1 | "use strict";
|
2 | var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
3 | return new (P || (P = Promise))(function (resolve, reject) {
|
4 | function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
5 | function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
6 | function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
|
7 | step((generator = generator.apply(thisArg, _arguments || [])).next());
|
8 | });
|
9 | };
|
10 | var __generator = (this && this.__generator) || function (thisArg, body) {
|
11 | var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
12 | return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
13 | function verb(n) { return function (v) { return step([n, v]); }; }
|
14 | function step(op) {
|
15 | if (f) throw new TypeError("Generator is already executing.");
|
16 | while (_) try {
|
17 | if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
18 | if (y = 0, t) op = [op[0] & 2, t.value];
|
19 | switch (op[0]) {
|
20 | case 0: case 1: t = op; break;
|
21 | case 4: _.label++; return { value: op[1], done: false };
|
22 | case 5: _.label++; y = op[1]; op = [0]; continue;
|
23 | case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
24 | default:
|
25 | if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
26 | if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
27 | if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
28 | if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
29 | if (t[2]) _.ops.pop();
|
30 | _.trys.pop(); continue;
|
31 | }
|
32 | op = body.call(thisArg, _);
|
33 | } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
34 | if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
35 | }
|
36 | };
|
37 | var _this = this;
|
38 | Object.defineProperty(exports, "__esModule", { value: true });
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
53 |
|
54 |
|
55 | var tfjs_1 = require("@tensorflow/tfjs");
|
56 |
|
57 | var jasmine_util_1 = require("@tensorflow/tfjs-core/dist/jasmine_util");
|
58 | var fs = require("fs");
|
59 | var util_1 = require("util");
|
60 | var image_1 = require("./image");
|
61 | var tf = require("./index");
|
62 | var readFile = util_1.promisify(fs.readFile);
|
63 | describe('decode images', function () {
|
64 | it('decode png', function () { return __awaiter(_this, void 0, void 0, function () {
|
65 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
66 | return __generator(this, function (_c) {
|
67 | switch (_c.label) {
|
68 | case 0:
|
69 | beforeNumTensors = tfjs_1.memory().numTensors;
|
70 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_test.png')];
|
71 | case 1:
|
72 | uint8array = _c.sent();
|
73 | imageTensor = tf.node.decodePng(uint8array);
|
74 | expect(imageTensor.dtype).toBe('int32');
|
75 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
76 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
77 | return [4 , imageTensor.data()];
|
78 | case 2:
|
79 | _b.apply(_a, [_c.sent(),
|
80 | [238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50]]);
|
81 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
82 | return [2 ];
|
83 | }
|
84 | });
|
85 | }); });
|
86 | it('decode png 1 channels', function () { return __awaiter(_this, void 0, void 0, function () {
|
87 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
88 | return __generator(this, function (_c) {
|
89 | switch (_c.label) {
|
90 | case 0:
|
91 | beforeNumTensors = tfjs_1.memory().numTensors;
|
92 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_test.png')];
|
93 | case 1:
|
94 | uint8array = _c.sent();
|
95 | imageTensor = tf.node.decodeImage(uint8array, 1);
|
96 | expect(imageTensor.dtype).toBe('int32');
|
97 | expect(imageTensor.shape).toEqual([2, 2, 1]);
|
98 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
99 | return [4 , imageTensor.data()];
