1 | "use strict";
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 | var __extends = (this && this.__extends) || (function () {
|
19 | var extendStatics = function (d, b) {
|
20 | extendStatics = Object.setPrototypeOf ||
|
21 | ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
|
22 | function (d, b) { for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p]; };
|
23 | return extendStatics(d, b);
|
24 | };
|
25 | return function (d, b) {
|
26 | extendStatics(d, b);
|
27 | function __() { this.constructor = d; }
|
28 | d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
|
29 | };
|
30 | })();
|
31 | var __awaiter = (this && this.__awaiter) || function (thisArg, _arguments, P, generator) {
|
32 | return new (P || (P = Promise))(function (resolve, reject) {
|
33 | function fulfilled(value) { try { step(generator.next(value)); } catch (e) { reject(e); } }
|
34 | function rejected(value) { try { step(generator["throw"](value)); } catch (e) { reject(e); } }
|
35 | function step(result) { result.done ? resolve(result.value) : new P(function (resolve) { resolve(result.value); }).then(fulfilled, rejected); }
|
36 | step((generator = generator.apply(thisArg, _arguments || [])).next());
|
37 | });
|
38 | };
|
39 | var __generator = (this && this.__generator) || function (thisArg, body) {
|
40 | var _ = { label: 0, sent: function() { if (t[0] & 1) throw t[1]; return t[1]; }, trys: [], ops: [] }, f, y, t, g;
|
41 | return g = { next: verb(0), "throw": verb(1), "return": verb(2) }, typeof Symbol === "function" && (g[Symbol.iterator] = function() { return this; }), g;
|
42 | function verb(n) { return function (v) { return step([n, v]); }; }
|
43 | function step(op) {
|
44 | if (f) throw new TypeError("Generator is already executing.");
|
45 | while (_) try {
|
46 | if (f = 1, y && (t = op[0] & 2 ? y["return"] : op[0] ? y["throw"] || ((t = y["return"]) && t.call(y), 0) : y.next) && !(t = t.call(y, op[1])).done) return t;
|
47 | if (y = 0, t) op = [op[0] & 2, t.value];
|
48 | switch (op[0]) {
|
49 | case 0: case 1: t = op; break;
|
50 | case 4: _.label++; return { value: op[1], done: false };
|
51 | case 5: _.label++; y = op[1]; op = [0]; continue;
|
52 | case 7: op = _.ops.pop(); _.trys.pop(); continue;
|
53 | default:
|
54 | if (!(t = _.trys, t = t.length > 0 && t[t.length - 1]) && (op[0] === 6 || op[0] === 2)) { _ = 0; continue; }
|
55 | if (op[0] === 3 && (!t || (op[1] > t[0] && op[1] < t[3]))) { _.label = op[1]; break; }
|
56 | if (op[0] === 6 && _.label < t[1]) { _.label = t[1]; t = op; break; }
|
57 | if (t && _.label < t[2]) { _.label = t[2]; _.ops.push(op); break; }
|
58 | if (t[2]) _.ops.pop();
|
59 | _.trys.pop(); continue;
|
60 | }
|
61 | op = body.call(thisArg, _);
|
62 | } catch (e) { op = [6, e]; y = 0; } finally { f = t = 0; }
|
63 | if (op[0] & 5) throw op[1]; return { value: op[0] ? op[1] : void 0, done: true };
|
64 | }
|
65 | };
|
66 | Object.defineProperty(exports, "__esModule", { value: true });
|
67 | var tf = require("@tensorflow/tfjs");
|
68 | var tfjs_1 = require("@tensorflow/tfjs");
|
69 | var util_1 = require("util");
|
70 | var int64_tensors_1 = require("./int64_tensors");
|
71 | var NodeJSKernelBackend = (function (_super) {
|
72 | __extends(NodeJSKernelBackend, _super);
|
73 | function NodeJSKernelBackend(binding, packageName) {
|
74 | var _this = _super.call(this) || this;
|
75 | _this.binding = binding;
|
76 | _this.isGPUPackage = packageName === '@tensorflow/tfjs-node-gpu';
|
77 | _this.isUsingGpuDevice = _this.binding.isUsingGpuDevice();
|
78 | _this.tensorMap = new tf.DataStorage(_this, tf.engine());
|
79 | return _this;
|
80 | }
|
81 | NodeJSKernelBackend.prototype.getDTypeInteger = function (dtype) {
|
82 | switch (dtype) {
|
83 | case 'float32':
|
84 | return this.binding.TF_FLOAT;
|
85 | case 'int32':
|
86 | return this.binding.TF_INT32;
|
87 | case 'bool':
|
88 | return this.binding.TF_BOOL;
|
89 | case 'complex64':
|
90 | return this.binding.TF_COMPLEX64;
|
91 | case 'string':
|
92 | return this.binding.TF_STRING;
|
93 | default:
|
94 | throw new Error("Unsupported DType: " + dtype);
|
95 | }
|
96 | };
|
97 | NodeJSKernelBackend.prototype.typeAttributeFromTensor = function (value) {
|
98 | return this.getDTypeInteger(value.dtype);
|
99 | };
|
100 |
|
101 | NodeJSKernelBackend.prototype.createOutputTensor = function (metadata) {
|
102 | var newId = {};
|
103 | this.tensorMap.set(newId, {
|
104 | shape: metadata.shape,
|
105 | dtype: metadata.dtype,
|
106 | id: metadata.id,
|
107 | values: null
|
108 | });
|
109 | var dtype;
|
110 | switch (metadata.dtype) {
|
111 | case this.binding.TF_FLOAT:
|
112 | dtype = 'float32';
|
113 | break;
|
114 | case this.binding.TF_INT32:
|
115 | dtype = 'int32';
|
116 | break;
|
117 | case this.binding.TF_BOOL:
|
118 | dtype = 'bool';
|
119 | break;
|
120 | case this.binding.TF_COMPLEX64:
|
121 | dtype = 'complex64';
|
122 | break;
|
123 | case this.binding.TF_STRING:
|
124 | dtype = 'string';
|
125 | break;
|
126 | case this.binding.TF_RESOURCE:
|
127 |
|
128 |
|
129 | dtype = 'string';
|
130 | break;
|
131 | case this.binding.TF_UINT8:
|
132 |
|
133 |
|
134 | dtype = 'int32';
|
135 | break;
|
136 | default:
|
137 | throw new Error("Unknown dtype enum " + metadata.dtype);
|
138 | }
|
139 | return tf.engine().makeTensorFromDataId(newId, metadata.shape, dtype);
|
140 | };
|
141 |
|
142 | NodeJSKernelBackend.prototype.getInputTensorIds = function (tensors) {
|
143 | var ids = [];
|
144 | for (var i = 0; i < tensors.length; i++) {
|
145 | if (tensors[i] instanceof int64_tensors_1.Int64Scalar) {
|
146 |
|
147 |
|
148 | var value = tensors[i].valueArray;
|
149 | var id = this.binding.createTensor([], this.binding.TF_INT64, value);
|
150 | ids.push(id);
|
151 | }
|
152 | else {
|
153 | var info = this.tensorMap.get(tensors[i].dataId);
|
154 |
|
155 | if (info.values != null) {
|
156 |
|
157 |
|
158 | info.id =
|
159 | this.binding.createTensor(info.shape, info.dtype, info.values);
|
160 | info.values = null;
|
161 | }
|
162 | ids.push(info.id);
|
163 | }
|
164 | }
|
165 | return ids;
|
166 | };
|
167 | NodeJSKernelBackend.prototype.createReductionOpAttrs = function (tensor) {
|
168 | return [
|
169 | { name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: false },
|
170 | createTensorsTypeOpAttr('T', tensor.dtype),
|
171 | createTensorsTypeOpAttr('Tidx', 'int32')
|
172 | ];
|
173 | };
|
174 | NodeJSKernelBackend.prototype.executeSingleInput = function (name, input) {
|
175 | var opAttrs = [createTensorsTypeOpAttr('T', input.dtype)];
|
176 | return this.executeSingleOutput(name, opAttrs, [input]);
|
177 | };
|
178 | NodeJSKernelBackend.prototype.floatPrecision = function () {
|
179 | return 32;
|
180 | };
|
181 | NodeJSKernelBackend.prototype.epsilon = function () {
|
182 | return _super.prototype.epsilon.call(this);
|
183 | };
|
184 | |
185 |
|
186 |
|
187 |
|
188 |
|
189 |
|
190 |
|
191 | NodeJSKernelBackend.prototype.executeSingleOutput = function (name, opAttrs, inputs) {
|
192 | var outputMetadata = this.binding.executeOp(name, opAttrs, this.getInputTensorIds(inputs), 1);
|
193 | return this.createOutputTensor(outputMetadata[0]);
|
194 | };
|
195 | |
196 |
|
197 |
|
198 |
|
199 |
|
200 |
|
201 |
|
202 |
|
203 | NodeJSKernelBackend.prototype.executeMultipleOutputs = function (name, opAttrs, inputs, numOutputs) {
|
204 | var _this = this;
|
205 | var outputMetadata = this.binding.executeOp(name, opAttrs, this.getInputTensorIds(inputs), numOutputs);
|
206 | return outputMetadata.map(function (m) { return _this.createOutputTensor(m); });
|
207 | };
|
208 | NodeJSKernelBackend.prototype.numDataIds = function () {
|
209 | return this.tensorMap.numDataIds();
|
210 | };
|
211 | NodeJSKernelBackend.prototype.dispose = function () { };
|
212 | NodeJSKernelBackend.prototype.read = function (dataId) {
|
213 | return __awaiter(this, void 0, void 0, function () {
|
214 | return __generator(this, function (_a) {
|
215 | return [2 , this.readSync(dataId)];
|
216 | });
|
217 | });
|
218 | };
|
219 | NodeJSKernelBackend.prototype.readSync = function (dataId) {
|
220 | if (!this.tensorMap.has(dataId)) {
|
221 | throw new Error("Tensor " + dataId + " was not registered!");
|
222 | }
|
223 | var info = this.tensorMap.get(dataId);
|
224 | if (info.values != null) {
|
225 | return info.values;
|
226 | }
|
227 | else {
|
228 | return this.binding.tensorDataSync(info.id);
|
229 | }
|
230 | };
|
231 | NodeJSKernelBackend.prototype.disposeData = function (dataId) {
|
232 |
|
233 | if (!this.tensorMap.has(dataId)) {
|
234 | return;
|
235 | }
|
236 | var id = this.tensorMap.get(dataId).id;
|
237 | if (id != null && id >= 0) {
|
238 | this.binding.deleteTensor(id);
|
239 | }
|
240 | this.tensorMap.delete(dataId);
|
241 | };
|
242 | NodeJSKernelBackend.prototype.move = function (dataId, values, shape, dtype) {
|
243 | this.tensorMap.set(dataId, { shape: shape, dtype: getTFDType(dtype), values: values, id: -1 });
|
244 | };
|
245 | NodeJSKernelBackend.prototype.write = function (values, shape, dtype) {
|
246 | var dataId = {};
|
247 | this.move(dataId, values, shape, dtype);
|
248 | return dataId;
|
249 | };
|
250 | NodeJSKernelBackend.prototype.fill = function (shape, value, dtype) {
|
251 |
|
252 |
|
253 |
|
254 | if (dtype == null) {
|
255 | if (typeof value === 'number') {
|
