UNPKG

137 kBTypeScriptView Raw
1// Type definitions for D3JS d3-shape module 3.0
2// Project: https://github.com/d3/d3-shape/, https://d3js.org/d3-shape
3// Definitions by: Tom Wanzek <https://github.com/tomwanzek>
4// Alex Ford <https://github.com/gustavderdrache>
5// Boris Yankov <https://github.com/borisyankov>
6// denisname <https://github.com/denisname>
7// Nathan Bierema <https://github.com/Methuselah96>
8// Definitions: https://github.com/DefinitelyTyped/DefinitelyTyped
9
10// Last module patch version validated against: 3.0.1
11
12import { Path } from 'd3-path';
13
14declare global {
15 interface CanvasRenderingContext2D {} // tslint:disable-line no-empty-interface
16}
17
18// -----------------------------------------------------------------------------------
19// Shared Types and Interfaces
20// -----------------------------------------------------------------------------------
21
22/**
23 * @deprecated
24 * This interface is used to bridge the gap between two incompatible versions of TypeScript (see [#25944](https://github.com/Microsoft/TypeScript/pull/25944)).
25 * Use `CanvasPathMethods` instead with TS <= 3.0 and `CanvasPath` with TS >= 3.1.
26 */
27export interface CanvasPath_D3Shape {
28 arc(x: number, y: number, radius: number, startAngle: number, endAngle: number, anticlockwise?: boolean): void;
29 arcTo(x1: number, y1: number, x2: number, y2: number, radius: number): void;
30 bezierCurveTo(cp1x: number, cp1y: number, cp2x: number, cp2y: number, x: number, y: number): void;
31 closePath(): void;
32 ellipse(x: number, y: number, radiusX: number, radiusY: number, rotation: number, startAngle: number, endAngle: number, anticlockwise?: boolean): void;
33 lineTo(x: number, y: number): void;
34 moveTo(x: number, y: number): void;
35 quadraticCurveTo(cpx: number, cpy: number, x: number, y: number): void;
36 rect(x: number, y: number, w: number, h: number): void;
37}
38
39// -----------------------------------------------------------------------------------
40// Arc Generator
41// -----------------------------------------------------------------------------------
42
43/**
44 * Interface corresponding to the minimum data type assumed by the accessor functions of the Arc generator.
45 */
46export interface DefaultArcObject {
47 /**
48 * Inner radius of arc.
49 */
50 innerRadius: number;
51 /**
52 * Outer radius of arc.
53 */
54 outerRadius: number;
55 /**
56 * Start angle of arc. The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
57 */
58 startAngle: number;
59 /**
60 * End angle of arc. The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
61 */
62 endAngle: number;
63 /**
64 * Optional. Pad angle of arc in radians.
65 */
66 padAngle?: number | undefined;
67}
68
69/**
70 * The arc generator produces a circular or annular sector, as in a pie or donut chart.
71 *
72 * If the difference between the start and end angles (the angular span) is greater than τ, the arc generator will produce a complete circle or annulus.
73 * If it is less than τ, arcs may have rounded corners and angular padding. Arcs are always centered at ⟨0,0⟩; use a transform (see: SVG, Canvas) to move the arc to a different position.
74 *
75 * See also the pie generator, which computes the necessary angles to represent an array of data as a pie or donut chart; these angles can then be passed to an arc generator.
76 *
77 * The first generic corresponds to the type of the "this" context within which the arc generator and its accessor functions will be invoked.
78 *
79 * The second generic corresponds to the datum type for which the arc is to be generated.
80 */
81export interface Arc<This, Datum> {
82 /**
83 * Generates an arc for the given arguments.
84 *
85 * IMPORTANT: If the rendering context of the arc generator is null,
86 * then the arc is returned as a path data string.
87 *
88 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
89 * All arguments passed into this function, will be passed to the accessor functions of the generator.
90 *
91 * @param d The datum for which the arc is to be generated.
92 */
93 (this: This, d: Datum, ...args: any[]): string | null;
94 /**
95 * Generates an arc for the given arguments.
96 *
97 * IMPORTANT: If the arc generator has been configured with a rendering context,
98 * then the arc is rendered to this context as a sequence of path method calls and this function returns void.
99 *
100 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
101 * All arguments passed into this function, will be passed to the accessor functions of the generator.
102 *
103 * @param d The datum for which the arc is to be generated.
104 */
105 (this: This, d: Datum, ...args: any[]): void;
106
107 /**
108 * Computes the midpoint [x, y] of the center line of the arc that would be generated by the given arguments.
109 *
110 * To be consistent with the generated arc, the accessors must be deterministic, i.e., return the same value given the same arguments.
111 * The midpoint is defined as (startAngle + endAngle) / 2 and (innerRadius + outerRadius) / 2.
112 *
113 * Note that this is not the geometric center of the arc, which may be outside the arc;
114 * this method is merely a convenience for positioning labels.
115 *
116 * The method is invoked in the same "this" context as the generator was invoked in and
117 * receives the same arguments that are passed into the arc generator.
118 *
119 * @param d The datum for which the arc is to be generated.
120 */
121 centroid(d: Datum, ...args: any[]): [number, number];
122
123 /**
124 * Returns the current inner radius accessor, which defaults to a function returning the innerRadius property
125 * of the first argument passed into it.
126 */
127 innerRadius(): (this: This, d: Datum, ...args: any[]) => number;
128 /**
129 * Sets the inner radius to the specified number and returns this arc generator.
130 *
131 * Specifying the inner radius as a function is useful for constructing a stacked polar bar chart, often in conjunction with a sqrt scale.
132 * More commonly, a constant inner radius is used for a donut or pie chart. If the outer radius is smaller than the inner radius, the inner and outer radii are swapped.
133 * A negative value is treated as zero.
134 *
135 * @param radius Constant radius.
136 */
137 innerRadius(radius: number): this;
138 /**
139 * Sets the inner radius to the specified function and returns this arc generator.
140 *
141 * Specifying the inner radius as a function is useful for constructing a stacked polar bar chart, often in conjunction with a sqrt scale.
142 * More commonly, a constant inner radius is used for a donut or pie chart. If the outer radius is smaller than the inner radius, the inner and outer radii are swapped.
143 * A negative value is treated as zero.
144 *
145 * @param radius An accessor function returning a number to be used as a radius. The accessor function is invoked in the same "this" context as the generator was invoked in and
146 * receives the same arguments that were passed into the arc generator.
147 */
148 innerRadius(radius: (this: This, d: Datum, ...args: any[]) => number): this;
149
150 /**
151 * Returns the current outer radius accessor, which defaults to a function returning the outerRadius property
152 * of the first argument passed into it.
153 */
154 outerRadius(): (this: This, d: Datum, ...args: any[]) => number;
155 /**
156 * Sets the outer radius to the specified number and returns this arc generator.
157 *
158 * Specifying the outer radius as a function is useful for constructing a coxcomb or polar bar chart,
159 * often in conjunction with a sqrt scale. More commonly, a constant outer radius is used for a pie or donut chart.
160 * If the outer radius is smaller than the inner radius, the inner and outer radii are swapped.
161 * A negative value is treated as zero.
162 *
163 * @param radius Constant radius.
164 */
165 outerRadius(radius: number): this;
166 /**
167 * Sets the outer radius to the specified function and returns this arc generator.
168 *
169 * Specifying the outer radius as a function is useful for constructing a coxcomb or polar bar chart,
170 * often in conjunction with a sqrt scale. More commonly, a constant outer radius is used for a pie or donut chart.
171 * If the outer radius is smaller than the inner radius, the inner and outer radii are swapped.
172 * A negative value is treated as zero.
173 *
174 * @param radius An accessor function returning a number to be used as a radius. The accessor function is invoked in the same "this" context as the generator was invoked in and
175 * receives the same arguments that were passed into the arc generator.
176 */
177 outerRadius(radius: (this: This, d: Datum, ...args: any[]) => number): this;
178
179 /**
180 * Returns the current corner radius accessor, which defaults to a function returning a constant value of zero.
181 */
182 cornerRadius(): (this: This, d: Datum, ...args: any[]) => number;
183 /**
184 * Sets the corner radius to the specified number and returns this arc generator.
185 *
186 * If the corner radius is greater than zero, the corners of the arc are rounded using circles of the given radius.
187 * For a circular sector, the two outer corners are rounded; for an annular sector, all four corners are rounded.
188 *
189 * The corner radius may not be larger than (outerRadius - innerRadius) / 2.
190 * In addition, for arcs whose angular span is less than π, the corner radius may be reduced as two adjacent rounded corners intersect.
191 * This is occurs more often with the inner corners.
192 *
193 * @param radius Constant radius.
194 */
195 cornerRadius(radius: number): this;
196 /**
197 * Sets the corner radius to the specified function and returns this arc generator.
198 *
199 * The corner radius may not be larger than (outerRadius - innerRadius) / 2.
200 * In addition, for arcs whose angular span is less than π, the corner radius may be reduced as two adjacent rounded corners intersect.
201 * This is occurs more often with the inner corners.
202 *
203 * @param radius An accessor function returning a number to be used as a radius. The accessor function is invoked in the same "this" context as the generator was invoked in and
204 * receives the same arguments that were passed into the arc generator.
205 */
206 cornerRadius(radius: (this: This, d: Datum, ...args: any[]) => number): this;
207
208 /**
209 * Returns the current start angle accessor, which defaults to a function returning the startAngle property
210 * of the first argument passed into it.