|
100 | case 2:
|
101 | _b.apply(_a, [_c.sent(), [130, 50, 59, 124]]);
|
102 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
103 | return [2 ];
|
104 | }
|
105 | });
|
106 | }); });
|
107 | it('decode png 3 channels', function () { return __awaiter(_this, void 0, void 0, function () {
|
108 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
109 | return __generator(this, function (_c) {
|
110 | switch (_c.label) {
|
111 | case 0:
|
112 | beforeNumTensors = tfjs_1.memory().numTensors;
|
113 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_test.png')];
|
114 | case 1:
|
115 | uint8array = _c.sent();
|
116 | imageTensor = tf.node.decodeImage(uint8array);
|
117 | expect(imageTensor.dtype).toBe('int32');
|
118 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
119 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
120 | return [4 , imageTensor.data()];
|
121 | case 2:
|
122 | _b.apply(_a, [_c.sent(),
|
123 | [238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50]]);
|
124 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
125 | return [2 ];
|
126 | }
|
127 | });
|
128 | }); });
|
129 | it('decode png 4 channels', function () { return __awaiter(_this, void 0, void 0, function () {
|
130 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
131 | return __generator(this, function (_c) {
|
132 | switch (_c.label) {
|
133 | case 0:
|
134 | beforeNumTensors = tfjs_1.memory().numTensors;
|
135 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_4_channel_test.png')];
|
136 | case 1:
|
137 | uint8array = _c.sent();
|
138 | imageTensor = tf.node.decodeImage(uint8array, 4);
|
139 | expect(imageTensor.dtype).toBe('int32');
|
140 | expect(imageTensor.shape).toEqual([2, 2, 4]);
|
141 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
142 | return [4 , imageTensor.data()];
|
143 | case 2:
|
144 | _b.apply(_a, [_c.sent(), [
|
145 | 238, 101, 0, 255, 50, 50, 50, 255, 100, 50, 0, 255, 200, 100, 50, 255
|
146 | ]]);
|
147 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
148 | return [2 ];
|
149 | }
|
150 | });
|
151 | }); });
|
152 | it('decode bmp', function () { return __awaiter(_this, void 0, void 0, function () {
|
153 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
154 | return __generator(this, function (_c) {
|
155 | switch (_c.label) {
|
156 | case 0:
|
157 | beforeNumTensors = tfjs_1.memory().numTensors;
|
158 | return [4 , getUint8ArrayFromImage('test_objects/images/image_bmp_test.bmp')];
|
159 | case 1:
|
160 | uint8array = _c.sent();
|
161 | imageTensor = tf.node.decodeBmp(uint8array);
|
162 | expect(imageTensor.dtype).toBe('int32');
|
163 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
164 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
165 | return [4 , imageTensor.data()];
|
166 | case 2:
|
167 | _b.apply(_a, [_c.sent(),
|
168 | [238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50]]);
|
169 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
170 | return [2 ];
|
171 | }
|
172 | });
|
173 | }); });
|
174 | it('decode bmp through decodeImage', function () { return __awaiter(_this, void 0, void 0, function () {
|
175 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
176 | return __generator(this, function (_c) {
|
177 | switch (_c.label) {
|
178 | case 0:
|
179 | beforeNumTensors = tfjs_1.memory().numTensors;
|
180 | return [4 , getUint8ArrayFromImage('test_objects/images/image_bmp_test.bmp')];
|
181 | case 1:
|
182 | uint8array = _c.sent();
|
183 | imageTensor = tf.node.decodeImage(uint8array);
|
184 | expect(imageTensor.dtype).toBe('int32');
|
185 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
186 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
187 | return [4 , imageTensor.data()];
|
188 | case 2:
|
189 | _b.apply(_a, [_c.sent(),
|
