pattern aligns seamlessly with event-driven 
architectures and inherently ensures "at-least-once" message delivery, as the publishing 
process can retry until successful, making it highly resilient to transient network or 

broker failures.24 

The Outbox pattern is not just a technical fix; it is a foundational enabler for building 
reliable asynchronous communication in distributed systems, which is often the 
backbone of Saga implementations. It solves a specific, critical atomic problem 
(database update + message send) that traditional distributed transactions cannot 
efficiently address. For an npm package aiming to provide robust transactional 
capabilities, especially if built on an event-driven or message-based architecture, it 
should either integrate or provide clear guidance on implementing the Outbox pattern to 
ensure message reliability and, consequently, the overall integrity of the business 
transaction. 

3.4. Designing Idempotent APIs for Safe Retries 

An operation is considered idempotent if executing it multiple times produces the same 
result as executing it once; the system's state remains consistent regardless of how 

many times the operation is performed.6 This property is not merely a "nice-to-have" 
feature but a mandatory characteristic for any API that participates in a distributed 
transaction and might experience retries. 

In distributed environments, network issues, timeouts, and transient failures are 
common occurrences, frequently leading to situations where clients or services might 



automatically retry requests.31 Without idempotency, these retries can cause 
unintended and undesirable side effects, such as duplicate records (e.g., multiple orders 
being placed, multiple charges for the same payment) or an inconsistent system 

state.31 This directly undermines the "nothing happened" aspect of atomicity and can 
lead to significant data corruption. 

Achieving idempotency typically involves the client sending a unique identifier, often 

referred to as an "idempotency key," with each request.31 The server-side logic then 
checks if this key has been previously processed. If the key is recognized, the server 
returns the original response without re-executing the operation, ensuring that the effect 

is applied only once.31 Other effective implementation strategies include: 

●​ Database "Upsert" Operations: Using database commands like INSERT... ON 
CONFLICT (in SQL) or similar "update or insert" operations can prevent duplicates 
by either creating a new record if it doesn't exist or updating an existing one if it 

does.31 

●​ Storing Processed Message IDs: In messaging systems, maintaining a record 
of processed message IDs allows the system to check each incoming message 

against this list and ignore duplicates.31 

●​ Distributed Locking Mechanisms: For scenarios where multiple requests with 
the same idempotency key might arrive concurrently, a distributed lock can 
ensure that only one instance of the transaction is processed at a time, 

preventing race conditions.6 

It is also important to recognize that certain standard HTTP methods are inherently 
idempotent by definition: 

●​ GET: Retrieving data does not change the state of the server.32 

●​ PUT: Used for updating or creating a resource at a specific URI; repeating the 

PUT request with the same data should result in the same state.32 

●​ DELETE: Removing a resource; deleting the same resource multiple times has 

the same effect as deleting it once (the resource remains absent).32 

●​ POST: Generally not idempotent, as repeated POST requests typically create 

new resources.32 



Idempotency is not merely a convenience; it is a fundamental property for any API that 
participates in a distributed transaction and might experience retries. For the npm 
package, this means providing utilities or enforcing patterns that help developers build 
idempotent API endpoints, especially for operations that modify state. This directly 
supports the reliability and the "nothing happened" aspect of atomicity when failures and 
retries occur, preventing unintended side effects and data corruption that would 
otherwise compromise the integrity of the distributed system. 

3.5. Limitations of Two-Phase Commit (2PC) in Distributed Environments 

Two-Phase Commit (2PC) is a traditional protocol designed to implement distributed 

transactions and theoretically ensure atomicity across multiple participating systems.6 
The protocol involves a central coordinator that orchestrates two distinct phases: 

