UNPKG

5.69 kBTypeScriptView Raw
1/**
2 * @license
3 * Copyright 2018 Google LLC
4 *
5 * Use of this source code is governed by an MIT-style
6 * license that can be found in the LICENSE file or at
7 * https://opensource.org/licenses/MIT.
8 * =============================================================================
9 */
10/// <amd-module name="@tensorflow/tfjs-layers/dist/exports" />
11/**
12 * Exported functions.
13 */
14import { BaseCallbackConstructor } from './base_callbacks';
15import { ContainerArgs } from './engine/container';
16import { InputConfig } from './engine/input_layer';
17import { SymbolicTensor } from './engine/topology';
18import { LayersModel } from './engine/training';
19import { Sequential, SequentialArgs } from './models';
20export { loadLayersModel } from './models';
21/**
22 * A model is a data structure that consists of `Layers` and defines inputs
23 * and outputs.
24 *
25 * The key difference between `tf.model` and `tf.sequential` is that
26 * `tf.model` is more generic, supporting an arbitrary graph (without
27 * cycles) of layers. `tf.sequential` is less generic and supports only a linear
28 * stack of layers.
29 *
30 * When creating a `tf.LayersModel`, specify its input(s) and output(s). Layers
31 * are used to wire input(s) to output(s).
32 *
33 * For example, the following code snippet defines a model consisting of
34 * two `dense` layers, with 10 and 4 units, respectively.
35 *
36 * ```js
37 * // Define input, which has a size of 5 (not including batch dimension).
38 * const input = tf.input({shape: [5]});
39 *
40 * // First dense layer uses relu activation.
41 * const denseLayer1 = tf.layers.dense({units: 10, activation: 'relu'});
42 * // Second dense layer uses softmax activation.
43 * const denseLayer2 = tf.layers.dense({units: 4, activation: 'softmax'});
44 *
45 * // Obtain the output symbolic tensor by applying the layers on the input.
46 * const output = denseLayer2.apply(denseLayer1.apply(input));
47 *
48 * // Create the model based on the inputs.
49 * const model = tf.model({inputs: input, outputs: output});
50 *
51 * // The model can be used for training, evaluation and prediction.
52 * // For example, the following line runs prediction with the model on
53 * // some fake data.
54 * model.predict(tf.ones([2, 5])).print();
55 * ```
56 * See also:
57 * `tf.sequential`, `tf.loadLayersModel`.
58 *
59 * @doc {heading: 'Models', subheading: 'Creation'}
60 */
61export declare function model(args: ContainerArgs): LayersModel;
62/**
63 * Creates a `tf.Sequential` model. A sequential model is any model where the
64 * outputs of one layer are the inputs to the next layer, i.e. the model
65 * topology is a simple 'stack' of layers, with no branching or skipping.
66 *
67 * This means that the first layer passed to a `tf.Sequential` model should have
68 * a defined input shape. What that means is that it should have received an
69 * `inputShape` or `batchInputShape` argument, or for some type of layers
70 * (recurrent, Dense...) an `inputDim` argument.
71 *
72 * The key difference between `tf.model` and `tf.sequential` is that
73 * `tf.sequential` is less generic, supporting only a linear stack of layers.
74 * `tf.model` is more generic and supports an arbitrary graph (without
75 * cycles) of layers.
76 *
77 * Examples:
78 *
79 * ```js
80 * const model = tf.sequential();
81 *
82 * // First layer must have an input shape defined.
83 * model.add(tf.layers.dense({units: 32, inputShape: [50]}));
84 * // Afterwards, TF.js does automatic shape inference.
85 * model.add(tf.layers.dense({units: 4}));
86 *
87 * // Inspect the inferred shape of the model's output, which equals
88 * // `[null, 4]`. The 1st dimension is the undetermined batch dimension; the
89 * // 2nd is the output size of the model's last layer.
90 * console.log(JSON.stringify(model.outputs[0].shape));
91 * ```
92 *
93 * It is also possible to specify a batch size (with potentially undetermined
94 * batch dimension, denoted by "null") for the first layer using the
95 * `batchInputShape` key. The following example is equivalent to the above:
96 *
97 * ```js
98 * const model = tf.sequential();
99 *
100 * // First layer must have a defined input shape
101 * model.add(tf.layers.dense({units: 32, batchInputShape: [null, 50]}));
102 * // Afterwards, TF.js does automatic shape inference.
103 * model.add(tf.layers.dense({units: 4}));
104 *
105 * // Inspect the inferred shape of the model's output.
106 * console.log(JSON.stringify(model.outputs[0].shape));
107 * ```
108 *
109 * You can also use an `Array` of already-constructed `Layer`s to create
110 * a `tf.Sequential` model:
111 *
112 * ```js
113 * const model = tf.sequential({
114 * layers: [tf.layers.dense({units: 32, inputShape: [50]}),
115 * tf.layers.dense({units: 4})]
116 * });
117 * console.log(JSON.stringify(model.outputs[0].shape));
118 * ```
119 *
120 * @doc {heading: 'Models', subheading: 'Creation'}
121 */
122export declare function sequential(config?: SequentialArgs): Sequential;
123/**
124 * Used to instantiate an input to a model as a `tf.SymbolicTensor`.
125 *
126 * Users should call the `input` factory function for
127 * consistency with other generator functions.
128 *
129 * Example:
130 *
131 * ```js
132 * // Defines a simple logistic regression model with 32 dimensional input
133 * // and 3 dimensional output.
134 * const x = tf.input({shape: [32]});
135 * const y = tf.layers.dense({units: 3, activation: 'softmax'}).apply(x);
136 * const model = tf.model({inputs: x, outputs: y});
137 * model.predict(tf.ones([2, 32])).print();
138 * ```
139 *
140 * Note: `input` is only necessary when using `model`. When using
141 * `sequential`, specify `inputShape` for the first layer or use `inputLayer`
142 * as the first layer.
143 *
144 * @doc {heading: 'Models', subheading: 'Inputs'}
145 */
146export declare function input(config: InputConfig): SymbolicTensor;
147export declare function registerCallbackConstructor(verbosityLevel: number, callbackConstructor: BaseCallbackConstructor): void;