190 | [238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50]]);
|
191 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
192 | return [2 ];
|
193 | }
|
194 | });
|
195 | }); });
|
196 | it('decode jpg', function () { return __awaiter(_this, void 0, void 0, function () {
|
197 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
198 | return __generator(this, function (_c) {
|
199 | switch (_c.label) {
|
200 | case 0:
|
201 | beforeNumTensors = tfjs_1.memory().numTensors;
|
202 | return [4 , getUint8ArrayFromImage('test_objects/images/image_jpeg_test.jpeg')];
|
203 | case 1:
|
204 | uint8array = _c.sent();
|
205 | imageTensor = tf.node.decodeJpeg(uint8array);
|
206 | expect(imageTensor.dtype).toBe('int32');
|
207 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
208 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
209 | return [4 , imageTensor.data()];
|
210 | case 2:
|
211 | _b.apply(_a, [_c.sent(),
|
212 | [239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]]);
|
213 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
214 | return [2 ];
|
215 | }
|
216 | });
|
217 | }); });
|
218 | it('decode jpg 1 channel', function () { return __awaiter(_this, void 0, void 0, function () {
|
219 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
220 | return __generator(this, function (_c) {
|
221 | switch (_c.label) {
|
222 | case 0:
|
223 | beforeNumTensors = tfjs_1.memory().numTensors;
|
224 | return [4 , getUint8ArrayFromImage('test_objects/images/image_jpeg_test.jpeg')];
|
225 | case 1:
|
226 | uint8array = _c.sent();
|
227 | imageTensor = tf.node.decodeImage(uint8array, 1);
|
228 | expect(imageTensor.dtype).toBe('int32');
|
229 | expect(imageTensor.shape).toEqual([2, 2, 1]);
|
230 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
231 | return [4 , imageTensor.data()];
|
232 | case 2:
|
233 | _b.apply(_a, [_c.sent(), [130, 47, 56, 121]]);
|
234 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
235 | return [2 ];
|
236 | }
|
237 | });
|
238 | }); });
|
239 | it('decode jpg 3 channels', function () { return __awaiter(_this, void 0, void 0, function () {
|
240 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
241 | return __generator(this, function (_c) {
|
242 | switch (_c.label) {
|
243 | case 0:
|
244 | beforeNumTensors = tfjs_1.memory().numTensors;
|
245 | return [4 , getUint8ArrayFromImage('test_objects/images/image_jpeg_test.jpeg')];
|
246 | case 1:
|
247 | uint8array = _c.sent();
|
248 | imageTensor = tf.node.decodeImage(uint8array, 3);
|
249 | expect(imageTensor.dtype).toBe('int32');
|
250 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
251 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
252 | return [4 , imageTensor.data()];
|
253 | case 2:
|
254 | _b.apply(_a, [_c.sent(),
|
255 | [239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]]);
|
256 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
257 | return [2 ];
|
258 | }
|
259 | });
|
260 | }); });
|
261 | it('decode jpg with 0 channels, use the number of channels in the ' +
|
262 | 'JPEG-encoded image', function () { return __awaiter(_this, void 0, void 0, function () {
|
263 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
264 | return __generator(this, function (_c) {
|
265 | switch (_c.label) {
|
266 | case 0:
|
267 | beforeNumTensors = tfjs_1.memory().numTensors;
|
268 | return [4 , getUint8ArrayFromImage('test_objects/images/image_jpeg_test.jpeg')];
|
269 | case 1:
|
270 | uint8array = _c.sent();
|
271 | imageTensor = tf.node.decodeImage(uint8array);
|
272 | expect(imageTensor.dtype).toBe('int32');
|
273 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
274 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
275 | return [4 , imageTensor.data()];
|
276 | case 2:
|
277 | _b.apply(_a, [_c.sent(),
|
278 | [239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]]);