1.​ Prepare Phase (Vote Request): The coordinator sends a "prepare" request to 
all participating services. Each participant then locks the resources it intends to 
modify and determines if it can successfully complete its local part of the 
transaction. If it can, it responds with a "yes" (ready to commit); otherwise, it 

responds with a "no" (abort).6 

2.​ Commit Phase (Decision): If all participants respond with "yes," the coordinator 
sends a "commit" command to all participants, instructing them to make their 
changes permanent. If any participant responded with "no," or if a timeout 
occurred, the coordinator sends a "rollback" command to all participants, 

instructing them to undo any prepared changes.6 

While 2PC theoretically offers strong consistency and atomicity across services, 

providing read-write isolation 6, it is widely considered impractical and an anti-pattern 

for modern, scalable microservices architectures.19 Its severe practical limitations make 
it unsuitable for the agility and resilience required in distributed environments: 

●​ Blocking Protocol: One of 2PC's most significant drawbacks is its blocking 

nature.21 If any participant or the coordinator fails​
 during the protocol (especially during the prepare phase), other participants can 

remain indefinitely in a "prepared" state, holding critical resource locks.21 This 
"indefinite blocking" severely impacts system availability and throughput, as other 
operations requiring those locked resources are stalled. 



●​ Single Point of Failure: The coordinator node itself represents a single point of 

failure.7 If the coordinator crashes before sending the final commit or rollback 
decision, the entire distributed transaction can be left in an indeterminate state, 
requiring manual intervention to resolve. 

●​ Slow by Design: 2PC inherently involves multiple network round trips and 

synchronous communication between the coordinator and all participants.6 This 
synchronous, blocking nature makes it inherently slow, significantly impacting 
latency and overall system throughput and scalability. Distributed transactions 
are often described as the "bane of high performance and high availability" due 

to resources being locked for multiple round-trip times.21 

●​ Limited Database Support: Many modern databases, particularly NoSQL 
databases which are prevalent in microservices architectures, and message 

brokers, do not natively support the 2PC protocol.7 This lack of native support 
forces complex workarounds or limits architectural choices. 

●​ Consistency vs. Availability Trade-off: In the context of the CAP theorem, 2PC 
prioritizes strong consistency by sacrificing availability during network partitions. 
If a partition occurs, the system must block to ensure consistency, reducing 

availability.11 

While 2PC appears to offer traditional ACID guarantees in a distributed setting, its 
severe practical limitations (poor performance, low availability, single point of failure, 
and lack of broad database support) make it an anti-pattern for modern, scalable 

microservices architectures.21 This means that the npm package should 

explicitly avoid attempting to implement or rely on 2PC. Instead, it should focus on 
alternative, more suitable patterns like Saga, which manage consistency differently by 
accepting eventual consistency and relying on compensatory actions, aligning better 
with the realities of distributed systems. 
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Blocking 
protocol 
(indefinite 
locks on 
failure), 
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failure 
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or), slow 
by design 
(multiple 
network 
round 
trips), 
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database 
support 
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for 
modern 
microservi
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historicall
y used in 
monolithic 
distribute
d 
transactio

ns.
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(e.g., 

NoSQL).
7 

4. Node.js Ecosystem for Distributed Transactions 
The Node.js ecosystem offers a variety of tools and libraries that can facilitate the 
implementation of distributed transaction patterns. Leveraging Node.js's asynchronous 
nature and its extensive package registry (npm) can streamline the development of an 
npm package designed for atomic API operations. 

4.1. Overview of Relevant Libraries and Frameworks 

Orchestration Engines (for Saga Orchestration) 

These platforms are specifically designed to manage complex, long-running workflows 
and are excellent candidates for implementing orchestration-based Sagas. They 
abstract away significant distributed systems complexities. 

●​ Temporal.io: This is an open-source workflow platform that ensures the durable 
execution of application code, abstracting away much of the complexity 
associated with building scalable distributed systems and gracefully handling 

failures.33 Temporal.io directly supports the Saga pattern through its robust 
orchestration capabilities. It automatically manages workflow state, provides 
automatic retries for failed activities, offers configurable timeouts, and ensures 
deterministic execution of workflows, which is critical for reliable state replay and 

consistency across distributed transactions.33 Temporal offers a comprehensive 

TypeScript SDK 34, making it highly relevant for the user's Node.js package. The 
fact that Temporal.io simplifies the​
 implementation of complex distributed patterns like Saga by handling much of 
the underlying state management, retries, and error recovery out of the box 
means that an npm package could potentially integrate with or abstract 
Temporal.io. This approach would significantly reduce the development effort for 
the package and inherently increase its reliability and scalability, allowing the 
package to focus on providing a clean API for defining API-specific transactional 
logic while offloading the heavy lifting of distributed coordination to a battle-tested 
platform. 