211 */
212 startAngle(): (this: This, d: Datum, ...args: any[]) => number;
213 /**
214 * Sets the start angle to the specified number and returns this arc generator.
215 *
216 * The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
217 * If |endAngle - startAngle| ≥ τ, a complete circle or annulus is generated rather than a sector.
218 *
219 * @param angle Constant angle in radians.
220 */
221 startAngle(angle: number): this;
222 /**
223 * Sets the start angle to the specified function and returns this arc generator.
224 *
225 * The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
226 * If |endAngle - startAngle| ≥ τ, a complete circle or annulus is generated rather than a sector.
227 *
228 * @param angle An accessor function returning a number in radians to be used as an angle. The accessor function is invoked in the same "this" context as the generator was invoked in and
229 * receives the same arguments that were passed into the arc generator.
230 */
231 startAngle(angle: (this: This, d: Datum, ...args: any[]) => number): this;
232
233 /**
234 * Returns the current end angle accessor, which defaults to a function returning the endAngle property
235 * of the first argument passed into it.
236 */
237 endAngle(): (this: This, d: Datum, ...args: any[]) => number;
238 /**
239 * Sets the end angle to the specified number and returns this arc generator.
240 *
241 * The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
242 * If |endAngle - startAngle| ≥ τ, a complete circle or annulus is generated rather than a sector.
243 *
244 * @param angle Constant angle in radians.
245 */
246 endAngle(angle: number): this;
247 /**
248 * Sets the end angle to the specified function and returns this arc generator.
249 *
250 * The angle is specified in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
251 * If |endAngle - startAngle| ≥ τ, a complete circle or annulus is generated rather than a sector.
252 *
253 * @param angle An accessor function returning a number in radians to be used as an angle. The accessor function is invoked in the same "this" context as the generator was invoked in and
254 * receives the same arguments that were passed into the arc generator.
255 */
256 endAngle(angle: (this: This, d: Datum, ...args: any[]) => number): this;
257
258 /**
259 * Returns the current pad angle accessor, which defaults to a function returning the padAngle property
260 * of the first argument passed into it, or false if no data are passed in or the property is not defined.
261 */
262 padAngle(): (this: This, d: Datum, ...args: any[]) => number | undefined;
263 /**
264 * Sets the pad angle to the specified number and returns this arc generator.
265 *
266 * The pad angle is converted to a fixed linear distance separating adjacent arcs, defined as padRadius * padAngle. This distance is subtracted equally from the start and end of the arc.
267 * If the arc forms a complete circle or annulus, as when |endAngle - startAngle| ≥ τ, the pad angle is ignored. If the inner radius or angular span is small relative to the pad angle,
268 * it may not be possible to maintain parallel edges between adjacent arcs. In this case, the inner edge of the arc may collapse to a point, similar to a circular sector.
269 * For this reason, padding is typically only applied to annular sectors (i.e., when innerRadius is positive).
270 *
271 * The recommended minimum inner radius when using padding is outerRadius * padAngle / sin(θ), where θ is the angular span of the smallest arc before padding.
272 * For example, if the outer radius is 200 pixels and the pad angle is 0.02 radians, a reasonable θ is 0.04 radians, and a reasonable inner radius is 100 pixels.
273 *
274 * Often, the pad angle is not set directly on the arc generator, but is instead computed by the pie generator so as to ensure that the area of padded arcs is proportional to their value;
275 * see pie.padAngle. See the pie padding animation for illustration.
276 * If you apply a constant pad angle to the arc generator directly, it tends to subtract disproportionately from smaller arcs, introducing distortion.
277 *
278 * @param angle Constant angle in radians.
279 */
280 padAngle(angle: number | undefined): this;
281 /**
282 * Sets the pad angle to the specified function and returns this arc generator.
283 *
284 * The pad angle is converted to a fixed linear distance separating adjacent arcs, defined as padRadius * padAngle. This distance is subtracted equally from the start and end of the arc.
285 * If the arc forms a complete circle or annulus, as when |endAngle - startAngle| ≥ τ, the pad angle is ignored. If the inner radius or angular span is small relative to the pad angle,
286 * it may not be possible to maintain parallel edges between adjacent arcs. In this case, the inner edge of the arc may collapse to a point, similar to a circular sector.
287 * For this reason, padding is typically only applied to annular sectors (i.e., when innerRadius is positive).
288 *
289 * The recommended minimum inner radius when using padding is outerRadius * padAngle / sin(θ), where θ is the angular span of the smallest arc before padding.
290 * For example, if the outer radius is 200 pixels and the pad angle is 0.02 radians, a reasonable θ is 0.04 radians, and a reasonable inner radius is 100 pixels.
291 *
292 * Often, the pad angle is not set directly on the arc generator, but is instead computed by the pie generator so as to ensure that the area of padded arcs is proportional to their value;
293 * see pie.padAngle. See the pie padding animation for illustration.
294 * If you apply a constant pad angle to the arc generator directly, it tends to subtract disproportionately from smaller arcs, introducing distortion.
295 *
296 * @param angle An accessor function returning a number in radians to be used as an angle. The accessor function is invoked in the same "this" context as the generator was invoked in and
297 * receives the same arguments that were passed into the arc generator.
298 */
299 padAngle(angle: (this: This, d: Datum, ...args: any[]) => number | undefined): this;
300
301 /**
302 * Returns the current pad radius accessor, which defaults to null, indicating that the pad radius should be automatically computed as sqrt(innerRadius * innerRadius + outerRadius * outerRadius).
303 */
304 padRadius(): ((this: This, d: Datum, ...args: any[]) => number) | null;
305 /**
306 * Sets the pad radius to null indicating that the pad radius should be automatically computed as sqrt(innerRadius * innerRadius + outerRadius * outerRadius), and returns this arc generator.
307 *
308 * The pad radius determines the fixed linear distance separating adjacent arcs, defined as padRadius * padAngle.
309 *
310 * @param radius null to set automatic pad radius calculation.
311 */
312 padRadius(radius: null): this;
313 /**
314 * Sets the pad radius to the specified number, and returns this arc generator.
315 *
316 * The pad radius determines the fixed linear distance separating adjacent arcs, defined as padRadius * padAngle.
317 *
318 * @param radius A constant radius.
319 */
320 padRadius(radius: number): this;
321
322 /*
323 * Sets the pad radius to the specified function, and returns this arc generator.
324 *
325 * @param radius An accessor function returning a number to be used as a radius. The accessor function is invoked in the same "this" context as the generator was invoked in and
326 * receives the same arguments that were passed into the arc generator.
327 */
328 padRadius(radius: (this: This, d: Datum, ...args: any[]) => number): this;
329
330 /**
331 * Returns the current rendering context, which defaults to null.
332 */
333 context(): CanvasRenderingContext2D | null;
334 /**
335 * Sets the rendering context and returns this arc generator.
336 *
337 * If the context is not null, then the generated arc is rendered to this context as a sequence of path method calls.
338 *
339 * @param context The rendering context.
340 */
341 context(context: CanvasRenderingContext2D): this;
342 /**
343 * Sets the rendering context to null and returns this arc generator.
344 *
345 * A path data string representing the generated arc will be returned when the generator is invoked with data.
346 *
347 * @param context null, to remove rendering context.
348 */
349 context(context: null): this;
350}
351
352/**
353 * Constructs a new arc generator with the default settings.
354 *
355 * Ensure that the accessors used with the arc generator correspond to the arguments passed into them,
356 * or set them to constants as appropriate.
357 */
358export function arc(): Arc<any, DefaultArcObject>;
359/**
360 * Constructs a new arc generator with the default settings.
361 *
362 * Ensure that the accessors used with the arc generator correspond to the arguments passed into them,
363 * or set them to constants as appropriate.
364 *
365 * The generic corresponds to the datum type representing a arc.
366 */
367export function arc<Datum>(): Arc<any, Datum>;
368/**
369 * Constructs a new arc generator with the default settings.
370 *
371 * Ensure that the accessors used with the arc generator correspond to the arguments passed into them,
372 * or set them to constants as appropriate.
373 *
374 * The first generic corresponds to the type of the "this" context within which the arc generator and its accessor functions will be invoked.
375 *
376 * The second generic corresponds to the datum type representing a arc.
377 */
378export function arc<This, Datum>(): Arc<This, Datum>;
379
380// -----------------------------------------------------------------------------------
381// Pie Generator
382// -----------------------------------------------------------------------------------
383
384/**
385 * Element of the Arc Datums Array created by invoking the Pie generator.
386 *
387 * The generic refers to the data type of an element in the input array passed into the Pie generator.
388 */
389export interface PieArcDatum<T> {
390 /**
391 * The input datum; the corresponding element in the input data array of the Pie generator.
392 */
393 data: T;
394 /**
395 * The numeric value of the arc.
396 */
397 value: number;
398 /**
399 * The zero-based sorted index of the arc.
400 */
401 index: number;
402 /**
403 * The start angle of the arc.
404 * If the pie generator was configured to be used for the arc generator,
405 * then the units are in radians with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
406 */
407 startAngle: number;
408 /**
409 * The end angle of the arc.
410 * If the pie generator was configured to be used for the arc generator,
411 * then the units are in radians with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
412 */
413 endAngle: number;
414 /**
415 * The pad angle of the arc. If the pie generator was configured to be used for the arc generator, than the units are in radians.