|
279 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
280 | return [2 ];
|
281 | }
|
282 | });
|
283 | }); });
|
284 | it('decode jpg with downscale', function () { return __awaiter(_this, void 0, void 0, function () {
|
285 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
286 | return __generator(this, function (_c) {
|
287 | switch (_c.label) {
|
288 | case 0:
|
289 | beforeNumTensors = tfjs_1.memory().numTensors;
|
290 | return [4 , getUint8ArrayFromImage('test_objects/images/image_jpeg_test.jpeg')];
|
291 | case 1:
|
292 | uint8array = _c.sent();
|
293 | imageTensor = tf.node.decodeJpeg(uint8array, 0, 2);
|
294 | expect(imageTensor.dtype).toBe('int32');
|
295 | expect(imageTensor.shape).toEqual([1, 1, 3]);
|
296 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
297 | return [4 , imageTensor.data()];
|
298 | case 2:
|
299 | _b.apply(_a, [_c.sent(), [147, 75, 25]]);
|
300 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
301 | return [2 ];
|
302 | }
|
303 | });
|
304 | }); });
|
305 | it('decode gif', function () { return __awaiter(_this, void 0, void 0, function () {
|
306 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
307 | return __generator(this, function (_c) {
|
308 | switch (_c.label) {
|
309 | case 0:
|
310 | beforeNumTensors = tfjs_1.memory().numTensors;
|
311 | return [4 , getUint8ArrayFromImage('test_objects/images/gif_test.gif')];
|
312 | case 1:
|
313 | uint8array = _c.sent();
|
314 | imageTensor = tf.node.decodeImage(uint8array);
|
315 | expect(imageTensor.dtype).toBe('int32');
|
316 | expect(imageTensor.shape).toEqual([2, 2, 2, 3]);
|
317 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
318 | return [4 , imageTensor.data()];
|
319 | case 2:
|
320 | _b.apply(_a, [_c.sent(), [
|
321 | 238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50,
|
322 | 200, 100, 50, 34, 68, 102, 170, 0, 102, 255, 255, 255
|
323 | ]]);
|
324 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
325 | return [2 ];
|
326 | }
|
327 | });
|
328 | }); });
|
329 | it('decode gif with no expandAnimation', function () { return __awaiter(_this, void 0, void 0, function () {
|
330 | var beforeNumTensors, uint8array, imageTensor, _a, _b;
|
331 | return __generator(this, function (_c) {
|
332 | switch (_c.label) {
|
333 | case 0:
|
334 | beforeNumTensors = tfjs_1.memory().numTensors;
|
335 | return [4 , getUint8ArrayFromImage('test_objects/images/gif_test.gif')];
|
336 | case 1:
|
337 | uint8array = _c.sent();
|
338 | imageTensor = tf.node.decodeImage(uint8array, 3, 'int32', false);
|
339 | expect(imageTensor.dtype).toBe('int32');
|
340 | expect(imageTensor.shape).toEqual([2, 2, 3]);
|
341 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
342 | return [4 , imageTensor.data()];
|
343 | case 2:
|
344 | _b.apply(_a, [_c.sent(),
|
345 | [238, 101, 0, 50, 50, 50, 100, 50, 0, 200, 100, 50]]);
|
346 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors + 1);
|
347 | return [2 ];
|
348 | }
|
349 | });
|
350 | }); });
|
351 | it('throw error if request non int32 dtype', function (done) { return __awaiter(_this, void 0, void 0, function () {
|
352 | var uint8array, error_1;
|
353 | return __generator(this, function (_a) {
|
354 | switch (_a.label) {
|
355 | case 0:
|
356 | _a.trys.push([0, 2, , 3]);
|
357 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_test.png')];
|
358 | case 1:
|
359 | uint8array = _a.sent();
|
360 | tf.node.decodeImage(uint8array, 0, 'uint8');
|
361 | done.fail();
|
362 | return [3 , 3];
|
363 | case 2:
|
364 | error_1 = _a.sent();
|
365 | expect(error_1.message)
|
366 | .toBe('decodeImage could only return Tensor of type `int32` for now.');
|
367 | done();
|
368 | return [3 , 3];
|
369 | case 3: return [2 ];
|
370 | }
|
371 | });
|
372 | }); });
|