●​ Cadence Workflow: Cadence is another robust, distributed, scalable, durable, 
and highly available orchestration engine. It is specifically designed to execute 



asynchronous, long-running business logic in a resilient manner.35 Similar to 
Temporal, Cadence aims to simplify stateful application development and provide 

robust recovery from failures.36 While its official SDKs are primarily for Go and 

Java, the existence of community-developed Python and Ruby SDKs 35 
suggests a potential for a Node.js community or custom integration. The 
presence of multiple mature workflow orchestration engines like Temporal and 
Cadence indicates a well-established solution space for distributed workflow 
management. This suggests that the npm package doesn't necessarily need to​
 be the orchestrator itself, but rather interface with one of these powerful 
backends. This allows the package to focus on providing a clean API for defining 
API-specific transactional logic, while offloading the heavy lifting of distributed 
coordination, state persistence, and fault tolerance to a specialized engine. The 
npm package could offer flexibility by supporting multiple orchestration backends 
or providing an adapter pattern. 

Saga Pattern Libraries (Node.js specific) 

These libraries provide more direct, code-level implementations of the Saga pattern, 
typically requiring a message broker for inter-service communication. 

●​ node-sagas: This library is designed to offer a convenient way to manage data 
consistency in a microservice architecture by facilitating the creation of 

distributed transactions.37 It provides specific methods like​
 invoke() for defining the positive actions of a step and withCompensation() for 
specifying the corresponding compensation actions, directly addressing the core 

components of the Saga pattern.30 Libraries such as​
 node-sagas provide a more direct, code-level implementation of the Saga pattern 
compared to full-fledged, external orchestration engines. This approach could be 
suitable for simpler distributed transactions or for developers who prefer more 
granular control over the underlying messaging and state management. The npm 
package could offer this as a lighter-weight alternative or a set of foundational 
building blocks for custom Saga implementations, particularly for 
choreography-based approaches. 

●​ Practical Implementations: Real-world examples demonstrate the feasibility of 
implementing the Saga pattern in Node.js using popular message brokers. For 
instance, RabbitMQ has been used for payment processing and compensation 

flows, while Kafka is employed for internal banking transfers.27 These examples 
highlight how Node.js's event-driven architecture can be effectively utilized to 



build robust, choreography-based sagas. The npm package could provide a 
more opinionated, Node.js-native implementation of Saga, potentially abstracting 
common message brokers to simplify the developer experience. 

Event-Driven Consistency / Outbox Pattern Libraries 

These tools focus on ensuring atomic updates to local databases and reliable event 
publishing, which are crucial for maintaining consistency in distributed systems. 

●​ @event-driven-io/pongo: This package leverages PostgreSQL's battle-tested ACID 
compliance and its JSONB support to allow developers to treat PostgreSQL as a 

document database.39 It translates MongoDB API syntax directly into native 
PostgreSQL queries, enabling developers to use familiar APIs while benefiting 
from PostgreSQL's strong consistency guarantees. While not a distributed 
transaction manager itself,​
 @event-driven-io/pongo plays a critical role in ensuring local ACIDity for event 
persistence, which is a foundational component for implementing the 

Transactional Outbox pattern.39 

●​ Event Sourcing Concepts: Related concepts like Event Sourcing, as discussed 

in EventSourcing.NodeJS 30, are highly relevant. This repository touches upon 
optimistic concurrency, outbox/inbox patterns, and delivery guarantees. It 
explains how event sourcing can contribute to consistency by ensuring the order 
of events and providing mechanisms for "at-least-once" or "exactly-once" delivery 

through the use of idempotency.30 The Transactional Outbox pattern (and 
related Event Sourcing concepts) are foundational for reliable​
 asynchronous communication in distributed systems, which is essential for 
implementing Saga patterns robustly. While @event-driven-io/pongo focuses on 
local database consistency, its use of PostgreSQL's ACID properties for event 
storage is highly relevant to ensuring the atomicity of the "database update + 
event publish" step. The npm package should consider incorporating or 
recommending such patterns and tools for robust message delivery, as unreliable 
message publishing can undermine the entire distributed transaction. 