256 | dtype = 'float32';
|
257 | }
|
258 | else {
|
259 | dtype = 'string';
|
260 | }
|
261 | }
|
262 | var shapeTensor = tfjs_1.tensor1d(shape, 'int32');
|
263 | var valueTensor = tfjs_1.scalar(value, dtype);
|
264 | var opAttrs = [
|
265 | {
|
266 | name: 'T',
|
267 | type: this.binding.TF_ATTR_TYPE,
|
268 | value: this.getDTypeInteger(dtype)
|
269 | },
|
270 | {
|
271 | name: 'index_type',
|
272 | type: this.binding.TF_ATTR_TYPE,
|
273 | value: this.binding.TF_INT32
|
274 | }
|
275 | ];
|
276 | return this.executeSingleOutput('Fill', opAttrs, [shapeTensor, valueTensor]);
|
277 | };
|
278 | NodeJSKernelBackend.prototype.onesLike = function (x) {
|
279 | var opAttrs = [{
|
280 | name: 'T',
|
281 | type: this.binding.TF_ATTR_TYPE,
|
282 | value: this.getDTypeInteger(x.dtype)
|
283 | }];
|
284 | return this.executeSingleOutput('OnesLike', opAttrs, [x]);
|
285 | };
|
286 | NodeJSKernelBackend.prototype.zerosLike = function (x) {
|
287 | var opAttrs = [{
|
288 | name: 'T',
|
289 | type: this.binding.TF_ATTR_TYPE,
|
290 | value: this.getDTypeInteger(x.dtype)
|
291 | }];
|
292 | return this.executeSingleOutput('ZerosLike', opAttrs, [x]);
|
293 | };
|
294 | NodeJSKernelBackend.prototype.stridedSlice = function (x, begin, end, strides) {
|
295 | var beginTensor = tfjs_1.tensor1d(begin, 'int32');
|
296 | for (var axis = 0; axis < end.length; axis++) {
|
297 |
|
298 |
|
299 | if (strides[axis] < 0 && end[axis] === -1) {
|
300 | end[axis] -= x.shape[axis];
|
301 | }
|
302 | }
|
303 | var endTensor = tfjs_1.tensor1d(end, 'int32');
|
304 | var stridesTensor = tfjs_1.tensor1d(strides, 'int32');
|
305 |
|
306 |
|
307 | var opAttrs = [
|
308 | createTensorsTypeOpAttr('T', x.dtype),
|
309 | createTensorsTypeOpAttr('Index', 'int32'),
|
310 | { name: 'begin_mask', type: this.binding.TF_ATTR_INT, value: 0 },
|
311 | { name: 'end_mask', type: this.binding.TF_ATTR_INT, value: 0 },
|
312 | { name: 'ellipsis_mask', type: this.binding.TF_ATTR_INT, value: 0 },
|
313 | { name: 'new_axis_mask', type: this.binding.TF_ATTR_INT, value: 0 },
|
314 | { name: 'shrink_axis_mask', type: this.binding.TF_ATTR_INT, value: 0 }
|
315 | ];
|
316 | return this.executeSingleOutput('StridedSlice', opAttrs, [x, beginTensor, endTensor, stridesTensor]);
|
317 | };
|
318 | NodeJSKernelBackend.prototype.unstack = function (x, axis) {
|
319 | if (axis >= x.shape.length) {
|
320 | throw new Error("Invalid axis supplied: " + axis + " shape length: " + x.shape.length);
|
321 | }
|
322 | var num = x.shape[axis];
|
323 | var opAttrs = [
|
324 | { name: 'num', type: this.binding.TF_ATTR_INT, value: num },
|
325 | createTensorsTypeOpAttr('T', x.dtype),
|
326 | { name: 'axis', type: this.binding.TF_ATTR_INT, value: axis }
|
327 | ];
|
328 | return this.executeMultipleOutputs('Unpack', opAttrs, [x], num);
|
329 | };
|
330 | NodeJSKernelBackend.prototype.batchMatMul = function (a, b, transposeA, transposeB) {
|
331 | var opAttrs = [
|
332 | createTensorsTypeOpAttr('T', a.dtype),
|
333 | { name: 'adj_x', type: this.binding.TF_ATTR_BOOL, value: transposeA },
|
334 | { name: 'adj_y', type: this.binding.TF_ATTR_BOOL, value: transposeB }
|
335 | ];
|
336 | return this.executeSingleOutput('BatchMatMul', opAttrs, [a, b]);
|
337 | };
|
338 | NodeJSKernelBackend.prototype.applyActivation = function (input, activation, preluActivationWeights) {
|
339 | var result = input;
|
340 | if (activation != null) {
|
341 | if (activation === 'linear') {
|
342 |
|
343 | }
|
344 | else if (activation === 'relu') {
|
345 | result = this.relu(result);
|
346 | }
|
347 | else if (activation === 'prelu') {
|
348 | result = this.prelu(result, preluActivationWeights);
|
349 | }
|
350 | else if (activation === 'elu') {
|
351 | result = this.elu(result);
|
352 | }
|
353 | else if (activation === 'relu6') {
|
354 | result = this.relu6(result);
|
355 | }
|
356 | else {
|
357 | throw new Error("Activation: " + activation + " has not been implemented for the Node.js backend");
|
358 | }
|
359 | }
|
360 | return result;
|
361 | };
|
362 | NodeJSKernelBackend.prototype.fusedConv2d = function (_a) {
|
363 | var input = _a.input, filter = _a.filter, convInfo = _a.convInfo, bias = _a.bias, activation = _a.activation, preluActivationWeights = _a.preluActivationWeights;
|
364 | var result = this.conv2d(input, filter, convInfo);
|
365 | if (bias != null) {
|
366 | result = this.add(result, bias);
|
367 | }
|
368 | result = this.applyActivation(result, activation, preluActivationWeights);
|
369 | return result;
|
370 | };
|
371 | NodeJSKernelBackend.prototype.fusedBatchMatMul = function (_a) {
|
372 | var a = _a.a, b = _a.b, transposeA = _a.transposeA, transposeB = _a.transposeB, bias = _a.bias, activation = _a.activation, preluActivationWeights = _a.preluActivationWeights;
|
373 |
|
374 |
|
375 | var result = this.batchMatMul(a, b, transposeA, transposeB);
|
376 | if (bias != null) {
|
377 | result = this.add(result, bias);
|
378 | }
|
379 | result = this.applyActivation(result, activation, preluActivationWeights);
|
380 | return result;
|
381 | };
|
382 | NodeJSKernelBackend.prototype.slice = function (x, begin, size) {
|
383 | var opAttrs = [
|
384 | createTensorsTypeOpAttr('T', x.dtype),
|
385 | createTensorsTypeOpAttr('Index', 'int32')
|
386 | ];
|
387 |
|
388 | var beginTensor = tfjs_1.tensor1d(begin, 'int32');
|
389 | var sizeTensor = tfjs_1.tensor1d(size, 'int32');
|
390 | return this.executeSingleOutput('Slice', opAttrs, [x, beginTensor, sizeTensor]);
|
391 | };
|
392 | NodeJSKernelBackend.prototype.reverse = function (a, axis) {
|
393 | var opAttrs = [
|
394 | createTensorsTypeOpAttr('Tidx', 'int32'),
|
395 | createTensorsTypeOpAttr('T', a.dtype)
|
396 | ];
|
397 | var axisTensor = tfjs_1.tensor1d(axis, 'int32');
|
398 | return this.executeSingleOutput('ReverseV2', opAttrs, [a, axisTensor]);
|
399 | };
|
400 | NodeJSKernelBackend.prototype.concat = function (tensors, axis) {
|
401 | var opAttrs = [
|
402 | { name: 'N', type: this.binding.TF_ATTR_INT, value: tensors.length }, {
|
403 | name: 'Tidx',
|
404 | type: this.binding.TF_ATTR_TYPE,
|
405 | value: this.binding.TF_INT32
|
406 | },
|
407 | createTensorsTypeOpAttr('T', tensors)
|
408 | ];
|
409 | var inputs = Array.from(tensors);
|
410 | inputs.push(tfjs_1.scalar(axis, 'int32'));
|
411 | return this.executeSingleOutput('ConcatV2', opAttrs, inputs);
|
412 | };
|
413 | NodeJSKernelBackend.prototype.neg = function (a) {
|
414 | return this.executeSingleInput('Neg', a);
|
415 | };
|
416 | NodeJSKernelBackend.prototype.diag = function (x) {
|
417 | return this.executeSingleInput('Diag', x);
|
418 | };
|
419 | NodeJSKernelBackend.prototype.add = function (a, b) {
|
420 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
421 | return this.executeSingleOutput('Add', opAttrs, [a, b]);
|
422 | };
|
423 | NodeJSKernelBackend.prototype.select = function (condition, a, b) {
|
424 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
425 | return this.executeSingleOutput('Select', opAttrs, [condition, a, b]);
|
426 | };
|
427 | NodeJSKernelBackend.prototype.addN = function (tensors) {
|
428 | var opAttrs = [
|
429 | createTensorsTypeOpAttr('T', tensors[0].dtype),
|
430 | { name: 'N', type: this.binding.TF_ATTR_INT, value: tensors.length }
|
431 | ];
|
432 | return this.executeSingleOutput('AddN', opAttrs, tensors);
|
433 | };
|
434 | NodeJSKernelBackend.prototype.subtract = function (a, b) {
|
435 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
436 | return this.executeSingleOutput('Sub', opAttrs, [a, b]);
|
437 | };
|
438 | NodeJSKernelBackend.prototype.multiply = function (a, b) {
|
439 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
440 | return this.executeSingleOutput('Mul', opAttrs, [a, b]);
|
441 | };
|
442 | NodeJSKernelBackend.prototype.realDivide = function (a, b) {
|
443 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
444 | return this.executeSingleOutput('RealDiv', opAttrs, [a, b]);
|
445 | };
|
446 | NodeJSKernelBackend.prototype.floorDiv = function (a, b) {
|
447 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
448 | return this.executeSingleOutput('FloorDiv', opAttrs, [a, b]);
|
449 | };
|
450 | NodeJSKernelBackend.prototype.divide = function (a, b) {
|
451 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
452 | return this.executeSingleOutput('Div', opAttrs, [a, b]);
|
453 | };
|
454 | NodeJSKernelBackend.prototype.divNoNan = function (a, b) {
|
455 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
456 | return this.executeSingleOutput('DivNoNan', opAttrs, [a, b]);
|
457 | };
|
458 | NodeJSKernelBackend.prototype.unsortedSegmentSum = function (x, segmentIds, numSegments) {
|
459 | var opAttrs = [
|
460 | createTensorsTypeOpAttr('T', x.dtype),
|
461 | createTensorsTypeOpAttr('Tindices', 'int32'),
|
462 | createTensorsTypeOpAttr('Tnumsegments', 'int32')
|
463 | ];
|
464 | return this.executeSingleOutput('UnsortedSegmentSum', opAttrs, [x, segmentIds, tfjs_1.scalar(numSegments, 'int32')]);
|
465 | };
|
466 | NodeJSKernelBackend.prototype.sum = function (x, axes) {
|
467 | var axisTensor = tfjs_1.tensor1d(axes, 'int32');
|
468 | return this.executeSingleOutput('Sum', this.createReductionOpAttrs(x), [x, axisTensor]);
|
469 | };
|
470 | NodeJSKernelBackend.prototype.prod = function (x, axes) {
|
471 | var axesTensor = tfjs_1.tensor1d(axes, 'int32');