416 */
417 padAngle: number;
418}
419
420/**
421 * The pie generator does not produce a shape directly, but instead computes the necessary angles to represent a tabular dataset as a pie or donut chart;
422 * these angles can then be passed to an arc generator.
423 *
424 * The first generic corresponds to the type of the "this" context within which the pie generator and its accessor functions will be invoked.
425 *
426 * The second generic refers to the data type of an element in the input array passed into the Pie generator.
427 */
428export interface Pie<This, Datum> {
429 /**
430 * Generates a pie for the given array of data, returning an array of objects representing each datums arc angles.
431 * Any additional arguments are arbitrary; they are simply propagated to the pie generators accessor functions along with the this object.
432 * The length of the returned array is the same as data, and each element i in the returned array corresponds to the element i in the input data.
433 *
434 * This representation is designed to work with the arc generators default startAngle, endAngle and padAngle accessors.
435 * The angular units are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator,
436 * you should specify angles in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
437 *
438 * @param data Array of data elements.
439 */
440 (this: This, data: Datum[], ...args: any[]): Array<PieArcDatum<Datum>>;
441
442 /**
443 * Returns the current value accessor, which defaults to a function returning the first argument passed into it.
444 * The default value accessor assumes that the input data are numbers, or that they are coercible to numbers using valueOf.
445 */
446 value(): (d: Datum, i: number, data: Datum[]) => number;
447 /**
448 * Sets the value accessor to use the specified constant number and returns this pie generator.
449 *
450 * @param value Constant value to be used.
451 */
452 value(value: number): this;
453 /**
454 * Sets the value accessor to use the specified function and returns this pie generator.
455 *
456 * When a pie is generated, the value accessor will be invoked for each element in the input data array.
457 * The default value accessor assumes that the input data are numbers, or that they are coercible to numbers using valueOf.
458 * If your data are not simply numbers, then you should specify an accessor that returns the corresponding numeric value for a given datum.
459 *
460 * @param value A value accessor function, which is invoked for each element in the input data array, being passed the element d, the index i, and the array data as three arguments.
461 * It returns a numeric value.
462 */
463 value(value: (d: Datum, i: number, data: Datum[]) => number): this;
464
465 /**
466 * Returns the current data comparator, which defaults to null.
467 */
468 sort(): ((a: Datum, b: Datum) => number) | null;
469 /**
470 * Sets the data comparator to the specified function and returns this pie generator.
471 *
472 * If both the data comparator and the value comparator are null, then arcs are positioned in the original input order.
473 * Otherwise, the data is sorted according to the data comparator, and the resulting order is used. Setting the data comparator implicitly sets the value comparator to null.
474 *
475 * Sorting does not affect the order of the generated arc array which is always in the same order as the input data array; it merely affects the computed angles of each arc.
476 * The first arc starts at the start angle and the last arc ends at the end angle.
477 *
478 * @param comparator A compare function takes two arguments a and b, each elements from the input data array.
479 * If the arc for a should be before the arc for b, then the comparator must return a number less than zero;
480 * if the arc for a should be after the arc for b, then the comparator must return a number greater than zero;
481 * returning zero means that the relative order of a and b is unspecified.
482 */
483 sort(comparator: (a: Datum, b: Datum) => number): this;
484 /**
485 * Sets the data comparator to null and returns this pie generator.
486 *
487 * If both the data comparator and the value comparator are null, then arcs are positioned in the original input order.
488 *
489 * @param comparator null, to set the pie generator to use the original input order or use the sortValues comparator, if any.
490 */
491 sort(comparator: null): this;
492
493 /**
494 * Returns the current value comparator, which defaults to descending value.
495 */
496 sortValues(): ((a: number, b: number) => number) | null;
497 /**
498 * Sets the value comparator to the specified function and returns this pie generator.
499 *
500 * If both the data comparator and the value comparator are null, then arcs are positioned in the original input order.
501 * Otherwise, the data is sorted according to the data comparator, and the resulting order is used.
502 * Setting the value comparator implicitly sets the data comparator to null.
503 *
504 * Sorting does not affect the order of the generated arc array which is always in the same order as the input data array;
505 * it merely affects the computed angles of each arc. The first arc starts at the start angle and the last arc ends at the end angle.
506 *
507 * @param comparator The value comparator takes two arguments a and b which are values derived from the input data array using the value accessor, not the data elements.
508 * If the arc for a should be before the arc for b, then the comparator must return a number less than zero;
509 * if the arc for a should be after the arc for b, then the comparator must return a number greater than zero; returning zero means that the relative order of a and b is unspecified.
510 */
511 sortValues(comparator: (a: number, b: number) => number): this;
512 /**
513 * Sets the value comparator to null and returns this pie generator.
514 *
515 * If both the data comparator and the value comparator are null, then arcs are positioned in the original input order.
516 *
517 * @param comparator null, to set the pie generator to use the original input order or use the data comparator, if any.
518 */
519 sortValues(comparator: null): this;
520
521 /**
522 * Returns the current start angle accessor, which defaults to a function returning a constant zero.
523 */
524 startAngle(): (this: This, data: Datum[], ...args: any[]) => number;
525 /**
526 * Sets the overall start angle of the pie to the specified number and returns this pie generator.
527 *
528 * The default start angle is zero.
529 *
530 * The start angle here means the overall start angle of the pie, i.e., the start angle of the first arc.
531 * The start angle accessor is invoked once, being passed the same arguments and this context as the pie generator.
532 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator,
533 * you should specify an angle in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
534 *
535 * @param angle A constant angle.
536 */
537 startAngle(angle: number): this;
538 /**
539 * Sets the overall start angle of the pie to the specified function and returns this pie generator.
540 *
541 * The default start angle is zero.
542 *
543 * The start angle here means the overall start angle of the pie, i.e., the start angle of the first arc.
544 * The start angle accessor is invoked once, being passed the same arguments and this context as the pie generator.
545 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator,
546 * you should specify an angle in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
547 *
548 * @param angle An angle accessor function, which is invoked once, being passed the same arguments and this context as the pie generator.
549 */
550 startAngle(angle: (this: This, data: Datum[], ...args: any[]) => number): this;
551
552 /**
553 * Returns the current end angle accessor, which defaults to a function returning a constant 2*pi.
554 */
555 endAngle(): (this: This, data: Datum[], ...args: any[]) => number;
556 /**
557 * Sets the overall end angle of the pie to the specified number and returns this pie generator.
558 *
559 * The default end angle is 2*pi.
560 *
561 * The end angle here means the overall end angle of the pie, i.e., the end angle of the last arc.
562 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator,
563 * you should specify an angle in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
564 *
565 * The value of the end angle is constrained to startAngle ± τ, such that |endAngle - startAngle| ≤ τ.
566 *
567 * @param angle A constant angle.
568 */
569 endAngle(angle: number): this;
570 /**
571 * Sets the overall end angle of the pie to the specified function and returns this pie generator.
572 *
573 * The default end angle is 2*pi.
574 *
575 * The end angle here means the overall end angle of the pie, i.e., the end angle of the last arc.
576 * The end angle accessor is invoked once, being passed the same arguments and this context as the pie generator.
577 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator,
578 * you should specify an angle in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
579 *
580 * The value of the end angle is constrained to startAngle ± τ, such that |endAngle - startAngle| ≤ τ.
581 *
582 * @param angle An angle accessor function, which is invoked once, being passed the same arguments and this context as the pie generator.
583 */
584 endAngle(angle: (this: This, data: Datum[], ...args: any[]) => number): this;
585
586 /**
587 * Returns the current pad angle accessor, which defaults to a function returning a constant zero.
588 */
589 padAngle(): (this: This, data: Datum[], ...args: any[]) => number;
590 /**
591 * Sets the pad angle to the specified number and returns this pie generator.
592 *
593 * The pad angle here means the angular separation between each adjacent arc.
594 * The total amount of padding reserved is the specified angle times the number of elements in the input data array, and at most |endAngle - startAngle|;
595 * the remaining space is then divided proportionally by value such that the relative area of each arc is preserved.
596 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator, you should specify an angle in radians.
597 *
598 * @param angle A constant angle.
599 */
600 padAngle(angle: number): this;
601 /**
602 * Sets the pad angle to the specified function and returns this pie generator.
603 *
604 * The pad angle here means the angular separation between each adjacent arc.
605 * The total amount of padding reserved is the specified angle times the number of elements in the input data array, and at most |endAngle - startAngle|;
606 * the remaining space is then divided proportionally by value such that the relative area of each arc is preserved.
607 * The pad angle accessor is invoked once, being passed the same arguments and this context as the pie generator.
608 * The units of angle are arbitrary, but if you plan to use the pie generator in conjunction with an arc generator, you should specify an angle in radians.
609 *
610 * @param angle An angle accessor function, which is invoked once, being passed the same arguments and this context as the pie generator.
611 */
612 padAngle(angle: (this: This, data: Datum[], ...args: any[]) => number): this;
613}
614
615/**
616 * Constructs a new pie generator with the default settings.
617 *
618 * Ensure that the accessors used with the pie generator correspond to the arguments passed into them,
619 * or set them to constants as appropriate.
620 */
621export function pie(): Pie<any, number | { valueOf(): number }>;
622/**
623 * Constructs a new pie generator with the default settings.
624 *
625 * Ensure that the accessors used with the pie generator correspond to the arguments passed into them,
626 * or set them to constants as appropriate.