373 | it('throw error if decode invalid image type', function (done) { return __awaiter(_this, void 0, void 0, function () {
|
374 | var uint8array, error_2;
|
375 | return __generator(this, function (_a) {
|
376 | switch (_a.label) {
|
377 | case 0:
|
378 | _a.trys.push([0, 2, , 3]);
|
379 | return [4 , getUint8ArrayFromImage('package.json')];
|
380 | case 1:
|
381 | uint8array = _a.sent();
|
382 | tf.node.decodeImage(uint8array);
|
383 | done.fail();
|
384 | return [3 , 3];
|
385 | case 2:
|
386 | error_2 = _a.sent();
|
387 | expect(error_2.message)
|
388 | .toBe('Expected image (BMP, JPEG, PNG, or GIF), ' +
|
389 | 'but got unsupported image type');
|
390 | done();
|
391 | return [3 , 3];
|
392 | case 3: return [2 ];
|
393 | }
|
394 | });
|
395 | }); });
|
396 | it('throw error if backend is not tensorflow', function (done) { return __awaiter(_this, void 0, void 0, function () {
|
397 | var testBackend_1, uint8array, err_1;
|
398 | return __generator(this, function (_a) {
|
399 | switch (_a.label) {
|
400 | case 0:
|
401 | _a.trys.push([0, 2, , 3]);
|
402 | testBackend_1 = new jasmine_util_1.TestKernelBackend();
|
403 | tfjs_1.registerBackend('fake', function () { return testBackend_1; });
|
404 | tfjs_1.setBackend('fake');
|
405 | return [4 , getUint8ArrayFromImage('test_objects/images/image_png_test.png')];
|
406 | case 1:
|
407 | uint8array = _a.sent();
|
408 | tf.node.decodeImage(uint8array);
|
409 | done.fail();
|
410 | return [3 , 3];
|
411 | case 2:
|
412 | err_1 = _a.sent();
|
413 | expect(err_1.message)
|
414 | .toBe('Expect the current backend to be "tensorflow", but got "fake"');
|
415 | tfjs_1.setBackend('tensorflow');
|
416 | done();
|
417 | return [3 , 3];
|
418 | case 3: return [2 ];
|
419 | }
|
420 | });
|
421 | }); });
|
422 | });
|
423 | describe('encode images', function () {
|
424 | it('encodeJpeg', function () { return __awaiter(_this, void 0, void 0, function () {
|
425 | var imageTensor, beforeNumTensors, jpegEncodedData;
|
426 | return __generator(this, function (_a) {
|
427 | switch (_a.label) {
|
428 | case 0:
|
429 | imageTensor = tf.tensor3d(new Uint8Array([239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]), [2, 2, 3]);
|
430 | beforeNumTensors = tfjs_1.memory().numTensors;
|
431 | return [4 , tf.node.encodeJpeg(imageTensor)];
|
432 | case 1:
|
433 | jpegEncodedData = _a.sent();
|
434 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
435 | expect(image_1.getImageType(jpegEncodedData)).toEqual(image_1.ImageType.JPEG);
|
436 | imageTensor.dispose();
|
437 | return [2 ];
|
438 | }
|
439 | });
|
440 | }); });
|
441 | it('encodeJpeg grayscale', function () { return __awaiter(_this, void 0, void 0, function () {
|
442 | var imageTensor, beforeNumTensors, jpegEncodedData;
|
443 | return __generator(this, function (_a) {
|
444 | switch (_a.label) {
|
445 | case 0:
|
446 | imageTensor = tf.tensor3d(new Uint8Array([239, 0, 47, 0]), [2, 2, 1]);
|
447 | beforeNumTensors = tfjs_1.memory().numTensors;
|
448 | return [4 , tf.node.encodeJpeg(imageTensor, 'grayscale')];
|
449 | case 1:
|
450 | jpegEncodedData = _a.sent();
|
451 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
452 | expect(image_1.getImageType(jpegEncodedData)).toEqual(image_1.ImageType.JPEG);
|
453 | imageTensor.dispose();
|
454 | return [2 ];
|
455 | }
|
456 | });
|
457 | }); });
|
458 | it('encodeJpeg with parameters', function () { return __awaiter(_this, void 0, void 0, function () {
|
459 | var imageTensor, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity, beforeNumTensors, jpegEncodedData;
|
460 | return __generator(this, function (_a) {
|
461 | switch (_a.label) {
|
462 | case 0:
|
463 | imageTensor = tf.tensor3d(new Uint8Array([239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]), [2, 2, 3]);
|
464 | format = 'rgb';
|
465 | quality = 50;
|