|
472 | var opAttrs = [
|
473 | { name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: false },
|
474 | createTensorsTypeOpAttr('T', x.dtype),
|
475 | createTensorsTypeOpAttr('Tidx', 'int32')
|
476 | ];
|
477 | return this.executeSingleOutput('Prod', opAttrs, [x, axesTensor]);
|
478 | };
|
479 | NodeJSKernelBackend.prototype.argMin = function (x, axis) {
|
480 | var xInput = x.dtype === 'bool' ? x.toInt() : x;
|
481 | var axisScalar = tfjs_1.scalar(axis, 'int32');
|
482 | var opAttrs = [
|
483 | createTensorsTypeOpAttr('T', xInput.dtype),
|
484 | createTensorsTypeOpAttr('Tidx', 'int32'),
|
485 | createTensorsTypeOpAttr('output_type', 'int32')
|
486 | ];
|
487 | return this.executeSingleOutput('ArgMin', opAttrs, [xInput, axisScalar]);
|
488 | };
|
489 | NodeJSKernelBackend.prototype.argMax = function (x, axis) {
|
490 | var xInput = x.dtype === 'bool' ? x.toInt() : x;
|
491 | var axisScalar = tfjs_1.scalar(axis, 'int32');
|
492 | var opAttrs = [
|
493 | createTensorsTypeOpAttr('T', xInput.dtype),
|
494 | createTensorsTypeOpAttr('Tidx', 'int32'),
|
495 | createTensorsTypeOpAttr('output_type', 'int32')
|
496 | ];
|
497 | return this.executeSingleOutput('ArgMax', opAttrs, [xInput, axisScalar]);
|
498 | };
|
499 | NodeJSKernelBackend.prototype.equal = function (a, b) {
|
500 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
501 | return this.executeSingleOutput('Equal', opAttrs, [a, b]);
|
502 | };
|
503 | NodeJSKernelBackend.prototype.notEqual = function (a, b) {
|
504 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
505 | return this.executeSingleOutput('NotEqual', opAttrs, [a, b]);
|
506 | };
|
507 | NodeJSKernelBackend.prototype.less = function (a, b) {
|
508 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
509 | return this.executeSingleOutput('Less', opAttrs, [a, b]);
|
510 | };
|
511 | NodeJSKernelBackend.prototype.lessEqual = function (a, b) {
|
512 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
513 | return this.executeSingleOutput('LessEqual', opAttrs, [a, b]);
|
514 | };
|
515 | NodeJSKernelBackend.prototype.greater = function (a, b) {
|
516 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
517 | return this.executeSingleOutput('Greater', opAttrs, [a, b]);
|
518 | };
|
519 | NodeJSKernelBackend.prototype.greaterEqual = function (a, b) {
|
520 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
521 | return this.executeSingleOutput('GreaterEqual', opAttrs, [a, b]);
|
522 | };
|
523 | NodeJSKernelBackend.prototype.logicalNot = function (a) {
|
524 | return this.executeSingleOutput('LogicalNot', [], [a]);
|
525 | };
|
526 | NodeJSKernelBackend.prototype.logicalAnd = function (a, b) {
|
527 | return this.executeSingleOutput('LogicalAnd', [], [a, b]);
|
528 | };
|
529 | NodeJSKernelBackend.prototype.logicalOr = function (a, b) {
|
530 | return this.executeSingleOutput('LogicalOr', [], [a, b]);
|
531 | };
|
532 | NodeJSKernelBackend.prototype.where = function (condition) {
|
533 | return this.executeSingleOutput('Where', [], [condition]);
|
534 | };
|
535 | NodeJSKernelBackend.prototype.topKValues = function (x, k) {
|
536 | throw new Error('Method not implemented.');
|
537 | };
|
538 | NodeJSKernelBackend.prototype.topKIndices = function (x, k) {
|
539 | throw new Error('Method not implemented.');
|
540 | };
|
541 | NodeJSKernelBackend.prototype.topk = function (x, k, sorted) {
|
542 | var kCount = util_1.isNullOrUndefined(k) ? 1 : k;
|
543 | var isSorted = util_1.isNullOrUndefined(sorted) ? true : sorted;
|
544 | var opAttrs = [
|
545 | { name: 'sorted', type: this.binding.TF_ATTR_BOOL, value: isSorted },
|
546 | createTensorsTypeOpAttr('T', x.dtype),
|
547 | ];
|
548 | var kTensor = tfjs_1.scalar(kCount, 'int32');
|
549 |
|
550 | return this.executeMultipleOutputs('TopKV2', opAttrs, [x, kTensor], 2);
|
551 | };
|
552 | NodeJSKernelBackend.prototype.min = function (x, axes) {
|
553 | var axesTensor = tfjs_1.tensor1d(axes, 'int32');
|
554 | return this.executeSingleOutput('Min', this.createReductionOpAttrs(x), [x, axesTensor]);
|
555 | };
|
556 | NodeJSKernelBackend.prototype.minimum = function (a, b) {
|
557 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
558 | return this.executeSingleOutput('Minimum', opAttrs, [a, b]);
|
559 | };
|
560 | NodeJSKernelBackend.prototype.max = function (x, axes) {
|
561 | var axesTensor = tfjs_1.tensor1d(axes, 'int32');
|
562 | return this.executeSingleOutput('Max', this.createReductionOpAttrs(x), [x, axesTensor]);
|
563 | };
|
564 | NodeJSKernelBackend.prototype.maximum = function (a, b) {
|
565 | var opAttrs = [createTensorsTypeOpAttr('T', tfjs_1.backend_util.upcastType(a.dtype, b.dtype))];
|
566 | return this.executeSingleOutput('Maximum', opAttrs, [a, b]);
|
567 | };
|
568 | NodeJSKernelBackend.prototype.all = function (x, axes) {
|
569 | var opAttrs = [
|
570 | { name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: false },
|
571 | createTensorsTypeOpAttr('Tidx', 'int32')
|
572 | ];
|
573 | var axesTensor = tfjs_1.tensor1d(axes, 'int32');
|
574 | return this.executeSingleOutput('All', opAttrs, [x, axesTensor]);
|
575 | };
|
576 | NodeJSKernelBackend.prototype.any = function (x, axes) {
|
577 | var opAttrs = [
|
578 | { name: 'keep_dims', type: this.binding.TF_ATTR_BOOL, value: false },
|
579 | createTensorsTypeOpAttr('Tidx', 'int32')
|
580 | ];
|
581 | var axesTensor = tfjs_1.tensor1d(axes, 'int32');
|
582 | return this.executeSingleOutput('Any', opAttrs, [x, axesTensor]);
|
583 | };
|
584 | NodeJSKernelBackend.prototype.ceil = function (x) {
|
585 | return this.executeSingleInput('Ceil', x);
|
586 | };
|
587 | NodeJSKernelBackend.prototype.floor = function (x) {
|
588 | return this.executeSingleInput('Floor', x);
|
589 | };
|
590 | NodeJSKernelBackend.prototype.pow = function (a, b) {
|
591 | var dtype = tfjs_1.backend_util.upcastType(a.dtype, b.dtype);
|
592 | var opAttrs = [createTensorsTypeOpAttr('T', dtype)];
|
593 | return this.executeSingleOutput('Pow', opAttrs, [a.cast(dtype), b.cast(dtype)]);
|
594 | };
|
595 | NodeJSKernelBackend.prototype.exp = function (x) {
|
596 | var xTensor = x.dtype === 'int32' ? x.toFloat() : x;
|
597 | return this.executeSingleInput('Exp', xTensor);
|
598 | };
|
599 | NodeJSKernelBackend.prototype.log = function (x) {
|
600 | return this.executeSingleInput('Log', x);
|
601 | };
|
602 | NodeJSKernelBackend.prototype.log1p = function (x) {
|
603 | return this.executeSingleInput('Log1p', x);
|
604 | };
|
605 | NodeJSKernelBackend.prototype.sqrt = function (x) {
|
606 | return this.executeSingleInput('Sqrt', x);
|
607 | };
|
608 | NodeJSKernelBackend.prototype.square = function (x) {
|
609 | return this.executeSingleInput('Square', x);
|
610 | };
|
611 | NodeJSKernelBackend.prototype.relu = function (x) {
|
612 | return this.executeSingleInput('Relu', x);
|
613 | };
|
614 | NodeJSKernelBackend.prototype.relu6 = function (x) {
|
615 | return this.executeSingleInput('Relu6', x);
|
616 | };
|
617 | NodeJSKernelBackend.prototype.prelu = function (x, a) {
|
618 | var pos = this.relu(x);
|
619 | var neg = a.mul(x.sub(this.abs(x))).mul(0.5);
|
620 | return pos.add(neg);
|
621 | };
|
622 | NodeJSKernelBackend.prototype.elu = function (x) {
|
623 | return this.executeSingleInput('Elu', x);
|
624 | };
|
625 | NodeJSKernelBackend.prototype.eluDer = function (dy, y) {
|
626 | var opAttrs = [createTensorsTypeOpAttr('T', y.dtype)];
|
627 | return this.executeSingleOutput('EluGrad', opAttrs, [dy, y]);
|
628 | };
|
629 | NodeJSKernelBackend.prototype.selu = function (x) {
|
630 | return this.executeSingleInput('Selu', x);
|
631 | };
|
632 | NodeJSKernelBackend.prototype.int = function (x) {
|
633 | throw new Error('Method not implemented.');
|
634 | };
|
635 | NodeJSKernelBackend.prototype.clip = function (x, min, max) {
|
636 | var xMin = this.minimum(x, tfjs_1.scalar(max));
|
637 | return this.maximum(xMin, tfjs_1.scalar(min));
|
638 | };
|
639 | NodeJSKernelBackend.prototype.abs = function (x) {
|
640 | return this.executeSingleInput('Abs', x);
|
641 | };
|
642 | NodeJSKernelBackend.prototype.complexAbs = function (x) {
|
643 | var opAttrs = [
|
644 | createTensorsTypeOpAttr('T', x.dtype),
|
645 | createTensorsTypeOpAttr('Tout', 'float32')
|
646 | ];
|
647 | return this.executeSingleOutput('ComplexAbs', opAttrs, [x]);
|
648 | };
|
649 | NodeJSKernelBackend.prototype.sigmoid = function (x) {
|
650 | return this.executeSingleInput('Sigmoid', x);
|
651 | };
|
652 | NodeJSKernelBackend.prototype.sin = function (x) {
|
653 | return this.executeSingleInput('Sin', x);
|
654 | };
|
655 | NodeJSKernelBackend.prototype.cos = function (x) {
|
656 | return this.executeSingleInput('Cos', x);
|
657 | };
|
658 | NodeJSKernelBackend.prototype.tan = function (x) {
|
659 | return this.executeSingleInput('Tan', x);
|
660 | };
|
661 | NodeJSKernelBackend.prototype.asin = function (x) {
|
662 | return this.executeSingleInput('Asin', x);
|
663 | };
|
664 | NodeJSKernelBackend.prototype.acos = function (x) {
|
665 | return this.executeSingleInput('Acos', x);
|
666 | };
|
667 | NodeJSKernelBackend.prototype.atan = function (x) {
|
668 | return this.executeSingleInput('Atan', x);
|
669 | };
|
670 | NodeJSKernelBackend.prototype.sinh = function (x) {
|
671 | return this.executeSingleInput('Sinh', x);
|
672 | };
|
673 | NodeJSKernelBackend.prototype.cosh = function (x) {