627 *
628 * The generic refers to the data type of an element in the input array passed into the Pie generator.
629 */
630export function pie<Datum>(): Pie<any, Datum>;
631/**
632 * Constructs a new pie generator with the default settings.
633 *
634 * Ensure that the accessors used with the pie generator correspond to the arguments passed into them,
635 * or set them to constants as appropriate.
636 *
637 * The first generic corresponds to the type of the "this" context within which the pie generator and its accessor functions will be invoked.
638 *
639 * The second generic refers to the data type of an element in the input array passed into the Pie generator.
640 */
641export function pie<This, Datum>(): Pie<This, Datum>;
642
643// -----------------------------------------------------------------------------------
644// Line Generators
645// -----------------------------------------------------------------------------------
646
647/**
648 * The line generator produces a spline or polyline, as in a line chart.
649 * Lines also appear in many other visualization types, such as the links in hierarchical edge bundling.
650 *
651 * The generic refers to the data type of an element in the input array passed into the line generator.
652 */
653export interface Line<Datum> {
654 /**
655 * Generates a line for the given array of data. Depending on this line generator’s associated curve,
656 * the given input data may need to be sorted by x-value before being passed to the line generator.
657 *
658 * IMPORTANT: If the rendering context of the line generator is null,
659 * then the line is returned as a path data string.
660 *
661 * @param data Array of data elements.
662 */
663 (data: Iterable<Datum> | Datum[]): string | null;
664 /**
665 * Generates a line for the given array of data. Depending on this line generator’s associated curve,
666 * the given input data may need to be sorted by x-value before being passed to the line generator.
667 *
668 * IMPORTANT: If the line generator has been configured with a rendering context,
669 * then the line is rendered to this context as a sequence of path method calls and this function returns void.
670 *
671 * @param data Array of data elements.
672 */
673 (data: Iterable<Datum> | Datum[]): void;
674
675 /**
676 * Returns the current x-coordinate accessor function, which defaults to a function returning first element of a two-element array of numbers.
677 */
678 x(): (d: Datum, index: number, data: Datum[]) => number;
679 /**
680 * Sets the x accessor to the specified number and returns this line generator.
681 *
682 * @param x A constant x-coordinate value.
683 */
684 x(x: number): this;
685 /**
686 * Sets the x accessor to the specified function and returns this line generator.
687 *
688 * When a line is generated, the x accessor will be invoked for each defined element in the input data array.
689 *
690 * The default x accessor assumes that the input data are two-element arrays of numbers. If your data are in a different format, or if you wish to transform the data before rendering,
691 * then you should specify a custom accessor.
692 *
693 * @param x A coordinate accessor function which returns the x-coordinate value. The x accessor will be invoked for each defined element in the input data array,
694 * being passed the element d, the index i, and the array data as three arguments.
695 */
696 x(x: (d: Datum, index: number, data: Datum[]) => number): this;
697
698 /**
699 * Returns the current y-coordinate accessor function, which defaults to a function returning second element of a two-element array of numbers.
700 */
701 y(): (d: Datum, index: number, data: Datum[]) => number;
702 /**
703 * Sets the y accessor to the specified number and returns this line generator.
704 *
705 * @param y A constant y-coordinate value.
706 */
707 y(y: number): this;
708 /**
709 * Sets the y accessor to the specified function and returns this line generator.
710 *
711 * When a line is generated, the y accessor will be invoked for each defined element in the input data array.
712 *
713 * The default y accessor assumes that the input data are two-element arrays of numbers. If your data are in a different format, or if you wish to transform the data before rendering,
714 * then you should specify a custom accessor.
715 *
716 * @param y A coordinate accessor function which returns the y-coordinate value. The y accessor will be invoked for each defined element in the input data array,
717 * being passed the element d, the index i, and the array data as three arguments.
718 */
719 y(y: (d: Datum, index: number, data: Datum[]) => number): this;
720
721 /**
722 * Returns the current defined accessor, which defaults to a function returning a constant boolean value of true.
723 */
724 defined(): (d: Datum, index: number, data: Datum[]) => boolean;
725 /**
726 * Sets the defined accessor to the specified boolean and returns this line generator.
727 *
728 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
729 *
730 * When a line is generated, the defined accessor will be invoked for each element in the input data array,
731 * being passed the element d, the index i, and the array data as three arguments.
732 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
733 * the x and y accessors will subsequently be evaluated and the point will be added to the current line segment.
734 * Otherwise, the element will be skipped, the current line segment will be ended, and a new line segment will be generated for the next defined point.
735 * As a result, the generated line may have several discrete segments.
736 *
737 * Note that if a line segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
738 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
739 *
740 * @param defined A boolean constant.
741 */
742 defined(defined: boolean): this;
743 /**
744 * Sets the defined accessor to the specified function and returns this line generator.
745 *
746 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
747 *
748 * When a line is generated, the defined accessor will be invoked for each element in the input data array,
749 * being passed the element d, the index i, and the array data as three arguments.
750 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
751 * the x and y accessors will subsequently be evaluated and the point will be added to the current line segment.
752 * Otherwise, the element will be skipped, the current line segment will be ended, and a new line segment will be generated for the next defined point.
753 * As a result, the generated line may have several discrete segments.
754 *
755 * Note that if a line segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
756 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
757 *
758 * @param defined An accessor function which returns a boolean value. The accessor will be invoked for each defined element in the input data array,
759 * being passed the element d, the index i, and the array data as three arguments.
760 */
761 defined(defined: (d: Datum, index: number, data: Datum[]) => boolean): this;
762
763 /**
764 * Returns the current curve factory, which defaults to curveLinear.
765 */
766 curve(): CurveFactory | CurveFactoryLineOnly;
767 /**
768 * Returns the current curve factory, which defaults to curveLinear.
769 *
770 * The generic allows to cast the curve factory to a specific type, if known.
771 */
772 curve<C extends CurveFactory | CurveFactoryLineOnly>(): C;
773 /**
774 * Sets the curve factory and returns this line generator.
775 *
776 * @param curve A valid curve factory.
777 */
778 curve(curve: CurveFactory | CurveFactoryLineOnly): this;
779
780 /**
781 * Returns the current rendering context, which defaults to null.
782 */
783 context(): CanvasRenderingContext2D | null;
784 /**
785 * Sets the rendering context and returns this line generator.
786 *
787 * If the context is not null, then the generated line is rendered to this context as a sequence of path method calls.
788 *
789 * @param context The rendering context.
790 */
791 context(context: CanvasRenderingContext2D): this;
792 /**
793 * Sets the rendering context to null and returns this line generator.
794 *
795 * A path data string representing the generated line will be returned when the generator is invoked with data.
796 *
797 * @param context null, to remove rendering context.
798 */
799 context(context: null): this;
800}
801
802/**
803 * Constructs a new line generator with the default settings.
804 *
805 * If x or y are specified, sets the corresponding accessors to the specified function or number and returns this line generator.
806 *
807 * The generic refers to the data type of an element in the input array passed into the line generator.
808 *
809 * @param x Sets the x accessor
810 * @param y Sets the y accessor
811 */
812export function line<Datum = [number, number]>(
813 x?: number | ((d: Datum, index: number, data: Datum[]) => number),
814 y?: number | ((d: Datum, index: number, data: Datum[]) => number)
815): Line<Datum>;
816
817/**
818 * The radial line generator produces a spline or polyline, as in a line chart.
819 *
820 * A radial line generator is equivalent to the standard Cartesian line generator,
821 * except the x and y accessors are replaced with angle and radius accessors.
822 * Radial lines are always positioned relative to ⟨0,0⟩; use a transform (see: SVG, Canvas) to change the origin.
823 *
824 * The generic refers to the data type of an element in the input array passed into the line generator.
825 */
826export interface LineRadial<Datum> {
827 /**
828 * Generates a radial line for the given array of data. Depending on this radial line generator’s associated curve,
829 * the given input data may need to be sorted by x-value before being passed to the line generator.
830 *
831 * IMPORTANT: If the rendering context of the radial line generator is null,
832 * then the radial line is returned as a path data string.
833 *
834 * @param data Array of data elements.
835 */
836 (data: Iterable<Datum> | Datum[]): string | null;
837 /**
838 * Generates a radial line for the given array of data. Depending on this radial line generator’s associated curve,
839 * the given input data may need to be sorted by x-value before being passed to the radial line generator.
840 *
841 * IMPORTANT: If the radial line generator has been configured with a rendering context,
842 * then the radial line is rendered to this context as a sequence of path method calls and this function returns void.
843 *
844 * @param data Array of data elements.
845 */
846 (data: Iterable<Datum> | Datum[]): void;
847
848 /**
849 * Returns the current angle accessor function, which defaults to a function returning first element of a two-element array of numbers.
850 */
851 angle(): (d: Datum, index: number, data: Datum[]) => number;
852 /**
853 * Sets the angle accessor to the specified number and returns this radial line generator.
854 *
855 * @param angle A constant angle value in radians, with 0 at -y (12 o’clock).
856 */
857 angle(angle: number): this;
858 /**
859 * Sets the angle accessor to the specified function and returns this radial line generator.
860 *
861 * When a radial line is generated, the angle accessor will be invoked for each defined element in the input data array.
862 *
863 * The default angle accessor assumes that the input data are two-element arrays of numbers. If your data are in a different format, or if you wish to transform the data before rendering,
864 * then you should specify a custom accessor.