General Transaction Managers (Less Suitable for Distributed ACID) 

●​ transaction-manager: Despite its name, this npm package is described as a simple 
transaction manager designed for JSON messages, primarily using WebSockets 

as a transport layer.40 It facilitates command/response and event messaging 
between two peers. However, it​



 does not inherently provide an approach for distributed transactions across 

multiple, independent systems.40 Its focus is on managing transactions within a 
single peer-to-peer communication channel rather than orchestrating complex 
multi-service business processes. This is an important clarification to prevent 
misdirection and ensure that efforts are focused on truly relevant tools for 
multi-database, multi-service atomicity. 

4.2. Practical Considerations for Node.js Implementations 

Node.js's event-driven, non-blocking I/O model 5 makes it inherently well-suited for 
building distributed systems and implementing asynchronous communication patterns 
like the Saga pattern. This architecture allows Node.js applications to handle a large 
number of concurrent requests efficiently, which is crucial for distributed transactions. 
However, leveraging this effectively requires careful consideration of several practical 
aspects: 

●​ Leveraging Asynchronous Nature: Node.js's native asynchronous model 
aligns perfectly with the eventual consistency nature of distributed transactions, 
making it a highly suitable platform for implementing patterns like Saga. 
However, this also means the npm package needs to provide clear abstractions 
over callback/promise hell and ensure proper error propagation across 
asynchronous boundaries. The package's design should prioritize developer 
experience by simplifying the complexities of distributed coordination, making it 
intuitive to define and manage atomic-like operations. 

●​ Robust Error Handling: Given the inherent complexities and potential failure 
points in distributed systems, robust error handling is paramount. The npm 
package must provide clear mechanisms for catching errors at each step of a 
distributed transaction and, critically, for triggering the appropriate compensating 
actions to ensure data consistency. This includes handling network failures, 
service unavailability, and business logic errors. 

●​ Observability (Logging, Monitoring, Tracing): Implementing comprehensive 
logging, monitoring, and distributed tracing is essential for debugging complex 

distributed transactions.15 When a transaction spans multiple services, 
understanding its real-time status, identifying bottlenecks, and diagnosing failures 
requires visibility across the entire flow. The package should facilitate integration 
with common observability tools and provide clear hooks for developers to 
instrument their distributed transactions. 

●​ Idempotency Implementation: It is crucial that all API endpoints and internal 
operations that modify state are designed to be idempotent to handle retries 



safely and prevent unintended side effects.31 The npm package could provide 
helper utilities, middleware, or decorators to enforce idempotency checks (e.g., 
using unique request IDs, implementing upsert operations, or leveraging 

distributed locks).31 

●​ Concurrency Control: While achieving full ACID isolation across distributed 
services is challenging, strategies like optimistic concurrency control (e.g., using 
versioning or ETags for conflict detection) can help manage concurrent updates 

in distributed contexts.30 The package could offer patterns or utilities to facilitate 
this, ensuring that concurrent operations do not lead to data anomalies. 

●​ Integration with Message Brokers: For choreography-based Sagas or any 
event-driven distributed transaction, seamless integration with message queues 
(e.g., Kafka, RabbitMQ) is often necessary for reliable asynchronous 

communication.27 The npm package should provide clear interfaces for 
publishing and consuming messages, abstracting away the complexities of 
message broker APIs. 