|
674 | return this.executeSingleInput('Cosh', x);
|
675 | };
|
676 | NodeJSKernelBackend.prototype.tanh = function (x) {
|
677 | return this.executeSingleInput('Tanh', x);
|
678 | };
|
679 | NodeJSKernelBackend.prototype.mod = function (a, b) {
|
680 | var opAttrs = [createTensorsTypeOpAttr('T', a.dtype)];
|
681 | return this.executeSingleOutput('FloorMod', opAttrs, [a, b]);
|
682 | };
|
683 | NodeJSKernelBackend.prototype.round = function (x) {
|
684 | return this.executeSingleInput('Round', x);
|
685 | };
|
686 | NodeJSKernelBackend.prototype.sign = function (x) {
|
687 | return this.executeSingleInput('Sign', x);
|
688 | };
|
689 | NodeJSKernelBackend.prototype.isNaN = function (x) {
|
690 | return this.executeSingleInput('IsNan', x);
|
691 | };
|
692 | NodeJSKernelBackend.prototype.isInf = function (x) {
|
693 | return this.executeSingleInput('IsInf', x);
|
694 | };
|
695 | NodeJSKernelBackend.prototype.isFinite = function (x) {
|
696 | return this.executeSingleInput('IsFinite', x);
|
697 | };
|
698 | NodeJSKernelBackend.prototype.rsqrt = function (x) {
|
699 | return this.executeSingleInput('Rsqrt', x);
|
700 | };
|
701 | NodeJSKernelBackend.prototype.reciprocal = function (x) {
|
702 | return this.executeSingleInput('Reciprocal', x);
|
703 | };
|
704 | NodeJSKernelBackend.prototype.asinh = function (x) {
|
705 | return this.executeSingleInput('Asinh', x);
|
706 | };
|
707 | NodeJSKernelBackend.prototype.acosh = function (x) {
|
708 | return this.executeSingleInput('Acosh', x);
|
709 | };
|
710 | NodeJSKernelBackend.prototype.atanh = function (x) {
|
711 | return this.executeSingleInput('Atanh', x);
|
712 | };
|
713 | NodeJSKernelBackend.prototype.erf = function (x) {
|
714 | return this.executeSingleInput('Erf', x);
|
715 | };
|
716 | NodeJSKernelBackend.prototype.squaredDifference = function (a, b) {
|
717 | var opAttrs = [createTensorsTypeOpAttr('T', a.dtype)];
|
718 | return this.executeSingleOutput('SquaredDifference', opAttrs, [a, b]);
|
719 | };
|
720 | NodeJSKernelBackend.prototype.expm1 = function (x) {
|
721 | return this.executeSingleInput('Expm1', x);
|
722 | };
|
723 | NodeJSKernelBackend.prototype.softplus = function (x) {
|
724 | return this.executeSingleInput('Softplus', x);
|
725 | };
|
726 | NodeJSKernelBackend.prototype.atan2 = function (a, b) {
|
727 | var opAttrs = [createTensorsTypeOpAttr('T', a.dtype)];
|
728 | return this.executeSingleOutput('Atan2', opAttrs, [a, b]);
|
729 | };
|
730 | NodeJSKernelBackend.prototype.step = function (x, alpha) {
|
731 | var dtype = x.dtype;
|
732 | var nans = this.isNaN(x);
|
733 | var stepNoNans = this.select(this.greater(x, tfjs_1.scalar(0, dtype)), tfjs_1.ones(x.shape), tfjs_1.fill(x.shape, alpha, dtype));
|
734 | return this.select(nans, x, stepNoNans);
|
735 | };
|
736 | NodeJSKernelBackend.prototype.conv2d = function (x, filter, convInfo) {
|
737 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
738 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
739 | ("while padding was " + convInfo.padInfo.type));
|
740 | }
|
741 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
742 | var padding = convInfo.padInfo.type;
|
743 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
744 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
745 | var opAttrs = [
|
746 | createTensorsTypeOpAttr('T', x.dtype),
|
747 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
748 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
749 | {
|
750 | name: 'data_format',
|
751 | type: this.binding.TF_ATTR_STRING,
|
752 | value: dataFormat
|
753 | },
|
754 | { name: 'use_cudnn_on_gpu', type: this.binding.TF_ATTR_BOOL, value: true },
|
755 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations },
|
756 | ];
|
757 | return this.executeSingleOutput('Conv2D', opAttrs, [x, filter]);
|
758 | };
|
759 | NodeJSKernelBackend.prototype.conv2dDerInput = function (dy, filter, convInfo) {
|
760 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
761 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
762 | ("while padding was " + convInfo.padInfo.type));
|
763 | }
|
764 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
765 | var padding = convInfo.padInfo.type;
|
766 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
767 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
768 | var opAttrs = [
|
769 | createTensorsTypeOpAttr('T', 'float32'),
|
770 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
771 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
772 | name: 'data_format',
|
773 | type: this.binding.TF_ATTR_STRING,
|
774 | value: dataFormat
|
775 | },
|
776 | { name: 'use_cudnn_on_gpu', type: this.binding.TF_ATTR_BOOL, value: true },
|
777 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
778 | ];
|
779 | var inputSizes = tfjs_1.tensor1d(convInfo.inShape, 'int32');
|
780 | return this.executeSingleOutput('Conv2DBackpropInput', opAttrs, [inputSizes, filter, dy]);
|
781 | };
|
782 | NodeJSKernelBackend.prototype.conv2dDerFilter = function (x, dy, convInfo) {
|
783 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
784 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
785 | ("while padding was " + convInfo.padInfo.type));
|
786 | }
|
787 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
788 | var padding = convInfo.padInfo.type;
|
789 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
790 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
791 | var opAttrs = [
|
792 | createTensorsTypeOpAttr('T', 'float32'),
|
793 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
794 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
795 | name: 'data_format',
|
796 | type: this.binding.TF_ATTR_STRING,
|
797 | value: dataFormat
|
798 | },
|
799 | { name: 'use_cudnn_on_gpu', type: this.binding.TF_ATTR_BOOL, value: true },
|
800 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
801 | ];
|
802 | var filterSizes = tfjs_1.tensor1d(convInfo.filterShape, 'int32');
|
803 | return this.executeSingleOutput('Conv2DBackpropFilter', opAttrs, [x, filterSizes, dy]);
|
804 | };
|
805 | NodeJSKernelBackend.prototype.depthwiseConv2DDerInput = function (dy, filter, convInfo) {
|
806 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
807 | var padding = convInfo.padInfo.type;
|
808 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
809 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
810 | var opAttrs = [
|
811 | createTensorsTypeOpAttr('T', 'float32'),
|
812 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
813 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
814 | name: 'data_format',
|
815 | type: this.binding.TF_ATTR_STRING,
|
816 | value: dataFormat
|
817 | },
|
818 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
819 | ];
|
820 | var inputSizes = tfjs_1.tensor1d(convInfo.inShape, 'int32');
|
821 | return this.executeSingleOutput('DepthwiseConv2dNativeBackpropInput', opAttrs, [inputSizes, filter, dy]);
|
822 | };
|
823 | NodeJSKernelBackend.prototype.depthwiseConv2DDerFilter = function (x, dY, convInfo) {
|
824 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
825 | var padding = convInfo.padInfo.type;
|
826 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
827 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
828 | var opAttrs = [
|
829 | createTensorsTypeOpAttr('T', 'float32'),
|
830 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
831 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
832 | name: 'data_format',
|
833 | type: this.binding.TF_ATTR_STRING,
|
834 | value: dataFormat
|
835 | },
|
836 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
837 | ];
|
838 | var filterSizes = tfjs_1.tensor1d(convInfo.filterShape, 'int32');
|
839 | return this.executeSingleOutput('DepthwiseConv2dNativeBackpropFilter', opAttrs, [x, filterSizes, dY]);
|
840 | };
|
841 | NodeJSKernelBackend.prototype.fusedDepthwiseConv2D = function (_a) {
|
842 | var input = _a.input, filter = _a.filter, convInfo = _a.convInfo, bias = _a.bias, activation = _a.activation, preluActivationWeights = _a.preluActivationWeights;
|
843 | var result = this.depthwiseConv2D(input, filter, convInfo);
|
844 | if (bias != null) {
|
845 | result = this.add(result, bias);
|
846 | }
|
847 | result = this.applyActivation(result, activation, preluActivationWeights);
|
848 | return result;
|
849 | };
|
850 | NodeJSKernelBackend.prototype.depthwiseConv2D = function (input, filter, convInfo) {
|
851 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
852 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
853 | ("while padding was " + convInfo.padInfo.type));
|
854 | }
|
855 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
856 | var padding = convInfo.padInfo.type;
|
857 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
858 | var dilations = [1, convInfo.dilationHeight, convInfo.dilationWidth, 1];
|
859 | var opAttrs = [
|
860 | createTensorsTypeOpAttr('T', input.dtype),
|
861 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
862 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
863 | name: 'data_format',
|
864 | type: this.binding.TF_ATTR_STRING,
|
865 | value: dataFormat
|
866 | },
|
867 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
868 | ];
|
869 | return this.executeSingleOutput('DepthwiseConv2dNative', opAttrs, [input, filter]);