865 *
866 * @param angle An angle accessor function which returns the angle value in radians, with 0 at -y (12 o’clock). The angle accessor will be invoked for each defined element in the input data array,
867 * being passed the element d, the index i, and the array data as three arguments.
868 */
869 angle(angle: (d: Datum, index: number, data: Datum[]) => number): this;
870
871 /**
872 * Returns the current radius accessor function, which defaults to a function returning second element of a two-element array of numbers.
873 */
874 radius(): (d: Datum, index: number, data: Datum[]) => number;
875 /**
876 * Sets the radius accessor to the specified number and returns this radial line generator.
877 *
878 * @param radius A constant radius value.
879 */
880 radius(radius: number): this;
881 /**
882 * Sets the radius accessor to the specified function and returns this radial line generator.
883 *
884 * When a radial line is generated, the radius accessor will be invoked for each defined element in the input data array.
885 *
886 * The default radius accessor assumes that the input data are two-element arrays of numbers. If your data are in a different format, or if you wish to transform the data before rendering,
887 * then you should specify a custom accessor.
888 *
889 * @param radius A radius accessor function which returns the radius value. The radius accessor will be invoked for each defined element in the input data array,
890 * being passed the element d, the index i, and the array data as three arguments.
891 */
892 radius(radius: (d: Datum, index: number, data: Datum[]) => number): this;
893
894 /**
895 * Returns the current defined accessor, which defaults to a function returning a constant boolean value of true.
896 */
897 defined(): (d: Datum, index: number, data: Datum[]) => boolean;
898 /**
899 * Sets the defined accessor to the specified boolean and returns this radial line generator.
900 *
901 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
902 *
903 * When a radial line is generated, the defined accessor will be invoked for each element in the input data array,
904 * being passed the element d, the index i, and the array data as three arguments.
905 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
906 * the angle and radius accessors will subsequently be evaluated and the point will be added to the current radial line segment.
907 * Otherwise, the element will be skipped, the current radial line segment will be ended, and a new radial line segment will be generated for the next defined point.
908 * As a result, the generated radial line may have several discrete segments.
909 *
910 * Note that if a radial line segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
911 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
912 *
913 * @param defined A boolean constant.
914 */
915 defined(defined: boolean): this;
916 /**
917 * Sets the defined accessor to the specified function and returns this radial line generator.
918 *
919 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
920 *
921 * When a radial line is generated, the defined accessor will be invoked for each element in the input data array,
922 * being passed the element d, the index i, and the array data as three arguments.
923 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
924 * the angle and radius accessors will subsequently be evaluated and the point will be added to the current radial line segment.
925 * Otherwise, the element will be skipped, the current radial line segment will be ended, and a new radial line segment will be generated for the next defined point.
926 * As a result, the generated radial line may have several discrete segments.
927 *
928 * Note that if a radial line segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
929 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
930 *
931 * @param defined An accessor function which returns a boolean value. The accessor will be invoked for each defined element in the input data array,
932 * being passed the element d, the index i, and the array data as three arguments.
933 */
934 defined(defined: (d: Datum, index: number, data: Datum[]) => boolean): this;
935
936 /**
937 * Returns the current curve factory, which defaults to curveLinear.
938 */
939 curve(): CurveFactory | CurveFactoryLineOnly;
940 /**
941 * Returns the current curve factory, which defaults to curveLinear.
942 *
943 * The generic allows to cast the curve factory to a specific type, if known.
944 */
945 curve<C extends CurveFactory | CurveFactoryLineOnly>(): C;
946 /**
947 * Sets the curve factory and returns this radial line generator.
948 *
949 * Note that curveMonotoneX or curveMonotoneY are not recommended for radial lines because they assume that the data is monotonic in x or y,
950 * which is typically untrue of radial lines.
951 *
952 * @param curve A valid curve factory.
953 */
954 curve(curve: CurveFactory | CurveFactoryLineOnly): this;
955
956 /**
957 * Returns the current rendering context, which defaults to null.
958 */
959 context(): CanvasRenderingContext2D | null;
960 /**
961 * Sets the rendering context and returns this radial line generator.
962 *
963 * If the context is not null, then the generated radial line is rendered to this context as a sequence of path method calls.
964 *
965 * @param context The rendering context.
966 */
967 context(context: CanvasRenderingContext2D): this;
968 /**
969 * Sets the rendering context to null and returns this radial line generator.
970 *
971 * A path data string representing the generated radial line will be returned when the generator is invoked with data.
972 *
973 * @param context null, to remove rendering context.
974 */
975 context(context: null): this;
976}
977
978/**
979 * Constructs a new radial line generator with the default settings.
980 *
981 * Ensure that the accessors used with the radial line generator correspond to the arguments passed into them,
982 * or set them to constants as appropriate.
983 */
984export function lineRadial(): LineRadial<[number, number]>;
985/**
986 * Constructs a new radial line generator with the default settings.
987 *
988 * Ensure that the accessors used with the radial line generator correspond to the arguments passed into them,
989 * or set them to constants as appropriate.
990 *
991 * The generic refers to the data type of an element in the input array passed into the radial line generator.
992 */
993export function lineRadial<Datum>(): LineRadial<Datum>;
994
995/**
996 * @deprecated Use LineRadial<Datum>
997 */
998export type RadialLine<Datum> = LineRadial<Datum>;
999
1000/**
1001 * @deprecated Use lineRadial()
1002 */
1003export function radialLine(): RadialLine<[number, number]>;
1004/**
1005 * @deprecated Use lineRadial<Datum>()
1006 */
1007export function radialLine<Datum>(): RadialLine<Datum>;
1008
1009// -----------------------------------------------------------------------------------
1010// Area Generators
1011// -----------------------------------------------------------------------------------
1012
1013/**
1014 * The area generator produces an area, as in an area chart. An area is defined by two bounding lines, either splines or polylines.
1015 * Typically, the two lines share the same x-values (x0 = x1), differing only in y-value (y0 and y1); most commonly, y0 is defined as a constant representing zero.
1016 * The first line (the topline) is defined by x1 and y1 and is rendered first; the second line (the baseline) is defined by x0 and y0 and is rendered second, with the points in reverse order.
1017 * With a curveLinear curve, this produces a clockwise polygon.
1018 *
1019 * The generic refers to the data type of an element in the input array passed into the area generator.
1020 */
1021export interface Area<Datum> {
1022 /**
1023 * Generates an area for the given array of data. Depending on this area generator’s associated curve,
1024 * the given input data may need to be sorted by x-value before being passed to the area generator.
1025 *
1026 * IMPORTANT: If the rendering context of the area generator is null,
1027 * then the area is returned as a path data string.
1028 *
1029 * @param data Array of data elements.
1030 */
1031 (data: Iterable<Datum> | Datum[]): string | null;
1032 /**
1033 * Generates an area for the given array of data. Depending on this area generator’s associated curve,
1034 * the given input data may need to be sorted by x-value before being passed to the area generator.
1035 *
1036 * IMPORTANT: If the area generator has been configured with a rendering context,
1037 * then the area is rendered to this context as a sequence of path method calls and this function returns void.
1038 *
1039 * @param data Array of data elements.
1040 */
1041 (data: Iterable<Datum> | Datum[]): void;
1042
1043 /**
1044 * Returns the current x0 accessor. The default x0 accessor is a function returning the first element of a
1045 * two-element array of numbers.
1046 */
1047 x(): (d: Datum, index: number, data: Datum[]) => number;
1048 /**
1049 * Sets x0 to a constant number x and x1 to null and returns this area generator.
1050 *
1051 * Setting x1 to null indicates that the previously-computed x0 value should be reused for the x1 value.
1052 *
1053 * @param x A constant value to be used for x0.
1054 */
1055 x(x: number): this;
1056 /**
1057 * Sets x0 to the specified function x and x1 to null and returns this area generator.
1058 *
1059 * The default x0 accessor assumes that the input data are two-element arrays of numbers and returns the first element.
1060 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1061 *
1062 * @param x An accessor function returning a value to be used for x0. The accessor will be invoked for each defined element in the input data array,
1063 * being passed the element d, the index i, and the array data as three arguments.
1064 */
1065 x(x: (d: Datum, index: number, data: Datum[]) => number): this;
1066
1067 /**
1068 * Returns the current x0 accessor. The default x0 accessor is a function returning the first element of a
1069 * two-element array of numbers.
1070 */
1071 x0(): (d: Datum, index: number, data: Datum[]) => number;
1072 /**
1073 * Sets x0 to a constant number and returns this area generator.
1074 *
1075 * @param x A constant value.
1076 */
1077 x0(x: number): this;
1078 /**
1079 * Sets x0 to the specified function and returns this area generator.
1080 *
1081 * The default x0 accessor assumes that the input data are two-element arrays of numbers and returns the first element.
1082 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1083 *
1084 * @param x An accessor function returning a value to be used for x0. The accessor will be invoked for each defined element in the input data array,
1085 * being passed the element d, the index i, and the array data as three arguments.
1086 */
1087 x0(x: (d: Datum, index: number, data: Datum[]) => number): this;
1088
1089 /**
1090 * Returns the current x1 accessor, which defaults to null, indicating that the previously-computed x0 value should be reused for the x1 value.
1091 */
1092 x1(): ((d: Datum, index: number, data: Datum[]) => number) | null;
1093 /**
1094 * Sets x1 to null and returns this area generator.
