UNPKG

7.25 kBTypeScriptView Raw
1/**
2 * @license
3 * Copyright 2019 Google Inc. All Rights Reserved.
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 * =============================================================================
16 */
17import { InferenceModel, MetaGraph, ModelPredictConfig, ModelTensorInfo, NamedTensorMap, Tensor } from '@tensorflow/tfjs';
18import { NodeJSKernelBackend } from './nodejs_kernel_backend';
19/**
20 * Get a key in an object by its value. This is used to get protobuf enum value
21 * from index.
22 *
23 * @param object
24 * @param value
25 */
26export declare function getEnumKeyFromValue(object: any, value: number): string;
27/**
28 * Read SavedModel proto message from path.
29 *
30 * @param path Path to SavedModel folder.
31 */
32export declare function readSavedModelProto(path: string): Promise<any>;
33/**
34 * Inspect the MetaGraphs of the SavedModel from the provided path. This
35 * function will return an array of `MetaGraphInfo` objects.
36 *
37 * @param path Path to SavedModel folder.
38 */
39/**
40 * @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'}
41 */
42export declare function getMetaGraphsFromSavedModel(path: string): Promise<MetaGraph[]>;
43/**
44 * Get input and output node names from SavedModel metagraphs info. The
45 * input.output node names will be used when executing a SavedModel signature.
46 *
47 * @param savedModelInfo The MetaGraphInfo array loaded through
48 * getMetaGraphsFromSavedModel().
49 * @param tags The tags of the MetaGraph to get input/output node names from.
50 * @param signature The signature to get input/output node names from.
51 */
52export declare function getInputAndOutputNodeNameFromMetaGraphInfo(savedModelInfo: MetaGraph[], tags: string[], signature: string): {
53 [key: string]: string;
54}[];
55/**
56 * A `tf.TFSavedModel` is a signature loaded from a SavedModel
57 * metagraph, and allows inference execution.
58 */
59/**
60 * @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'}
61 */
62export declare class TFSavedModel implements InferenceModel {
63 private sessionId;
64 private jsid;
65 private inputNodeNames;
66 private outputNodeNames;
67 private backend;
68 private disposed;
69 constructor(sessionId: number, jsid: number, inputNodeNames: {
70 [key: string]: string;
71 }, outputNodeNames: {
72 [key: string]: string;
73 }, backend: NodeJSKernelBackend);
74 /**
75 * Return the array of input tensor info.
76 */
77 /** @doc {heading: 'Models', subheading: 'SavedModel'} */
78 readonly inputs: ModelTensorInfo[];
79 /**
80 * Return the array of output tensor info.
81 */
82 /** @doc {heading: 'Models', subheading: 'SavedModel'} */
83 readonly outputs: ModelTensorInfo[];
84 /**
85 * Delete the SavedModel from nodeBackend and delete corresponding session in
86 * the C++ backend if the session is only used by this TFSavedModel.
87 */
88 /** @doc {heading: 'Models', subheading: 'SavedModel'} */
89 dispose(): void;
90 /**
91 * Execute the inference for the input tensors.
92 *
93 * @param input The input tensors, when there is single input for the model,
94 * inputs param should be a Tensor. For models with multiple inputs, inputs
95 * params should be in either Tensor[] if the input order is fixed, or
96 * otherwise NamedTensorMap format. The keys in the NamedTensorMap are the
97 * name of input tensors in SavedModel signatureDef. It can be found through
98 * `tf.node.getMetaGraphsFromSavedModel()`.
99 *
100 * For batch inference execution, the tensors for each input need to be
101 * concatenated together. For example with mobilenet, the required input shape
102 * is [1, 244, 244, 3], which represents the [batch, height, width, channel].
103 * If we are provide a batched data of 100 images, the input tensor should be
104 * in the shape of [100, 244, 244, 3].
105 *
106 * @param config Prediction configuration for specifying the batch size.
107 *
108 * @returns Inference result tensors. The output would be single Tensor if
109 * model has single output node, otherwise Tensor[] or NamedTensorMap[] will
110 * be returned for model with multiple outputs.
111 */
112 /** @doc {heading: 'Models', subheading: 'SavedModel'} */
113 predict(inputs: Tensor | Tensor[] | NamedTensorMap, config?: ModelPredictConfig): Tensor | Tensor[] | NamedTensorMap;
114 /**
115 * Execute the inference for the input tensors and return activation
116 * values for specified output node names without batching.
117 *
118 * @param input The input tensors, when there is single input for the model,
119 * inputs param should be a Tensor. For models with multiple inputs, inputs
120 * params should be in either Tensor[] if the input order is fixed, or
121 * otherwise NamedTensorMap format.
122 *
123 * @param outputs string|string[]. List of output node names to retrieve
124 * activation from.
125 *
126 * @returns Activation values for the output nodes result tensors. The return
127 * type matches specified parameter outputs type. The output would be single
128 * Tensor if single output is specified, otherwise Tensor[] for multiple
129 * outputs.
130 */
131 /** @doc {heading: 'Models', subheading: 'SavedModel'} */
132 execute(inputs: Tensor | Tensor[] | NamedTensorMap, outputs: string | string[]): Tensor | Tensor[];
133}
134/**
135 * Load a TensorFlow SavedModel from disk. TensorFlow SavedModel is different
136 * from TensorFlow.js model format. A SavedModel is a directory containing
137 * serialized signatures and the states needed to run them. The directory has a
138 * saved_model.pb (or saved_model.pbtxt) file storing the actual TensorFlow
139 * program, or model, and a set of named signatures, each identifying a
140 * function. The directory also has a variables directory contains a standard
141 * training checkpoint. The directory may also has a assets directory contains
142 * files used by the TensorFlow graph, for example text files used to initialize
143 * vocabulary tables. These are supported datatypes: float32, int32, complex64,
144 * string.For more information, see this guide:
145 * https://www.tensorflow.org/guide/saved_model.
146 *
147 * @param path The path to the SavedModel.
148 * @param tags The tags of the MetaGraph to load. The available tags of a
149 * SavedModel can be retrieved through tf.node.getMetaGraphsFromSavedModel()
150 * API. Defaults to ['serve'].
151 * @param signature The name of the SignatureDef to load. The available
152 * SignatureDefs of a SavedModel can be retrieved through
153 * tf.node.getMetaGraphsFromSavedModel() API. Defaults to 'serving_default'.
154 */
155/** @doc {heading: 'Models', subheading: 'SavedModel', namespace: 'node'} */
156export declare function loadSavedModel(path: string, tags?: string[], signature?: string): Promise<TFSavedModel>;
157export declare function getNumOfSavedModels(): number;