466 | progressive = true;
|
467 | optimizeSize = true;
|
468 | chromaDownsampling = false;
|
469 | densityUnit = 'cm';
|
470 | xDensity = 500;
|
471 | yDensity = 500;
|
472 | beforeNumTensors = tfjs_1.memory().numTensors;
|
473 | return [4 , tf.node.encodeJpeg(imageTensor, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity)];
|
474 | case 1:
|
475 | jpegEncodedData = _a.sent();
|
476 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
477 | expect(image_1.getImageType(jpegEncodedData)).toEqual(image_1.ImageType.JPEG);
|
478 | imageTensor.dispose();
|
479 | return [2 ];
|
480 | }
|
481 | });
|
482 | }); });
|
483 | it('encodePng', function () { return __awaiter(_this, void 0, void 0, function () {
|
484 | var imageTensor, beforeNumTensors, pngEncodedData, pngDecodedTensor, pngDecodedData, _a, _b;
|
485 | return __generator(this, function (_c) {
|
486 | switch (_c.label) {
|
487 | case 0:
|
488 | imageTensor = tf.tensor3d(new Uint8Array([239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]), [2, 2, 3]);
|
489 | beforeNumTensors = tfjs_1.memory().numTensors;
|
490 | return [4 , tf.node.encodePng(imageTensor)];
|
491 | case 1:
|
492 | pngEncodedData = _c.sent();
|
493 | return [4 , tf.node.decodePng(pngEncodedData)];
|
494 | case 2:
|
495 | pngDecodedTensor = _c.sent();
|
496 | return [4 , pngDecodedTensor.data()];
|
497 | case 3:
|
498 | pngDecodedData = _c.sent();
|
499 | pngDecodedTensor.dispose();
|
500 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
501 | expect(image_1.getImageType(pngEncodedData)).toEqual(image_1.ImageType.PNG);
|
502 | _b = (_a = tfjs_1.test_util).expectArraysEqual;
|
503 | return [4 , imageTensor.data()];
|
504 | case 4:
|
505 | _b.apply(_a, [_c.sent(), pngDecodedData]);
|
506 | imageTensor.dispose();
|
507 | return [2 ];
|
508 | }
|
509 | });
|
510 | }); });
|
511 | it('encodePng grayscale', function () { return __awaiter(_this, void 0, void 0, function () {
|
512 | var imageTensor, beforeNumTensors, pngEncodedData;
|
513 | return __generator(this, function (_a) {
|
514 | switch (_a.label) {
|
515 | case 0:
|
516 | imageTensor = tf.tensor3d(new Uint8Array([239, 0, 47, 0]), [2, 2, 1]);
|
517 | beforeNumTensors = tfjs_1.memory().numTensors;
|
518 | return [4 , tf.node.encodePng(imageTensor)];
|
519 | case 1:
|
520 | pngEncodedData = _a.sent();
|
521 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
522 | expect(image_1.getImageType(pngEncodedData)).toEqual(image_1.ImageType.PNG);
|
523 | imageTensor.dispose();
|
524 | return [2 ];
|
525 | }
|
526 | });
|
527 | }); });
|
528 | it('encodePng with parameters', function () { return __awaiter(_this, void 0, void 0, function () {
|
529 | var imageTensor, compression, beforeNumTensors, pngEncodedData;
|
530 | return __generator(this, function (_a) {
|
531 | switch (_a.label) {
|
532 | case 0:
|
533 | imageTensor = tf.tensor3d(new Uint8Array([239, 100, 0, 46, 48, 47, 92, 49, 0, 194, 98, 47]), [2, 2, 3]);
|
534 | compression = 4;
|
535 | beforeNumTensors = tfjs_1.memory().numTensors;
|
536 | return [4 , tf.node.encodePng(imageTensor, compression)];
|
537 | case 1:
|
538 | pngEncodedData = _a.sent();
|
539 | expect(tfjs_1.memory().numTensors).toBe(beforeNumTensors);
|
540 | expect(image_1.getImageType(pngEncodedData)).toEqual(image_1.ImageType.PNG);
|
541 | imageTensor.dispose();
|
542 | return [2 ];
|
543 | }
|
544 | });
|
545 | }); });
|
546 | });
|
547 | function getUint8ArrayFromImage(path) {
|
548 | return __awaiter(this, void 0, void 0, function () {
|
549 | var image, buf;
|
550 | return __generator(this, function (_a) {
|
551 | switch (_a.label) {
|
552 | case 0: return [4 , readFile(path)];
|
553 | case 1:
|
554 | image = _a.sent();
|
555 | buf = Buffer.from(image);
|
556 | return [2 , new Uint8Array(buf)];
|
557 | }
|
558 | });
|
559 | });
|
560 | }
|