1095 *
1096 * Setting x1 to null indicates that the previously-computed x0 value should be reused for the x1 value.
1097 *
1098 * @param x null.
1099 */
1100 x1(x: null): this;
1101 /**
1102 * Sets x1 to a constant number and returns this area generator.
1103 *
1104 * @param x A constant value.
1105 */
1106 x1(x: number): this;
1107 /**
1108 * Sets x1 to the specified function and returns this area generator.
1109 *
1110 * The default x1 accessor is null, indicating that the previously-computed x0 value should be reused for the x1 value.
1111 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1112 *
1113 * @param x An accessor function returning a value to be used for x1. The accessor will be invoked for each defined element in the input data array,
1114 * being passed the element d, the index i, and the array data as three arguments.
1115 */
1116 x1(x: (d: Datum, index: number, data: Datum[]) => number): this;
1117
1118 /**
1119 * Returns the current y0 accessor. The default y0 accessor is a function returning a constant value of zero.
1120 */
1121 y(): (d: Datum, index: number, data: Datum[]) => number;
1122 /**
1123 * Sets y0 to a constant number y and y1 to null and returns this area generator.
1124 *
1125 * Setting y1 to null indicates that the previously-computed y0 value should be reused for the y1 value.
1126 *
1127 * @param y A constant value to be used for y0.
1128 */
1129 y(y: number): this;
1130 /**
1131 * Sets y0 to the accessor function y and y1 to null and returns this area generator.
1132 *
1133 * The default y0 accessor returns a constant value of zero.
1134 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1135 *
1136 * @param y An accessor function returning a value to be used for y0. The accessor will be invoked for each defined element in the input data array,
1137 * being passed the element d, the index i, and the array data as three arguments.
1138 */
1139 y(y: (d: Datum, index: number, data: Datum[]) => number): this;
1140
1141 /**
1142 * Returns the current y0 accessor. The default y0 accessor is a function a constant value of zero.
1143 */
1144 y0(): (d: Datum, index: number, data: Datum[]) => number;
1145 /**
1146 * Sets y0 to a constant number and returns this area generator.
1147 *
1148 * @param y A constant value.
1149 */
1150 y0(y: number): this;
1151 /**
1152 * Sets y0 to the specified function and returns this area generator.
1153 *
1154 * The default y0 accessor is a function which returns a constant value of zero.
1155 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1156 *
1157 * @param y An accessor function returning a value to be used for y0. The accessor will be invoked for each defined element in the input data array,
1158 * being passed the element d, the index i, and the array data as three arguments.
1159 */
1160 y0(y: (d: Datum, index: number, data: Datum[]) => number): this;
1161
1162 /**
1163 * Returns the current y1 accessor or null. The default y1 accessor is a function returning the second element of a
1164 * two-element array of numbers.
1165 *
1166 * If the y1 accessor is null, the previously-computed y0 value is reused for the y1 value.
1167 */
1168 y1(): ((d: Datum, index: number, data: Datum[]) => number) | null;
1169 /**
1170 * Sets y1 to null and returns this area generator.
1171 *
1172 * Setting y1 to null indicates that the previously-computed y0 value should be reused for the y1 value.
1173 *
1174 * @param y null.
1175 */
1176 y1(y: null): this;
1177 /**
1178 * Sets y1 to a constant number and returns this area generator.
1179 *
1180 * @param y A constant value.
1181 */
1182 y1(y: number): this;
1183 /**
1184 * Sets y1 to the specified function and returns this area generator.
1185 *
1186 * The default y1 accessor assumes that the input data are two-element arrays of numbers and returns the second element.
1187 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1188 *
1189 * @param y An accessor function returning a value to be used for y1. The accessor will be invoked for each defined element in the input data array,
1190 * being passed the element d, the index i, and the array data as three arguments.
1191 */
1192 y1(y: (d: Datum, index: number, data: Datum[]) => number): this;
1193
1194 /**
1195 * Returns the current defined accessor, which defaults to a function returning a constant boolean value of true.
1196 */
1197 defined(): (d: Datum, index: number, data: Datum[]) => boolean;
1198 /**
1199 * Sets the defined accessor to the specified boolean and returns this area generator.
1200 *
1201 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
1202 * When an area is generated, the defined accessor will be invoked for each element in the input data array, being passed the element d, the index i, and the array data as three arguments.
1203 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
1204 * the x0, x1, y0 and y1 accessors will subsequently be evaluated and the point will be added to the current area segment.
1205 * Otherwise, the element will be skipped, the current area segment will be ended, and a new area segment will be generated for the next defined point.
1206 * As a result, the generated area may have several discrete segments.
1207 *
1208 * Note that if an area segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
1209 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
1210 *
1211 * @param defined A boolean constant.
1212 */
1213 defined(defined: boolean): this;
1214 /**
1215 * Sets the defined accessor to the specified function and returns this area generator.
1216 *
1217 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
1218 *
1219 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
1220 * When an area is generated, the defined accessor will be invoked for each element in the input data array,
1221 * being passed the element d, the index i, and the array data as three arguments.
1222 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
1223 * the x0, x1, y0 and y1 accessors will subsequently be evaluated and the point will be added to the current area segment.
1224 * Otherwise, the element will be skipped, the current area segment will be ended, and a new area segment will be generated for the next defined point.
1225 * As a result, the generated area may have several discrete segments.
1226 *
1227 * Note that if an area segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
1228 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
1229 *
1230 * @param defined An accessor function which returns a boolean value. The accessor will be invoked for each defined element in the input data array,
1231 * being passed the element d, the index i, and the array data as three arguments.
1232 */
1233 defined(defined: (d: Datum, index: number, data: Datum[]) => boolean): this;
1234
1235 /**
1236 * Returns the current curve factory, which defaults to curveLinear.
1237 */
1238 curve(): CurveFactory;
1239 /**
1240 * Returns the current curve factory, which defaults to curveLinear.
1241 *
1242 * The generic allows to cast the curve factory to a specific type, if known.
1243 */
1244 curve<C extends CurveFactory>(): C;
1245 /**
1246 * Sets the curve factory and returns this area generator.
1247 *
1248 * @param curve A valid curve factory.
1249 */
1250 curve(curve: CurveFactory): this;
1251
1252 /**
1253 * Returns the current rendering context, which defaults to null.
1254 */
1255 context(): CanvasRenderingContext2D | null;
1256 /**
1257 * Sets the rendering context and returns this area generator.
1258 *
1259 * If the context is not null, then the generated area is rendered to this context as a sequence of path method calls.
1260 *
1261 * @param context The rendering context.
1262 */
1263 context(context: CanvasRenderingContext2D): this;
1264 /**
1265 * Sets the rendering context to null and returns this area generator.
1266 *
1267 * A path data string representing the generated area will be returned when the generator is invoked with data.
1268 *
1269 * @param context null, to remove rendering context.
1270 */
1271 context(context: null): this;
1272
1273 /**
1274 * Returns a new line generator that has this area generator’s current defined accessor, curve and context.
1275 * The line’s x-accessor is this area’s x0-accessor, and the line’s y-accessor is this area’s y0-accessor.
1276 */
1277 lineX0(): Line<Datum>;
1278 /**
1279 * Returns a new line generator that has this area generator’s current defined accessor, curve and context.
1280 * The line’s x-accessor is this area’s x0-accessor, and the line’s y-accessor is this area’s y0-accessor.
1281 */
1282 lineY0(): Line<Datum>;
1283
1284 /**
1285 * Returns a new line generator that has this area generator’s current defined accessor, curve and context.
1286 * The line’s x-accessor is this area’s x1-accessor, and the line’s y-accessor is this area’s y0-accessor.
1287 */
1288 lineX1(): Line<Datum>;
1289 /**
1290 * Returns a new line generator that has this area generator’s current defined accessor, curve and context.
1291 * The line’s x-accessor is this area’s x0-accessor, and the line’s y-accessor is this area’s y1-accessor.
1292 */
1293 lineY1(): Line<Datum>;
1294}
1295
1296/**
1297 * Constructs a new area generator with the default settings.
1298 *
1299 * If x, y0 or y1 are specified, sets the corresponding accessors to the specified function or number and returns this area generator.
1300 *
1301 * The generic refers to the data type of an element in the input array passed into the area generator.
1302 *
1303 * @param x Sets the x accessor.
1304 * @param y0 Sets the y0 accessor.
1305 * @param y1 Sets the y1 accessor.
1306 */
1307export function area<Datum = [number, number]>(
1308 x?: number | ((d: Datum, index: number, data: Datum[]) => number),
1309 y0?: number | ((d: Datum, index: number, data: Datum[]) => number),
1310 y1?: number | ((d: Datum, index: number, data: Datum[]) => number)
1311): Area<Datum>;
1312
1313/**
1314 * A radial area generator.
1315 *
1316 * A radial area generator is equivalent to the standard Cartesian area generator,
1317 * except the x and y accessors are replaced with angle and radius accessors.
1318 * Radial areas are always positioned relative to ⟨0,0⟩; use a transform (see: SVG, Canvas) to change the origin.
1319 *
1320 * The generic refers to the data type of an element in the input array passed into the area generator.
1321 */
1322export interface AreaRadial<Datum> {
1323 /**
1324 * Generates a radial area for the given array of data.
1325 *
1326 * IMPORTANT: If the rendering context of the radial area generator is null,
1327 * then the radial area is returned as a path data string.
1328 *
1329 * @param data Array of data elements.