●​ TypeScript for Type Safety: Given the user's context implying TypeScript, the 
package should leverage TypeScript for robust type definitions. This enhances 
code quality, reduces runtime errors by catching issues at compile time, and 
significantly improves the developer experience by providing better 

autocompletion and static analysis.30 

Table 2: Node.js Libraries/Frameworks for Distributed Transactions 
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5. Designing and Building Your Atomic API Package (npm) 
Building an npm package to ensure atomic API calls in a distributed environment 
requires a careful architectural approach that acknowledges the limitations of traditional 
ACID and embraces patterns designed for distributed consistency. The shift from 
traditional ACID to distributed transaction patterns (Saga, Outbox, Idempotency) 
fundamentally changes how one thinks about data integrity and system design. The 
npm package must embody these principles, not just offer a superficial wrapper. This 



means the package's API and internal logic should actively guide developers towards 
adopting these patterns, making them the default and most straightforward approach for 
achieving "atomic API calls" in a distributed context, promoting a robust and resilient 
system by design. 

5.1. Architectural Design Principles 

●​ Define Clear Business Transaction Boundaries: The foundational step in 
designing the package is to clearly identify and define the logical boundaries of 
each "business transaction" that requires atomicity. This involves meticulously 
mapping out the entire sequence of operations (e.g., deductPayment, 
updateInventory, sendConfirmation) and identifying all participating microservices or 
direct database interactions. The overarching goal is to define the desired "all or 
nothing" outcome from a high-level business perspective, rather than merely 
focusing on individual technical database operations. 

●​ Embrace Eventual Consistency (where appropriate): Acknowledge that 
achieving strong, immediate global ACID consistency across distributed services 
is often not feasible or desirable due to the inherent performance and availability 

trade-offs imposed by the CAP theorem.11 Design the system for eventual 
consistency, where data converges to a consistent state over time. The npm 
package should provide mechanisms to manage and monitor this eventual 
consistency, ensuring that the overall business outcome is eventually consistent, 
even if intermediate states are temporarily inconsistent. This requires careful 
consideration of the acceptable latency for consistency in critical operations. 

●​ Prioritize Asynchronous Communication: Favor the extensive use of 

message queues and event buses for inter-service communication.22 This 
approach inherently decouples services, enhancing resilience by allowing 
services to operate independently even if others are temporarily unavailable. It 
also naturally facilitates the implementation of asynchronous patterns like Saga. 
The package should provide robust abstractions for publishing and consuming 
messages reliably, potentially integrating with popular message broker clients. 

●​ Idempotency by Design: A fundamental and non-negotiable principle for any 
API that initiates or participates in a distributed transaction is idempotency. All 
API endpoints and internal operations that modify state must be designed to be 

idempotent.6 This ensures that repeated requests, whether due to network 
issues, timeouts, or retries, produce the same result without unintended side 
effects (e.g., duplicate charges, multiple orders). The package should offer 
utilities or enforce patterns (e.g., by requiring idempotency keys in request 



headers) to help developers build idempotent API endpoints, thereby preventing 
new problems from retries. 

●​ Explicit Compensating Actions: Plan and implement compensating 

transactions for every forward-going step of a distributed business transaction.6 
This is crucial for fulfilling the "rollback that thing like nothing happened" 
requirement. The package should provide a clear, intuitive API for defining these 
compensating actions, making it straightforward for developers to specify how to 
undo partial operations in case of failure. These compensating actions must also 
be designed to be idempotent to handle safe retries, as compensation itself might 
fail and require retrying. 

●​ Centralized Orchestration (Optional but Recommended for Complexity): For 
complex distributed workflows involving numerous steps and multiple services, 
consider using a dedicated workflow orchestration engine (such as Temporal.io 
or Cadence) to manage the saga flow, handle retries, and persist the transaction 

state.23 This approach offloads significant complexity related to state 
management, fault tolerance, and error recovery from the application code to a 
specialized, battle-tested platform. The npm package could serve as an 
abstraction layer or integration point for such engines, providing a higher-level 
API that leverages their capabilities. 

5.2. Step-by-Step Implementation Guide for the npm package 

Developing an npm package for atomic API calls in distributed systems involves a 
structured approach, integrating the patterns and principles discussed. 