|
870 | };
|
871 | NodeJSKernelBackend.prototype.conv3d = function (x, filter, convInfo) {
|
872 | var strides = [
|
873 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
874 | ];
|
875 | var padding = convInfo.padInfo.type;
|
876 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
877 | if (!this.isGPUPackage && convInfo.dilationDepth > 1) {
|
878 | throw new Error('CPU Dilation depth must be 1');
|
879 | }
|
880 | var dilations = [
|
881 | 1, convInfo.dilationDepth, convInfo.dilationHeight,
|
882 | convInfo.dilationWidth, 1
|
883 | ];
|
884 | var opAttrs = [
|
885 | createTensorsTypeOpAttr('T', x.dtype),
|
886 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
887 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
888 | name: 'data_format',
|
889 | type: this.binding.TF_ATTR_STRING,
|
890 | value: dataFormat
|
891 | },
|
892 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
893 | ];
|
894 | return this.executeSingleOutput('Conv3D', opAttrs, [x, filter]);
|
895 | };
|
896 | NodeJSKernelBackend.prototype.conv3dDerInput = function (dy, filter, convInfo) {
|
897 | var strides = [
|
898 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
899 | ];
|
900 | var padding = convInfo.padInfo.type;
|
901 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
902 | if (!this.isGPUPackage && convInfo.dilationDepth > 1) {
|
903 | throw new Error('CPU Dilation depth must be 1');
|
904 | }
|
905 | var dilations = [
|
906 | 1, convInfo.dilationDepth, convInfo.dilationHeight,
|
907 | convInfo.dilationWidth, 1
|
908 | ];
|
909 | var opAttrs = [
|
910 | createTensorsTypeOpAttr('T', dy.dtype),
|
911 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
912 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
913 | name: 'data_format',
|
914 | type: this.binding.TF_ATTR_STRING,
|
915 | value: dataFormat
|
916 | },
|
917 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations },
|
918 | createTensorsTypeOpAttr('Tshape', 'int32')
|
919 | ];
|
920 | var inputSizes = tfjs_1.tensor1d(convInfo.inShape, 'int32');
|
921 | return this.executeSingleOutput('Conv3DBackpropInputV2', opAttrs, [inputSizes, filter, dy]);
|
922 | };
|
923 | NodeJSKernelBackend.prototype.conv3dDerFilter = function (x, dY, convInfo) {
|
924 | var strides = [
|
925 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
926 | ];
|
927 | var padding = convInfo.padInfo.type;
|
928 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
929 | if (!this.isGPUPackage && convInfo.dilationDepth > 1) {
|
930 | throw new Error('CPU Dilation depth must be 1');
|
931 | }
|
932 | var dilations = [
|
933 | 1, convInfo.dilationDepth, convInfo.dilationHeight,
|
934 | convInfo.dilationWidth, 1
|
935 | ];
|
936 | var opAttrs = [
|
937 | createTensorsTypeOpAttr('T', x.dtype),
|
938 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
939 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
940 | name: 'data_format',
|
941 | type: this.binding.TF_ATTR_STRING,
|
942 | value: dataFormat
|
943 | },
|
944 | { name: 'dilations', type: this.binding.TF_ATTR_INT, value: dilations }
|
945 | ];
|
946 | var filterSizes = tfjs_1.tensor1d(convInfo.filterShape, 'int32');
|
947 | return this.executeSingleOutput('Conv3DBackpropFilterV2', opAttrs, [x, filterSizes, dY]);
|
948 | };
|
949 | NodeJSKernelBackend.prototype.maxPool = function (x, convInfo) {
|
950 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
951 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
952 | ("while padding was " + convInfo.padInfo.type));
|
953 | }
|
954 | var ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1];
|
955 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
956 | var padding = convInfo.padInfo.type;
|
957 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
958 | var opAttrs = [
|
959 | createTensorsTypeOpAttr('T', x.dtype),
|
960 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
961 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
962 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
963 | name: 'data_format',
|
964 | type: this.binding.TF_ATTR_STRING,
|
965 | value: dataFormat
|
966 | }
|
967 | ];
|
968 | return this.executeSingleOutput('MaxPool', opAttrs, [x]);
|
969 | };
|
970 | NodeJSKernelBackend.prototype.maxPoolBackprop = function (dy, x, y, convInfo) {
|
971 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
972 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
973 | ("while padding type was " + convInfo.padInfo.type));
|
974 | }
|
975 | var ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1];
|
976 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
977 | var padding = convInfo.padInfo.type;
|
978 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
979 | var opAttrs = [
|
980 | createTensorsTypeOpAttr('T', x.dtype),
|
981 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
982 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
983 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
984 | {
|
985 | name: 'data_format',
|
986 | type: this.binding.TF_ATTR_STRING,
|
987 | value: dataFormat
|
988 | },
|
989 | ];
|
990 | return this.executeSingleOutput('MaxPoolGrad', opAttrs, [x, y, dy]);
|
991 | };
|
992 | NodeJSKernelBackend.prototype.avgPool = function (x, convInfo) {
|
993 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
994 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
995 | ("while padding was " + convInfo.padInfo.type));
|
996 | }
|
997 | var ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1];
|
998 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
999 | var padding = convInfo.padInfo.type;
|
1000 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
1001 | var opAttrs = [
|
1002 | createTensorsTypeOpAttr('T', x.dtype),
|
1003 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1004 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1005 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
1006 | {
|
1007 | name: 'data_format',
|
1008 | type: this.binding.TF_ATTR_STRING,
|
1009 | value: dataFormat
|
1010 | },
|
1011 | ];
|
1012 | return this.executeSingleOutput('AvgPool', opAttrs, [x]);
|
1013 | };
|
1014 | NodeJSKernelBackend.prototype.avgPoolBackprop = function (dy, x, convInfo) {
|
1015 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
1016 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
1017 | ("while padding type was " + convInfo.padInfo.type));
|
1018 | }
|
1019 | var ksize = [1, convInfo.filterHeight, convInfo.filterWidth, 1];
|
1020 | var strides = [1, convInfo.strideHeight, convInfo.strideWidth, 1];
|
1021 | var padding = convInfo.padInfo.type;
|
1022 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NHWC' : 'NCHW';
|
1023 | var opAttrs = [
|
1024 | createTensorsTypeOpAttr('T', x.dtype),
|
1025 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1026 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1027 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
1028 | {
|
1029 | name: 'data_format',
|
1030 | type: this.binding.TF_ATTR_STRING,
|
1031 | value: dataFormat
|
1032 | },
|
1033 | ];
|
1034 | var origInputShape = tfjs_1.tensor1d(x.shape, 'int32');
|
1035 | return this.executeSingleOutput('AvgPoolGrad', opAttrs, [origInputShape, dy]);
|
1036 | };
|
1037 | NodeJSKernelBackend.prototype.avgPool3d = function (x, convInfo) {
|
1038 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
1039 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
1040 | ("while padding was " + convInfo.padInfo.type));
|
1041 | }
|
1042 | var ksize = [
|
1043 | 1, convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth, 1
|
1044 | ];
|
1045 | var strides = [
|
1046 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
1047 | ];
|
1048 | var padding = convInfo.padInfo.type;
|
1049 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
1050 | var opAttrs = [
|
1051 | createTensorsTypeOpAttr('T', x.dtype),
|
1052 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1053 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1054 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
1055 | {
|
1056 | name: 'data_format',
|
1057 | type: this.binding.TF_ATTR_STRING,
|
1058 | value: dataFormat
|
1059 | },
|
1060 | ];
|
1061 | return this.executeSingleOutput('AvgPool3D', opAttrs, [x]);
|
1062 | };
|
1063 | NodeJSKernelBackend.prototype.avgPool3dBackprop = function (dy, x, convInfo) {
|
1064 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
1065 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
1066 | ("while padding type was " + convInfo.padInfo.type));
|
1067 | }
|
1068 | var ksize = [
|
1069 | 1, convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth, 1
|
1070 | ];
|
1071 | var strides = [
|
1072 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
1073 | ];
|
1074 | var padding = convInfo.padInfo.type;
|
1075 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
1076 | var opAttrs = [
|
1077 | createTensorsTypeOpAttr('T', x.dtype),
|
1078 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1079 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1080 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
1081 | {
|
1082 | name: 'data_format',
|
1083 | type: this.binding.TF_ATTR_STRING,
|
1084 | value: dataFormat
|
1085 | },
|
1086 | ];
|
1087 | var origInputShape = tfjs_1.tensor1d(x.shape, 'int32');