1330 */
1331 (data: Iterable<Datum> | Datum[]): string | null;
1332 /**
1333 * Generates a radial area for the given array of data.
1334 *
1335 * IMPORTANT: If the radial area generator has been configured with a rendering context,
1336 * then the radial area is rendered to this context as a sequence of path method calls and this function returns void.
1337 *
1338 * @param data Array of data elements.
1339 */
1340 (data: Iterable<Datum> | Datum[]): void;
1341
1342 /**
1343 * Returns the current startAngle accessor. The default startAngle accessor is a function returning the first element of a
1344 * two-element array of numbers.
1345 */
1346 angle(): (d: Datum, index: number, data: Datum[]) => number;
1347 /**
1348 * Sets startAngle to a constant number angle and endAngle to null and returns this radial area generator.
1349 *
1350 * Setting endAngle to null indicates that the previously-computed startAngle value should be reused for the endAngle value.
1351 *
1352 * @param angle A constant value in radians with 0 at -y (12 o’clock).
1353 */
1354 angle(angle: number): this;
1355 /**
1356 * Sets startAngle to the specified function angle and endAngle to null and returns this radial area generator.
1357 *
1358 * The default startAngle accessor assumes that the input data are two-element arrays of numbers and returns the first element.
1359 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1360 *
1361 * @param angle An accessor function returning a value to be used for startAngle in radians with 0 at -y (12 o’clock).
1362 * The accessor will be invoked for each defined element in the input data array,
1363 * being passed the element d, the index i, and the array data as three arguments.
1364 */
1365 angle(angle: (d: Datum, index: number, data: Datum[]) => number): this;
1366
1367 /**
1368 * Returns the current startAngle accessor. The default startAngle accessor is a function returning the first element of a
1369 * two-element array of numbers.
1370 */
1371 startAngle(): (d: Datum, index: number, data: Datum[]) => number;
1372 /**
1373 * Sets startAngle to a constant number and returns this radial area generator.
1374 *
1375 * @param angle A constant value in radians with 0 at -y (12 o’clock).
1376 */
1377 startAngle(angle: number): this;
1378 /**
1379 * Sets startAngle to the specified function and returns this radial area generator.
1380 *
1381 * The default startAngle accessor assumes that the input data are two-element arrays of numbers and returns the first element.
1382 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1383 *
1384 * @param angle An accessor function returning a value to be used for startAngle in radians with 0 at -y (12 o’clock).
1385 * The accessor will be invoked for each defined element in the input data array,
1386 * being passed the element d, the index i, and the array data as three arguments.
1387 */
1388 startAngle(angle: (d: Datum, index: number, data: Datum[]) => number): this;
1389
1390 /**
1391 * Returns the current endAngle accessor, which defaults to null, indicating that the previously-computed startAngle value should be reused for the endAngle value.
1392 */
1393 endAngle(): ((d: Datum, index: number, data: Datum[]) => number) | null;
1394 /**
1395 * Sets endAngle to null and returns this radial area generator.
1396 *
1397 * Setting endAngle to null indicates that the previously-computed startAngle value should be reused for the endAngle value.
1398 *
1399 * @param angle null.
1400 */
1401 endAngle(angle: null): this;
1402 /**
1403 * Sets endAngle to a constant number and returns this radial area generator.
1404 *
1405 * @param angle A constant value in radians with 0 at -y (12 o’clock).
1406 */
1407 endAngle(angle: number): this;
1408 /**
1409 * Sets endAngle to the specified function and returns this radial area generator.
1410 *
1411 * The default endAngle accessor is null, indicating that the previously-computed startAngle value should be reused for the endAngle value.
1412 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1413 *
1414 * @param angle An accessor function returning a value to be used for endAngle in radians with 0 at -y (12 o’clock).
1415 * The accessor will be invoked for each defined element in the input data array,
1416 * being passed the element d, the index i, and the array data as three arguments.
1417 */
1418 endAngle(angle: (d: Datum, index: number, data: Datum[]) => number): this;
1419
1420 /**
1421 * Returns the current innerRadius accessor. The default innerRadius accessor is a function returning a constant value of zero.
1422 */
1423 radius(): (d: Datum, index: number, data: Datum[]) => number;
1424 /**
1425 * Sets innerRadius to a constant number radius and outerRadius to null and returns this radial area generator.
1426 *
1427 * Setting outerRadius to null indicates that the previously-computed innerRadius value should be reused for the outerRadius value.
1428 *
1429 * @param radius A constant value to be used for innerRadius.
1430 */
1431 radius(radius: number): this;
1432 /**
1433 * Sets innerRadius to the accessor function radius and outerRadius to null and returns this radial area generator.
1434 *
1435 * The default innerRadius accessor returns a constant value of zero.
1436 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1437 *
1438 * @param radius An accessor function returning a value to be used for innerRadius. The accessor will be invoked for each defined element in the input data array,
1439 * being passed the element d, the index i, and the array data as three arguments.
1440 */
1441 radius(radius: (d: Datum, index: number, data: Datum[]) => number): this;
1442
1443 /**
1444 * Returns the current innerRadius accessor. The default innerRadius accessor is a function a constant value of zero.
1445 */
1446 innerRadius(): (d: Datum, index: number, data: Datum[]) => number;
1447 /**
1448 * Sets innerRadius to a constant number and returns this radial area generator.
1449 *
1450 * @param radius A constant value.
1451 */
1452 innerRadius(radius: number): this;
1453 /**
1454 * Sets innerRadius to the specified function and returns this radial area generator.
1455 *
1456 * The default innerRadius accessor is a function which returns a constant value of zero.
1457 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1458 *
1459 * @param radius An accessor function returning a value to be used for innerRadius. The accessor will be invoked for each defined element in the input data array,
1460 * being passed the element d, the index i, and the array data as three arguments.
1461 */
1462 innerRadius(radius: (d: Datum, index: number, data: Datum[]) => number): this;
1463
1464 /**
1465 * Returns the current outerRadius accessor or null. The default outerRadius accessor is a function returning the second element of a
1466 * two-element array of numbers.
1467 *
1468 * If the outerRadius accessor is null, the previously-computed innerRadius value is reused for the outerRadius value.
1469 */
1470 outerRadius(): ((d: Datum, index: number, data: Datum[]) => number) | null;
1471 /**
1472 * Sets outerRadius to null and returns this radial area generator.
1473 *
1474 * Setting outerRadius to null indicates that the previously-computed innerRadius value should be reused for the outerRadius value.
1475 *
1476 * @param radius null.
1477 */
1478 outerRadius(radius: null): this;
1479 /**
1480 * Sets outerRadius to a constant number and returns this radial area generator.
1481 *
1482 * @param radius A constant value.
1483 */
1484 outerRadius(radius: number): this;
1485 /**
1486 * Sets outerRadius to the specified function and returns this radial area generator.
1487 *
1488 * The default outerRadius accessor assumes that the input data are two-element arrays of numbers and returns the second element.
1489 * If your data are in a different format, or if you wish to transform the data before rendering, then you should specify a custom accessor.
1490 *
1491 * @param radius An accessor function returning a value to be used for outerRadius. The accessor will be invoked for each defined element in the input data array,
1492 * being passed the element d, the index i, and the array data as three arguments.
1493 */
1494 outerRadius(radius: (d: Datum, index: number, data: Datum[]) => number): this;
1495
1496 /**
1497 * Returns the current defined accessor, which defaults to a function returning a constant boolean value of true.
1498 */
1499 defined(): (d: Datum, index: number, data: Datum[]) => boolean;
1500 /**
1501 * Sets the defined accessor to the specified boolean and returns this radial area generator.
1502 *
1503 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
1504 *
1505 * When a radial area is generated, the defined accessor will be invoked for each element in the input data array, being passed the element d, the index i, and the array data as three arguments.
1506 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
1507 * the startAngle, endAngle, innerRadius and outerRadius accessors will subsequently be evaluated and the point will be added to the current area segment.
1508 *
1509 * Otherwise, the element will be skipped, the current area segment will be ended, and a new area segment will be generated for the next defined point.
1510 * As a result, the generated area may have several discrete segments.
1511 *
1512 * Note that if an area segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
1513 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
1514 *
1515 * @param defined A boolean constant.
1516 */
1517 defined(defined: boolean): this;
1518 /**
1519 * Sets the defined accessor to the specified function and returns this radial area generator.
1520 *
1521 * The default accessor for defined returns a constant boolean value of true, thus assumes that the input data is always defined.
1522 *
1523 * When a radial area is generated, the defined accessor will be invoked for each element in the input data array, being passed the element d, the index i, and the array data as three arguments.
1524 * If the given element is defined (i.e., if the defined accessor returns a truthy value for this element),
1525 * the startAngle, endAngle, innerRadius and outerRadius accessors will subsequently be evaluated and the point will be added to the current area segment.
1526 *
1527 * Otherwise, the element will be skipped, the current area segment will be ended, and a new area segment will be generated for the next defined point.
1528 * As a result, the generated area may have several discrete segments.
1529 *
1530 * Note that if an area segment consists of only a single point, it may appear invisible unless rendered with rounded or square line caps.
1531 * In addition, some curves such as curveCardinalOpen only render a visible segment if it contains multiple points.
1532 *
1533 * @param defined An accessor function which returns a boolean value. The accessor will be invoked for each defined element in the input data array,
1534 * being passed the element d, the index i, and the array data as three arguments.