●​ Step 1: Define the Business Transaction Schema: 
○​ Begin by clearly identifying the entire sequence of operations that 

constitute a single "atomic" business transaction (e.g., ProcessPayment, 
UpdateInventory, SendConfirmationEmail). This involves a deep understanding 
of the business logic. 

○​ For each individual operation within this sequence, specify its required 
inputs, expected outputs, and the specific microservice or direct database 
interaction it performs. 

○​ Crucially, define the desired "all or nothing" outcome from a high-level 
business perspective: what consistent state should the system be in if the 
entire transaction succeeds, and what consistent state if it fails and needs 
to be fully rolled back? This business-driven definition guides the technical 
implementation. 

●​ Step 2: Choose and Configure a Saga Coordination Strategy: 



○​ Based on the complexity of your defined business transaction and the 
desired level of coupling between services, decide between a 
Choreography-based (event-driven) or Orchestration-based (centralized 

coordinator) approach for your Saga implementation.7 

○​ If opting for orchestration, consider integrating with a robust workflow 

engine like Temporal.io or Cadence.33 These engines provide built-in 
capabilities for managing workflow state, handling retries, and ensuring 
fault tolerance, significantly reducing the complexity of custom 
orchestration. The npm package could offer different modules or 
configurations to support integration with these external orchestrators. 

○​ If building a custom orchestrator (perhaps for simpler choreography), plan 
its state machine and persistence mechanisms carefully, typically 
leveraging a reliable messaging system. 

●​ Step 3: Implement Local Transactions and Define Compensating Actions: 
○​ For each distinct step identified in your business transaction, implement its 

local ACID transaction within the respective microservice. This ensures 
atomicity and consistency at the individual service level. 

○​ Crucially, for every local transaction, define and implement its 
corresponding compensating transaction. This undoes the effects of 
the local transaction if the overall saga fails, restoring the system to a 

consistent state.6 These compensating actions must also be designed to 
be idempotent to handle multiple invocations safely, as they might be 
retried in case of failures during the compensation process. 

○​ The npm package should provide a clear API or decorator pattern that 
allows developers to easily associate these compensating actions with 
their forward-going steps, ensuring that the rollback logic is tightly coupled 
with the operational logic. 

●​ Step 4: Implement Reliable Event Publishing (Transactional Outbox 
Pattern): 

○​ If your Saga implementation relies on an event-driven approach (common 
for Choreography, and often used by Orchestration to communicate with 
participants), ensure that local database updates and the publication of 
corresponding events are atomic. Implement the Transactional Outbox 

pattern within each service.6 

○​ This involves writing the event to an "outbox" table in the same local 
database transaction as the primary business data change. A separate, 
independent process then reliably polls or streams changes from this 
outbox table and publishes these events to the chosen message broker. 



○​ The npm package could offer helper functions, middleware, or integrate 
with existing Node.js outbox implementations (e.g., by providing an 
interface for @event-driven-io/pongo if using PostgreSQL) to simplify this 
critical step, ensuring that events are never lost due to partial failures. 

●​ Step 5: Design Idempotent API Endpoints: 
○​ For any API call that initiates a distributed transaction or serves as a step 

within one, implement idempotency.31 This is vital for handling retries 
safely and preventing unintended side effects. 

○​ This typically involves the client sending a unique idempotency key with 
each request (e.g., a UUID in a request header). The server-side logic, 
facilitated by your npm package, should check this key against a stored 
record of processed keys to prevent duplicate processing. 

○​ The npm package could provide decorators, middleware, or utility 
functions to streamline the implementation of idempotent API endpoints, 
ensuring that operations are applied only once, even if the request is 
received multiple times. 

●​ Step 6: Structure and Build the npm Package: 
○​ Define a clear and intuitive public API for your npm package. This might 

include functions for initiating a distributed transaction 
(transaction.start(workflowDefinition)), defining individual steps and their 
compensations (transaction.step(action, compensation)), and handling overall 
success or failure (transaction.onSuccess(), transaction.onFailure()). It should 
also include utilities for idempotency (idempotency.ensure(key, operation)). 