|
1088 | return this.executeSingleOutput('AvgPool3DGrad', opAttrs, [origInputShape, dy]);
|
1089 | };
|
1090 | NodeJSKernelBackend.prototype.maxPool3d = function (x, convInfo) {
|
1091 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
1092 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
1093 | ("while padding was " + convInfo.padInfo.type));
|
1094 | }
|
1095 | var ksize = [
|
1096 | 1, convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth, 1
|
1097 | ];
|
1098 | var strides = [
|
1099 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
1100 | ];
|
1101 | var padding = convInfo.padInfo.type;
|
1102 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
1103 | var opAttrs = [
|
1104 | createTensorsTypeOpAttr('T', x.dtype),
|
1105 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1106 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1107 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding }, {
|
1108 | name: 'data_format',
|
1109 | type: this.binding.TF_ATTR_STRING,
|
1110 | value: dataFormat
|
1111 | }
|
1112 | ];
|
1113 | return this.executeSingleOutput('MaxPool3D', opAttrs, [x]);
|
1114 | };
|
1115 | NodeJSKernelBackend.prototype.maxPool3dBackprop = function (dy, x, y, convInfo) {
|
1116 | if (convInfo.padInfo.type !== 'VALID' && convInfo.padInfo.type !== 'SAME') {
|
1117 | throw new Error("TF Backend supports only 'valid' and 'same' padding " +
|
1118 | ("while padding type was " + convInfo.padInfo.type));
|
1119 | }
|
1120 | var ksize = [
|
1121 | 1, convInfo.filterDepth, convInfo.filterHeight, convInfo.filterWidth, 1
|
1122 | ];
|
1123 | var strides = [
|
1124 | 1, convInfo.strideDepth, convInfo.strideHeight, convInfo.strideWidth, 1
|
1125 | ];
|
1126 | var padding = convInfo.padInfo.type;
|
1127 | var dataFormat = convInfo.dataFormat === 'channelsLast' ? 'NDHWC' : 'NCDHW';
|
1128 | var opAttrs = [
|
1129 | createTensorsTypeOpAttr('T', x.dtype),
|
1130 | { name: 'ksize', type: this.binding.TF_ATTR_INT, value: ksize },
|
1131 | { name: 'strides', type: this.binding.TF_ATTR_INT, value: strides },
|
1132 | { name: 'padding', type: this.binding.TF_ATTR_STRING, value: padding },
|
1133 | {
|
1134 | name: 'data_format',
|
1135 | type: this.binding.TF_ATTR_STRING,
|
1136 | value: dataFormat
|
1137 | },
|
1138 | ];
|
1139 | return this.executeSingleOutput('MaxPool3DGrad', opAttrs, [x, y, dy]);
|
1140 | };
|
1141 | NodeJSKernelBackend.prototype.reshape = function (x, shape) {
|
1142 | var shapeTensor = tfjs_1.tensor1d(shape, 'int32');
|
1143 | var opAttrs = [
|
1144 | createTensorsTypeOpAttr('T', x.dtype),
|
1145 | createTensorsTypeOpAttr('Tshape', shapeTensor.dtype)
|
1146 | ];
|
1147 | return this.executeSingleOutput('Reshape', opAttrs, [x, shapeTensor]);
|
1148 | };
|
1149 | NodeJSKernelBackend.prototype.cast = function (x, dtype) {
|
1150 | var opAttrs = [
|
1151 | createTensorsTypeOpAttr('SrcT', x.dtype),
|
1152 | createTensorsTypeOpAttr('DstT', dtype),
|
1153 | { name: 'Truncate', type: this.binding.TF_ATTR_BOOL, value: false }
|
1154 | ];
|
1155 | return this.executeSingleOutput('Cast', opAttrs, [x]);
|
1156 | };
|
1157 | NodeJSKernelBackend.prototype.tile = function (x, reps) {
|
1158 | var opAttrs = [
|
1159 | createTensorsTypeOpAttr('T', x.dtype),
|
1160 | createTensorsTypeOpAttr('Tmultiples', 'int32')
|
1161 | ];
|
1162 | var multiples = tfjs_1.tensor1d(reps, 'int32');
|
1163 | return this.executeSingleOutput('Tile', opAttrs, [x, multiples]);
|
1164 | };
|
1165 | NodeJSKernelBackend.prototype.pad = function (x, paddings, constantValue) {
|
1166 |
|
1167 | var paddingsTensor = tfjs_1.tensor2d(paddings, [paddings.length, 2], 'int32');
|
1168 | var constantTensor = tfjs_1.scalar(constantValue, x.dtype);
|
1169 | var opAttrs = [
|
1170 | createTensorsTypeOpAttr('T', x.dtype),
|
1171 | createTensorsTypeOpAttr('Tpaddings', paddingsTensor.dtype)
|
1172 | ];
|
1173 | return this.executeSingleOutput('PadV2', opAttrs, [x, paddingsTensor, constantTensor]);
|
1174 | };
|
1175 | NodeJSKernelBackend.prototype.transpose = function (x, perm) {
|
1176 | var permTensor = tfjs_1.tensor1d(perm, 'int32');
|
1177 | var opAttrs = [
|
1178 | createTensorsTypeOpAttr('T', x.dtype),
|
1179 | createTensorsTypeOpAttr('Tperm', 'int32')
|
1180 | ];
|
1181 | return this.executeSingleOutput('Transpose', opAttrs, [x, permTensor]);
|
1182 | };
|
1183 | NodeJSKernelBackend.prototype.gather = function (x, indices, axis) {
|
1184 | var axisTensor = tfjs_1.scalar(axis, 'int32');
|
1185 | var opAttrs = [
|
1186 | createTensorsTypeOpAttr('Tparams', x.dtype),
|
1187 | createTensorsTypeOpAttr('Tindices', indices.dtype),
|
1188 | createTensorsTypeOpAttr('Taxis', 'int32')
|
1189 | ];
|
1190 | return this.executeSingleOutput('GatherV2', opAttrs, [x, indices, axisTensor]);
|
1191 | };
|
1192 | NodeJSKernelBackend.prototype.gatherND = function (x, indices) {
|
1193 | var opAttrs = [
|
1194 | createTensorsTypeOpAttr('Tparams', x.dtype),
|
1195 | createTensorsTypeOpAttr('Tindices', 'int32')
|
1196 | ];
|
1197 | return this.executeSingleOutput('GatherNd', opAttrs, [x, indices]);
|
1198 | };
|
1199 | NodeJSKernelBackend.prototype.scatterND = function (indices, updates, shape) {
|
1200 | var opAttrs = [
|
1201 | createTensorsTypeOpAttr('T', updates.dtype),
|
1202 | createTensorsTypeOpAttr('Tindices', 'int32')
|
1203 | ];
|
1204 | var shapeTensor = tfjs_1.tensor1d(shape, 'int32');
|
1205 | return this.executeSingleOutput('ScatterNd', opAttrs, [indices, updates, shapeTensor]);
|
1206 | };
|
1207 | NodeJSKernelBackend.prototype.batchToSpaceND = function (x, blockShape, crops) {
|
1208 | var blockShapeTensor = tfjs_1.tensor1d(blockShape, 'int32');
|
1209 | var cropsTensor = tfjs_1.tensor2d(crops, [crops.length, crops[0].length], 'int32');
|
1210 | var opAttrs = [
|
1211 | createTensorsTypeOpAttr('T', x.dtype),
|
1212 | createTensorsTypeOpAttr('Tblock_shape', 'int32'),
|
1213 | createTensorsTypeOpAttr('Tcrops', cropsTensor.dtype)
|
1214 | ];
|
1215 | return this.executeSingleOutput('BatchToSpaceND', opAttrs, [x, blockShapeTensor, cropsTensor]);
|
1216 | };
|
1217 | NodeJSKernelBackend.prototype.spaceToBatchND = function (x, blockShape, paddings) {
|
1218 | var blockShapeTensor = tfjs_1.tensor1d(blockShape, 'int32');
|
1219 | var paddingsTensor = tfjs_1.tensor2d(paddings, [paddings.length, paddings[0].length], 'int32');
|
1220 | var opAttrs = [
|
1221 | createTensorsTypeOpAttr('T', x.dtype),
|
1222 | createTensorsTypeOpAttr('Tblock_shape', 'int32'),
|
1223 | createTensorsTypeOpAttr('Tpaddings', paddingsTensor.dtype)
|
1224 | ];
|
1225 | return this.executeSingleOutput('SpaceToBatchND', opAttrs, [x, blockShapeTensor, paddingsTensor]);
|
1226 | };
|
1227 | NodeJSKernelBackend.prototype.resizeBilinear = function (x, newHeight, newWidth, alignCorners) {
|
1228 | var opAttrs = [
|
1229 | createTensorsTypeOpAttr('T', x.dtype),
|
1230 | {
|
1231 | name: 'align_corners',
|
1232 | type: this.binding.TF_ATTR_BOOL,
|
1233 | value: alignCorners
|
1234 | },
|
1235 | ];
|
1236 | var size = tfjs_1.tensor1d([newHeight, newWidth], 'int32');
|
1237 | return this.executeSingleOutput('ResizeBilinear', opAttrs, [x, size]);
|
1238 | };
|
1239 | NodeJSKernelBackend.prototype.resizeBilinearBackprop = function (dy, x, alignCorners) {
|
1240 | var opAttrs = [
|
1241 | createTensorsTypeOpAttr('T', x.dtype), {
|
1242 | name: 'align_corners',
|
1243 | type: this.binding.TF_ATTR_BOOL,
|
1244 | value: alignCorners
|
1245 | }
|
1246 | ];
|
1247 | return this.executeSingleOutput('ResizeBilinearGrad', opAttrs, [dy, x]);
|
1248 | };
|
1249 | NodeJSKernelBackend.prototype.resizeNearestNeighbor = function (x, newHeight, newWidth, alignCorners) {
|
1250 | var opAttrs = [
|
1251 | createTensorsTypeOpAttr('T', x.dtype),
|
1252 | {
|
1253 | name: 'align_corners',
|
1254 | type: this.binding.TF_ATTR_BOOL,
|
1255 | value: alignCorners
|
1256 | },
|
1257 | ];
|
1258 | var size = tfjs_1.tensor1d([newHeight, newWidth], 'int32');
|
1259 | return this.executeSingleOutput('ResizeNearestNeighbor', opAttrs, [x, size]);
|
1260 | };
|
1261 | NodeJSKernelBackend.prototype.resizeNearestNeighborBackprop = function (dy, x, alignCorners) {
|
1262 | var opAttrs = [
|
1263 | createTensorsTypeOpAttr('T', x.dtype), {
|
1264 | name: 'align_corners',
|
1265 | type: this.binding.TF_ATTR_BOOL,
|
1266 | value: alignCorners
|
1267 | }
|
1268 | ];
|
1269 | var _a = x.shape, origHeight = _a[1], origWidth = _a[2];
|
1270 | var size = tfjs_1.tensor1d([origHeight, origWidth], 'int32');
|
1271 | return this.executeSingleOutput('ResizeNearestNeighborGrad', opAttrs, [dy, size]);
|
1272 | };
|
1273 | NodeJSKernelBackend.prototype.batchNorm = function (x, mean, variance, offset, scale, varianceEpsilon) {
|
1274 | if (mean.rank > 1) {
|
1275 |
|
1276 | var inv = tfjs_1.rsqrt(variance.add(tfjs_1.scalar(varianceEpsilon)));
|
1277 | if (scale != null) {
|
1278 | inv = inv.mul(scale);
|
1279 | }
|
1280 | var xNorm = x.sub(mean).mul(inv);
|
1281 | return offset != null ? xNorm.add(offset) : xNorm;
|
1282 | }
|
1283 | var dataFormat = 'NHWC';
|
1284 | var depth = x.shape[3];
|
1285 | var opAttrs = [
|
1286 | createTensorsTypeOpAttr('T', x.dtype),
|
1287 | {
|
1288 | name: 'epsilon',
|
1289 | type: this.binding.TF_ATTR_FLOAT,
|
1290 | value: varianceEpsilon
|
1291 | },
|
1292 | {
|
1293 | name: 'data_format',
|