○​ Leverage TypeScript throughout for robust type definitions, which 
significantly improves developer experience by providing better 

autocompletion, compile-time error checking, and overall code quality.30 

○​ Carefully manage package dependencies, including clients for message 
brokers (e.g., amqplib for RabbitMQ, kafkajs for Kafka) and optional SDKs 

for workflow engines (e.g., @temporalio/client).41 Ensure these 
dependencies are well-documented and easily configurable. 

○​ Implement comprehensive logging and tracing within the package to 
provide visibility into the distributed transaction's lifecycle, aiding in 
debugging and monitoring. 

Conclusion and Recommendations 
The aspiration to build an npm package that ensures ACID properties, particularly 
atomicity, for critical API calls in modern applications is a complex yet crucial endeavor. 



Traditional ACID guarantees, while effective in monolithic, single-database 
environments, prove largely impractical for distributed systems like microservices due to 
data decentralization, network unpredictability, and the fundamental trade-offs imposed 
by the CAP theorem. The analysis unequivocally demonstrates that relying on 
Two-Phase Commit (2PC) for global distributed atomicity is an anti-pattern for scalable 
microservices, primarily due to its blocking nature, performance overhead, and inherent 
single point of failure. 

Instead, achieving "atomic-like" behavior in distributed systems necessitates a paradigm 
shift towards application-level consistency management. The Saga pattern, 
implemented through either choreography or orchestration, stands out as the most 
viable architectural approach. It enables the decomposition of a complex business 
transaction into a sequence of local, atomic operations, with explicit compensating 
transactions designed to roll back changes if any part of the overall process fails. This 
provides the desired "nothing happened" outcome, albeit through a more complex, 
asynchronous mechanism. Complementing the Saga pattern, the Transactional Outbox 
pattern is essential for reliably publishing events from local database changes, solving 
the critical "dual write problem" and ensuring that all parts of the distributed transaction 
are eventually notified. Furthermore, designing all participating API endpoints and 
internal operations to be idempotent is paramount for handling retries safely and 
preventing unintended side effects, which are common in unreliable network 
environments. 

For the user's npm package, the following actionable recommendations are critical: 

1.​ Embrace Eventual Consistency by Design: The package should be built with 
the understanding that strong, immediate global consistency is often unattainable 
or undesirable. Its design should facilitate the management and monitoring of 
eventual consistency, ensuring the business outcome is eventually correct. 

2.​ Prioritize Asynchronous Communication: Leverage Node.js's non-blocking 
I/O model by designing the package around message queues and event buses 
for inter-service communication. This promotes loose coupling and resilience, 
which are fundamental for distributed transactions. 

3.​ Provide Robust Saga Orchestration/Choreography Support: The package 
should offer clear APIs for defining multi-step business transactions and their 
corresponding compensating actions. For complex scenarios, consider 
integrating with or abstracting powerful workflow orchestration engines like 
Temporal.io or Cadence, offloading the intricate state management and fault 
tolerance to battle-tested platforms. For simpler, more native Node.js 
implementations, a library like node-sagas could serve as a foundational 
component. 



4.​ Enforce Idempotency: Integrate utilities or middleware into the package that 
guide or enforce the implementation of idempotent API endpoints. This is crucial 
for preventing duplicate operations and maintaining data integrity when retries 
occur. 

5.​ Facilitate Transactional Outbox Implementation: Provide helper functions or 
clear patterns within the package to enable developers to implement the 
Transactional Outbox pattern reliably. This ensures atomic updates to local 
databases and the reliable publication of events that drive the distributed 
transaction. 

6.​ Prioritize Observability: Build in comprehensive logging, monitoring, and 
distributed tracing capabilities to provide visibility into the lifecycle of distributed 
transactions, which is essential for debugging and maintaining complex systems. 

7.​ Leverage TypeScript: Utilize TypeScript for all package development to 
enhance type safety, improve developer experience, and reduce runtime errors, 
aligning with modern Node.js development practices. 

By adopting these principles and patterns, the npm package can effectively address the 
challenges of ensuring atomicity in distributed API calls, providing a robust, reliable, and 
scalable solution for critical business operations in a microservices landscape. 
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