1294 | type: this.binding.TF_ATTR_STRING,
|
1295 | value: dataFormat
|
1296 | },
|
1297 | { name: 'is_training', type: this.binding.TF_ATTR_BOOL, value: false },
|
1298 | ];
|
1299 | var numOutputs = 5;
|
1300 | if (scale == null) {
|
1301 | scale = tfjs_1.fill([depth], 1);
|
1302 | }
|
1303 | if (offset == null) {
|
1304 | offset = tfjs_1.fill([depth], 0);
|
1305 | }
|
1306 | return this.executeMultipleOutputs('FusedBatchNorm', opAttrs, [x, scale, offset, mean, variance], numOutputs)[0];
|
1307 | };
|
1308 | NodeJSKernelBackend.prototype.localResponseNormalization4D = function (x, radius, bias, alpha, beta) {
|
1309 | var opAttrs = [
|
1310 | createTensorsTypeOpAttr('T', x.dtype),
|
1311 | { name: 'depth_radius', type: this.binding.TF_ATTR_INT, value: radius },
|
1312 | { name: 'bias', type: this.binding.TF_ATTR_FLOAT, value: bias },
|
1313 | { name: 'alpha', type: this.binding.TF_ATTR_FLOAT, value: alpha },
|
1314 | { name: 'beta', type: this.binding.TF_ATTR_FLOAT, value: beta },
|
1315 | ];
|
1316 | return this.executeSingleOutput('LRN', opAttrs, [x]);
|
1317 | };
|
1318 | NodeJSKernelBackend.prototype.LRNGrad = function (dy, inputImage, outputImage, radius, bias, alpha, beta) {
|
1319 | var opAttrs = [
|
1320 | createTensorsTypeOpAttr('T', dy.dtype),
|
1321 | { name: 'depth_radius', type: this.binding.TF_ATTR_INT, value: radius },
|
1322 | { name: 'bias', type: this.binding.TF_ATTR_FLOAT, value: bias },
|
1323 | { name: 'alpha', type: this.binding.TF_ATTR_FLOAT, value: alpha },
|
1324 | { name: 'beta', type: this.binding.TF_ATTR_FLOAT, value: beta },
|
1325 | ];
|
1326 | return this.executeSingleOutput('LRNGrad', opAttrs, [dy, inputImage, outputImage]);
|
1327 | };
|
1328 | NodeJSKernelBackend.prototype.multinomial = function (logits, normalized, numSamples, seed) {
|
1329 | if (normalized) {
|
1330 | throw new Error('TF Node backend does not support normalized logits ' +
|
1331 | 'passed to multinomial');
|
1332 | }
|
1333 | var opAttrs = [
|
1334 | createTensorsTypeOpAttr('T', logits.dtype),
|
1335 | createTensorsTypeOpAttr('output_dtype', 'int32'),
|
1336 | { name: 'seed', type: this.binding.TF_ATTR_INT, value: seed },
|
1337 | { name: 'seed2', type: this.binding.TF_ATTR_INT, value: seed * seed },
|
1338 | ];
|
1339 | return this.executeSingleOutput('Multinomial', opAttrs, [logits, tfjs_1.scalar(numSamples, 'int32')]);
|
1340 | };
|
1341 | NodeJSKernelBackend.prototype.oneHot = function (indices, depth, onValue, offValue) {
|
1342 | var depthTensor = tfjs_1.scalar(depth, 'int32');
|
1343 | var onValueTensor = tfjs_1.scalar(onValue, 'int32');
|
1344 | var offValueTensor = tfjs_1.scalar(offValue, 'int32');
|
1345 | var opAttrs = [
|
1346 | { name: 'axis', type: this.binding.TF_ATTR_INT, value: -1 },
|
1347 | createTensorsTypeOpAttr('T', indices.dtype),
|
1348 | createTensorsTypeOpAttr('TI', indices.dtype)
|
1349 | ];
|
1350 | return this.executeSingleOutput('OneHot', opAttrs, [
|
1351 | indices, depthTensor, onValueTensor, offValueTensor
|
1352 | ]);
|
1353 | };
|
1354 | NodeJSKernelBackend.prototype.cumsum = function (x, axis, exclusive, reverse) {
|
1355 | var axisTensor = tfjs_1.scalar(axis, 'int32');
|
1356 | var opAttrs = [
|
1357 | { name: 'exclusive', type: this.binding.TF_ATTR_BOOL, value: exclusive },
|
1358 | { name: 'reverse', type: this.binding.TF_ATTR_BOOL, value: reverse },
|
1359 | createTensorsTypeOpAttr('T', x.dtype),
|
1360 | createTensorsTypeOpAttr('Tidx', 'int32')
|
1361 | ];
|
1362 | return this.executeSingleOutput('Cumsum', opAttrs, [x, axisTensor]);
|
1363 | };
|
1364 | NodeJSKernelBackend.prototype.nonMaxSuppression = function (boxes, scores, maxOutputSize, iouThreshold, scoreThreshold) {
|
1365 | var opAttrs = [createTensorsTypeOpAttr('T', boxes.dtype)];
|
1366 | var maxOutputSizeTensor = tfjs_1.scalar(maxOutputSize, 'int32');
|
1367 | var iouThresholdTensor = tfjs_1.scalar(iouThreshold);
|
1368 | var scoreThresholdTensor = tfjs_1.scalar(scoreThreshold);
|
1369 | return this.executeSingleOutput('NonMaxSuppressionV3', opAttrs, [
|
1370 | boxes, scores, maxOutputSizeTensor, iouThresholdTensor,
|
1371 | scoreThresholdTensor
|
1372 | ]);
|
1373 | };
|
1374 | NodeJSKernelBackend.prototype.fft = function (x) {
|
1375 | var opAttrs = [createTensorsTypeOpAttr('Tcomplex', x.dtype)];
|
1376 | return this.executeSingleOutput('FFT', opAttrs, [x]);
|
1377 | };
|
1378 | NodeJSKernelBackend.prototype.ifft = function (x) {
|
1379 | var opAttrs = [createTensorsTypeOpAttr('Tcomplex', x.dtype)];
|
1380 | return this.executeSingleOutput('IFFT', opAttrs, [x]);
|
1381 | };
|
1382 | NodeJSKernelBackend.prototype.complex = function (real, imag) {
|
1383 | var opAttrs = [
|
1384 | createTensorsTypeOpAttr('T', real),
|
1385 | {
|
1386 | name: 'Tout',
|
1387 | type: this.binding.TF_ATTR_TYPE,
|
1388 | value: this.binding.TF_COMPLEX64
|
1389 | },
|
1390 | ];
|
1391 | var inputs = [real, imag];
|
1392 | return this.executeSingleOutput('Complex', opAttrs, inputs);
|
1393 | };
|
1394 | NodeJSKernelBackend.prototype.real = function (input) {
|
1395 | var opAttrs = [
|
1396 | createTensorsTypeOpAttr('T', input), {
|
1397 | name: 'Tout',
|
1398 | type: this.binding.TF_ATTR_TYPE,
|
1399 | value: this.binding.TF_FLOAT
|
1400 | }
|
1401 | ];
|
1402 | var inputs = [input];
|
1403 | return this.executeSingleOutput('Real', opAttrs, inputs);
|
1404 | };
|
1405 | NodeJSKernelBackend.prototype.imag = function (input) {
|
1406 | var opAttrs = [
|
1407 | {
|
1408 | name: 'T',
|
1409 | type: this.binding.TF_ATTR_TYPE,
|
1410 | value: this.binding.TF_COMPLEX64
|
1411 | },
|
1412 | {
|
1413 | name: 'Tout',
|
1414 | type: this.binding.TF_ATTR_TYPE,
|
1415 | value: this.binding.TF_FLOAT
|
1416 | }
|
1417 | ];
|
1418 | var inputs = [input];
|
1419 | return this.executeSingleOutput('Imag', opAttrs, inputs);
|
1420 | };
|
1421 | NodeJSKernelBackend.prototype.cropAndResize = function (image, boxes, boxIndex, cropSize, method, extrapolationValue) {
|
1422 | var opAttrs = [
|
1423 | createTensorsTypeOpAttr('T', image.dtype),
|
1424 | { name: 'method', type: this.binding.TF_ATTR_STRING, value: method }, {
|
1425 | name: 'extrapolation_value',
|
1426 | type: this.binding.TF_ATTR_FLOAT,
|
1427 | value: extrapolationValue
|
1428 | }
|
1429 | ];
|
1430 | var cropSizeTensor = tfjs_1.tensor1d(cropSize, 'int32');
|
1431 | return this.executeSingleOutput('CropAndResize', opAttrs, [image, boxes, boxIndex, cropSizeTensor]);
|
1432 | };
|
1433 | NodeJSKernelBackend.prototype.depthToSpace = function (x, blockSize, dataFormat) {
|
1434 | var opAttrs = [
|
1435 | createTensorsTypeOpAttr('T', x), {
|
1436 | name: 'block_size',
|
1437 | type: this.binding.TF_ATTR_INT,
|
1438 | value: blockSize < 2 ? 2 : blockSize
|
1439 | },
|
1440 | {
|
1441 | name: 'data_format',
|
1442 | type: this.binding.TF_ATTR_STRING,
|
1443 | value: dataFormat
|
1444 | }
|
1445 | ];
|
1446 | var inputs = [x];
|
1447 | return this.executeSingleOutput('DepthToSpace', opAttrs, inputs);
|
1448 | };
|
1449 | NodeJSKernelBackend.prototype.split = function (value, sizeSplits, axis) {
|
1450 | var opAttrs = [
|
1451 | {
|
1452 | name: 'num_split',
|
1453 | type: this.binding.TF_ATTR_INT,
|
1454 | value: sizeSplits.length
|
1455 | },
|
1456 | createTensorsTypeOpAttr('T', value), {
|
1457 | name: 'Tlen',
|
1458 | type: this.binding.TF_ATTR_TYPE,
|
1459 | value: this.binding.TF_INT32
|
1460 | }
|
1461 | ];
|
1462 | var inputs = [value];
|
1463 | inputs.push(tfjs_1.tensor1d(sizeSplits, 'int32'));
|
1464 | inputs.push(tfjs_1.scalar(axis, 'int32'));
|
1465 | return this.executeMultipleOutputs('SplitV', opAttrs, inputs, sizeSplits.length);
|
1466 | };
|
1467 | NodeJSKernelBackend.prototype.sparseToDense = function (sparseIndices, sparseValues, outputShape, defaultValue) {
|
1468 | var opAttrs = [
|
1469 | { name: 'validate_indices', type: this.binding.TF_ATTR_BOOL, value: true },
|
1470 | createTensorsTypeOpAttr('T', sparseValues.dtype),
|
1471 | createTensorsTypeOpAttr('Tindices', sparseIndices.dtype)
|
1472 | ];
|
1473 | var outputShapeTensor = tfjs_1.tensor1d(outputShape, 'int32');
|
1474 | return this.executeSingleOutput('SparseToDense', opAttrs, [
|
1475 | sparseIndices, outputShapeTensor, sparseValues, defaultValue
|
1476 | ]);
|
1477 | };
|
1478 | NodeJSKernelBackend.prototype.linspace = function (start, stop, num) {
|
1479 | var opAttrs = [
|
1480 | createTensorsTypeOpAttr('T', 'float32'),
|
1481 | createTensorsTypeOpAttr('Tidx', 'int32')
|
1482 | ];
|
1483 | var inputs = [
|
1484 | tfjs_1.scalar(start, 'float32'), tfjs_1.scalar(stop, 'float32'), tfjs_1.scalar(num, 'int32')
|
1485 | ];
|
1486 | return this.executeSingleOutput('LinSpace', opAttrs, inputs);
|
1487 | };
|
1488 | NodeJSKernelBackend.prototype.decodeJpeg = function (contents, channels, ratio, fancyUpscaling, tryRecoverTruncated, acceptableFraction, dctMethod) {
|
1489 | var opAttrs = [
|
1490 | { name: 'channels', type: this.binding.TF_ATTR_INT, value: channels },
|
1491 | { name: 'ratio', type: this.binding.TF_ATTR_INT, value: ratio }, {
|
1492 | name: 'fancy_upscaling',
|
1493 | type: this.binding.TF_ATTR_BOOL,
|
1494 | value: fancyUpscaling
|
1495 | },
|
1496 | {
|
1497 | name: 'try_recover_truncated',
|
1498 | type: this.binding.TF_ATTR_BOOL,
|
1499 | value: tryRecoverTruncated
|
1500 | },
|
1501 | {
|
1502 | name: 'acceptable_fraction',
|
1503 | type: this.binding.TF_ATTR_FLOAT,
|
1504 | value: acceptableFraction
|
1505 | },
|
1506 | { name: 'dct_method', type: this.binding.TF_ATTR_STRING, value: dctMethod }
|
1507 | ];
|
1508 | var inputArgs = [tfjs_1.scalar(contents, 'string')];
|
1509 | return this.executeSingleOutput('DecodeJpeg', opAttrs, inputArgs);
|
1510 | };
|
1511 | NodeJSKernelBackend.prototype.decodePng = function (contents, channels) {
|
1512 | var opAttrs = [{ name: 'channels', type: this.binding.TF_ATTR_INT, value: channels }];
|
1513 | var inputArgs = [tfjs_1.scalar(contents, 'string')];
|
1514 | return this.executeSingleOutput('DecodePng', opAttrs, inputArgs);
|
1515 | };
|
1516 | NodeJSKernelBackend.prototype.decodeBmp = function (contents, channels) {
|
1517 | var opAttrs = [{ name: 'channels', type: this.binding.TF_ATTR_INT, value: channels }];
|
1518 | var inputArgs = [tfjs_1.scalar(contents, 'string')];
|
1519 | return this.executeSingleOutput('DecodeBmp', opAttrs, inputArgs);
|
1520 | };
|
1521 | NodeJSKernelBackend.prototype.decodeGif = function (contents) {
|
1522 | var inputArgs = [tfjs_1.scalar(contents, 'string')];
|
1523 | return this.executeSingleOutput('DecodeGif', [], inputArgs);
|
1524 | };
|
1525 | NodeJSKernelBackend.prototype.executeEncodeImageOp = function (name, opAttrs, imageData, imageShape) {
|
1526 | var inputTensorId = this.binding.createTensor(imageShape, this.binding.TF_UINT8, imageData);
|
1527 | var outputMetadata = this.binding.executeOp(name, opAttrs, [inputTensorId], 1);
|
1528 | var outputTensorInfo = outputMetadata[0];
|
1529 |
|
1530 |
|
1531 | outputTensorInfo.dtype = this.binding.TF_UINT8;
|
1532 | return this.createOutputTensor(outputTensorInfo);
|
1533 | };
|
1534 | NodeJSKernelBackend.prototype.encodeJpeg = function (imageData, imageShape, format, quality, progressive, optimizeSize, chromaDownsampling, densityUnit, xDensity, yDensity, xmpMetadata) {
|
1535 | var opAttrs = [
|
1536 | { name: 'format', type: this.binding.TF_ATTR_STRING, value: format },
|
1537 | { name: 'quality', type: this.binding.TF_ATTR_INT, value: quality }, {
|
1538 | name: 'progressive',
|
1539 | type: this.binding.TF_ATTR_BOOL,
|
1540 | value: progressive
|
1541 | },
|
1542 | {
|
1543 | name: 'optimize_size',
|
1544 | type: this.binding.TF_ATTR_BOOL,
|
1545 | value: optimizeSize
|
1546 | },
|
1547 | {
|
1548 | name: 'chroma_downsampling',
|
1549 | type: this.binding.TF_ATTR_BOOL,
|
1550 | value: chromaDownsampling
|
1551 | },
|
1552 | {
|
1553 | name: 'density_unit',
|
1554 | type: this.binding.TF_ATTR_STRING,
|
1555 | value: densityUnit
|
1556 | },
|
1557 | { name: 'x_density', type: this.binding.TF_ATTR_INT, value: xDensity },
|
1558 | { name: 'y_density', type: this.binding.TF_ATTR_INT, value: yDensity }, {
|
1559 | name: 'xmp_metadata',
|
1560 | type: this.binding.TF_ATTR_STRING,
|
1561 | value: xmpMetadata
|
1562 | }
|
1563 | ];
|
1564 | return this.executeEncodeImageOp('EncodeJpeg', opAttrs, imageData, imageShape);
|
1565 | };
|
1566 | NodeJSKernelBackend.prototype.encodePng = function (imageData, imageShape, compression) {
|
1567 | var opAttrs = [
|
1568 | { name: 'compression', type: this.binding.TF_ATTR_INT, value: compression }
|
1569 | ];
|
1570 | return this.executeEncodeImageOp('EncodePng', opAttrs, imageData, imageShape);
|
1571 | };
|
1572 | NodeJSKernelBackend.prototype.deleteSavedModel = function (id) {
|
1573 | this.binding.deleteSavedModel(id);
|
1574 | };
|
1575 | NodeJSKernelBackend.prototype.loadSavedModelMetaGraph = function (path, tags) {
|
1576 | return this.binding.loadSavedModel(path, tags);
|
1577 | };
|
1578 | NodeJSKernelBackend.prototype.runSavedModel = function (id, inputs, inputOpNames, outputOpNames) {
|
1579 | var _this = this;
|
1580 | var outputMetadata = this.binding.runSavedModel(id, this.getInputTensorIds(inputs), inputOpNames.join(','), outputOpNames.join(','));
|
1581 | return outputMetadata.map(function (m) { return _this.createOutputTensor(m); });
|
1582 | };
|
1583 |
|
1584 |
|
1585 | NodeJSKernelBackend.prototype.summaryWriter = function (logdir) {
|
1586 | var opAttrs = [
|
1587 | {
|
1588 | name: 'shared_name',
|
1589 | type: this.binding.TF_ATTR_STRING,
|
1590 | value: "logdir:" + logdir
|
1591 | },
|
1592 | { name: 'container', type: this.binding.TF_ATTR_STRING, value: '' }
|
1593 | ];
|
1594 | var writerResource = this.executeSingleOutput('SummaryWriter', opAttrs, []);
|
1595 | return writerResource;
|
1596 | };
|
1597 | NodeJSKernelBackend.prototype.createSummaryFileWriter = function (resourceHandle, logdir, maxQueue, flushMillis, filenameSuffix) {
|
1598 | var inputArgs = [
|
1599 | resourceHandle, tfjs_1.scalar(logdir),
|
1600 | tfjs_1.scalar(maxQueue == null ? 10 : maxQueue, 'int32'),
|
1601 | tfjs_1.scalar(flushMillis == null ? 2 * 60 * 1000 : flushMillis, 'int32'),
|
1602 | tfjs_1.scalar(filenameSuffix == null ? '.v2' : filenameSuffix)
|
1603 | ];
|
1604 | this.executeMultipleOutputs('CreateSummaryFileWriter', [], inputArgs, 0);
|
1605 | };
|
1606 | NodeJSKernelBackend.prototype.writeScalarSummary = function (resourceHandle, step, name, value) {
|
1607 | var _this = this;
|
1608 | tfjs_1.tidy(function () {
|
1609 | tfjs_1.util.assert(Number.isInteger(step), function () { return "step is expected to be an integer, but is instead " + step; });
|
1610 | var inputArgs = [resourceHandle, new int64_tensors_1.Int64Scalar(step), tfjs_1.scalar(name, 'string')];
|
1611 | var typeAttr;
|
1612 | if (typeof value === 'number') {
|
1613 | inputArgs.push(tfjs_1.scalar(value));
|
1614 | typeAttr = _this.binding.TF_FLOAT;
|
1615 | }
|
1616 | else {
|
1617 |
|
1618 | tfjs_1.util.assert(value.rank === 0, function () { return "A non-scalar tensor (rank " + value.rank + ") is passed to " +
|
1619 | "writeScalarSummary()"; });
|
1620 | inputArgs.push(value);
|
1621 | typeAttr = _this.typeAttributeFromTensor(value);
|
1622 | }
|
1623 | var opAttrs = [{ name: 'T', type: _this.binding.TF_ATTR_TYPE, value: typeAttr }];
|
1624 | _this.binding.executeOp('WriteScalarSummary', opAttrs, _this.getInputTensorIds(inputArgs), 0);
|
1625 | });
|
1626 | };
|
1627 | NodeJSKernelBackend.prototype.flushSummaryWriter = function (resourceHandle) {
|
1628 | var inputArgs = [resourceHandle];
|
1629 | this.executeMultipleOutputs('FlushSummaryWriter', [], inputArgs, 0);
|
1630 | };
|
1631 |
|
1632 |
|
1633 | NodeJSKernelBackend.prototype.memory = function () {
|
1634 |
|
1635 |
|
1636 |
|
1637 | return { unreliable: true };
|
1638 | };
|
1639 | NodeJSKernelBackend.prototype.time = function (f) {
|
1640 | return __awaiter(this, void 0, void 0, function () {
|
1641 | var start, elapsed;
|
1642 | return __generator(this, function (_a) {
|
1643 | start = process.hrtime();
|
1644 | f();
|
1645 | elapsed = process.hrtime(start);
|
1646 | return [2 , { kernelMs: elapsed[0] * 1000 + elapsed[1] / 1000000 }];
|
1647 | });
|
1648 | });
|
1649 | };
|
1650 | NodeJSKernelBackend.prototype.getNumOfSavedModels = function () {
|
1651 | return this.binding.getNumOfSavedModels();
|
1652 | };
|
1653 | return NodeJSKernelBackend;
|
1654 | }(tfjs_1.KernelBackend));
|
1655 | exports.NodeJSKernelBackend = NodeJSKernelBackend;
|
1656 |
|
1657 | function nodeBackend() {
|
1658 | return tf.findBackend('tensorflow');
|
1659 | }
|
1660 | exports.nodeBackend = nodeBackend;
|
1661 |
|
1662 | function getTFDType(dataType) {
|
1663 | var binding = nodeBackend().binding;
|
1664 | switch (dataType) {
|
1665 | case 'float32':
|
1666 | return binding.TF_FLOAT;
|
1667 | case 'int32':
|
1668 | return binding.TF_INT32;
|
1669 | case 'bool':
|
1670 | return binding.TF_BOOL;
|
1671 | case 'complex64':
|
1672 | return binding.TF_COMPLEX64;
|
1673 | case 'string':
|
1674 | return binding.TF_STRING;
|
1675 |
|
1676 | case 'int64':
|
1677 |
|
1678 |
|
1679 |
|
1680 |
|
1681 | return binding.TF_INT64;
|
1682 | default:
|
1683 | var errorMessage = "Unknown dtype: " + dataType;
|
1684 | throw new Error(errorMessage);
|
1685 | }
|
1686 | }
|
1687 | exports.getTFDType = getTFDType;
|
1688 |
|
1689 |
|
1690 |
|
1691 |
|
1692 | function createTensorsTypeOpAttr(attrName, tensorsOrDtype) {
|
1693 | if (util_1.isNullOrUndefined(tensorsOrDtype)) {
|
1694 | throw new Error('Invalid input tensors value.');
|
1695 | }
|
1696 | return {
|
1697 | name: attrName,
|
1698 | type: nodeBackend().binding.TF_ATTR_TYPE,
|
1699 | value: (tensorsOrDtype instanceof tf.Tensor || Array.isArray(tensorsOrDtype)) ?
|
1700 | getTFDTypeForInputs(tensorsOrDtype) :
|
1701 | getTFDType(tensorsOrDtype)
|
1702 | };
|
1703 | }
|
1704 | exports.createTensorsTypeOpAttr = createTensorsTypeOpAttr;
|
1705 |
|
1706 | function getTFDTypeForInputs(tensors) {
|
1707 | if (util_1.isNullOrUndefined(tensors)) {
|
1708 | throw new Error('Invalid input tensors value.');
|
1709 | }
|
1710 | if (util_1.isArray(tensors)) {
|
1711 | for (var i = 0; i < tensors.length; i++) {
|
1712 | return getTFDType(tensors[i].dtype);
|
1713 | }
|
1714 | return -1;
|
1715 | }
|
1716 | else {
|
1717 | return getTFDType(tensors.dtype);
|
1718 | }
|
1719 | }
|
1720 | function ensureTensorflowBackend() {
|
1721 | tf.util.assert(tf.getBackend() === 'tensorflow', function () { return "Expect the current backend to be \"tensorflow\", but got \"" + tf.getBackend() + "\""; });
|
1722 | }
|
1723 | exports.ensureTensorflowBackend = ensureTensorflowBackend;
|