1535 */
1536 defined(defined: (d: Datum, index: number, data: Datum[]) => boolean): this;
1537
1538 /**
1539 * Returns the current curve factory, which defaults to curveLinear.
1540 */
1541 curve(): CurveFactory;
1542 /**
1543 * Returns the current curve factory, which defaults to curveLinear.
1544 *
1545 * The generic allows to cast the curve factory to a specific type, if known.
1546 */
1547 curve<C extends CurveFactory>(): C;
1548 /**
1549 * Sets the curve factory and returns this radial area generator.
1550 *
1551 * Note that curveMonotoneX or curveMonotoneY are not recommended for radial areas because they assume that the data is monotonic in x or y, which is typically untrue of radial areas.
1552 *
1553 * @param curve A valid curve factory.
1554 */
1555 curve(curve: CurveFactory): this;
1556
1557 /**
1558 * Returns the current rendering context, which defaults to null.
1559 */
1560 context(): CanvasRenderingContext2D | null;
1561 /**
1562 * Sets the rendering context and returns this radial area generator.
1563 *
1564 * If the context is not null, then the generated radial area is rendered to this context as a sequence of path method calls.
1565 *
1566 * @param context The rendering context.
1567 */
1568 context(context: CanvasRenderingContext2D): this;
1569 /**
1570 * Sets the rendering context to null and returns this radial area generator.
1571 *
1572 * A path data string representing the generated radial area will be returned when the generator is invoked with data.
1573 *
1574 * @param context null, to remove rendering context.
1575 */
1576 context(context: null): this;
1577
1578 /**
1579 * Returns a new radial line generator that has this radial area generator’s current defined accessor, curve and context.
1580 * The line’s angle accessor is this area’s start angle accessor, and the line’s radius accessor is this area’s inner radius accessor.
1581 */
1582 lineStartAngle(): LineRadial<Datum>;
1583
1584 /**
1585 * Returns a new radial line generator that has this radial area generator’s current defined accessor, curve and context.
1586 * The line’s angle accessor is this area’s start angle accessor, and the line’s radius accessor is this area’s inner radius accessor.
1587 */
1588 lineInnerRadius(): LineRadial<Datum>;
1589
1590 /**
1591 * Returns a new radial line generator that has this radial area generator’s current defined accessor, curve and context.
1592 * The line’s angle accessor is this area’s end angle accessor, and the line’s radius accessor is this area’s inner radius accessor.
1593 */
1594 lineEndAngle(): LineRadial<Datum>;
1595
1596 /**
1597 * Returns a new radial line generator that has this radial area generator’s current defined accessor, curve and context.
1598 * The line’s angle accessor is this area’s start angle accessor, and the line’s radius accessor is this area’s outer radius accessor.
1599 */
1600 lineOuterRadius(): LineRadial<Datum>;
1601}
1602
1603/**
1604 * Constructs a new radial area generator with the default settings.
1605 *
1606 * Ensure that the accessors used with the area generator correspond to the arguments passed into them,
1607 * or set them to constants as appropriate.
1608 */
1609export function areaRadial(): AreaRadial<[number, number]>;
1610/**
1611 * Constructs a new radial area generator with the default settings.
1612 *
1613 * Ensure that the accessors used with the area generator correspond to the arguments passed into them,
1614 * or set them to constants as appropriate.
1615 *
1616 * The generic refers to the data type of an element in the input array passed into the radial area generator.
1617 */
1618export function areaRadial<Datum>(): AreaRadial<Datum>;
1619
1620/**
1621 * @deprecated Use AreaRadial interface
1622 */
1623export type RadialArea<Datum> = AreaRadial<Datum>;
1624
1625/**
1626 * @deprecated Use areaRadial()
1627 */
1628export function radialArea(): RadialArea<[number, number]>;
1629/**
1630 * @deprecated Use areaRadial<Datum>()
1631 */
1632export function radialArea<Datum>(): RadialArea<Datum>;
1633
1634// -----------------------------------------------------------------------------------
1635// Curve Factories
1636// -----------------------------------------------------------------------------------
1637
1638/**
1639 * A minimal interface for a curve generator which supports only the rendering of lines.
1640 * Methods for related to the rendering of areas are not implemented in this minimal interface.
1641 *
1642 * While lines are defined as a sequence of two-dimensional [x, y] points,
1643 * there remains the task of transforming this discrete representation into a continuous shape: i.e., how to interpolate between the points.
1644 * A curve generator serves this purpose.
1645 *
1646 * Curves are typically not constructed or used directly, instead being passed to line.curve.
1647 */
1648export interface CurveGeneratorLineOnly {
1649 /**
1650 * Indicates the start of a new line segment. Zero or more points will follow.
1651 */
1652 lineStart(): void;
1653 /**
1654 * Indicates the end of the current line segment.
1655 */
1656 lineEnd(): void;
1657 /**
1658 * Indicates a new point in the current line segment with the given x- and y-values.
1659 */
1660 point(x: number, y: number): void;
1661}
1662
1663/**
1664 * A factory for curve generators addressing only lines, but not areas.
1665 */
1666export type CurveFactoryLineOnly =
1667 /**
1668 * Returns a "lines only" curve generator which renders to the specified context.
1669 *
1670 * @param context A rendering context.
1671 */
1672 (context: CanvasRenderingContext2D | Path) => CurveGeneratorLineOnly;
1673
1674/**
1675 * A minimal interface for a curve generator which supports the rendering of lines and areas.
1676 *
1677 * While lines are defined as a sequence of two-dimensional [x, y] points,
1678 * and areas are similarly defined by a topline and a baseline,
1679 * there remains the task of transforming this discrete representation into a continuous shape: i.e., how to interpolate between the points.
1680 * A curve generator serves this purpose.
1681 *
1682 * Curves are typically not constructed or used directly, instead being passed to line.curve and area.curve.
1683 */
1684export interface CurveGenerator extends CurveGeneratorLineOnly {
1685 /**
1686 * Indicates the start of a new area segment.
1687 * Each area segment consists of exactly two line segments: the topline, followed by the baseline, with the baseline points in reverse order.
1688 */
1689 areaStart(): void;
1690 /**
1691 * Indicates the end of the current area segment.
1692 */
1693 areaEnd(): void;
1694}
1695
1696/**
1697 * A factory for curve generators addressing both lines and areas.
1698 */
1699export type CurveFactory =
1700 /**
1701 * Returns a curve generator which renders to the specified context.
1702 *
1703 * @param context A rendering context.
1704 */
1705 (context: CanvasRenderingContext2D | Path) => CurveGenerator;
1706
1707/**
1708 * A curve factory for cubic basis spline generators.
1709 *
1710 * The curve generators produce a cubic basis spline using the specified control points.
1711 * The first and last points are triplicated such that the spline starts at the first point and ends at the last point,
1712 * and is tangent to the line between the first and second points, and to the line between the penultimate and last points.
1713 */
1714export const curveBasis: CurveFactory;
1715
1716/**
1717 * A curve factory for closed cubic basis spline generators.
1718 *
1719 * The curve generators produce a closed cubic basis spline using the specified control points.
1720 * When a line segment ends, the first three control points are repeated, producing a closed loop with C2 continuity.
1721 */
1722export const curveBasisClosed: CurveFactory;
1723
1724/**
1725 * A curve factory for open cubic basis spline generators.
1726 *
1727 * The curve generators produce a cubic basis spline using the specified control points.
1728 * Unlike basis, the first and last points are not repeated, and thus the curve typically does not intersect these points.
1729 */
1730export const curveBasisOpen: CurveFactory;
1731
1732/**
1733 * Produces a Bézier curve between each pair of points, with horizontal tangents at each point.
1734 */
1735export const curveBumpX: CurveFactory;
1736
1737/**
1738 * Produces a Bézier curve between each pair of points, with vertical tangents at each point.
1739 */
1740export const curveBumpY: CurveFactory;
1741
1742/**
1743 * A curve factory for straightened cubic basis spline generators.
1744 *
1745 * The curve generators produce a straightened cubic basis spline using the specified control points,
1746 * with the spline straightened according to the curve’s beta, which defaults to 0.85.
1747 * This curve is typically used in hierarchical edge bundling to disambiguate connections,
1748 * as proposed by Danny Holten in Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data.
1749 *
1750 * This curve does not implement curve.areaStart and curve.areaEnd; it is intended to work with d3.line, not d3.area.
1751 */
1752export interface CurveBundleFactory extends CurveFactoryLineOnly {
1753 /**
1754 * Returns a bundle curve factory with the specified beta in the range [0, 1], representing the bundle strength.
1755 * If beta equals zero, a straight line between the first and last point is produced; if beta equals one,
1756 * a standard basis spline is produced.
1757 *
1758 * @param beta A constant value in the [0, 1] interval.
1759 */
1760 beta(beta: number): this;
1761}
1762
1763/**
1764 * A curve factory for straightened cubic basis spline generators.
1765 *
1766 * The curve generators produce a straightened cubic basis spline using the specified control points,
1767 * with the spline straightened according to the curve’s beta, which defaults to 0.85.
1768 * This curve is typically used in hierarchical edge bundling to disambiguate connections,
1769 * as proposed by Danny Holten in Hierarchical Edge Bundles: Visualization of Adjacency Relations in Hierarchical Data.
1770 *
1771 * This curve does not implement curve.areaStart and curve.areaEnd; it is intended to work with d3.line, not d3.area.
1772 */
1773export const curveBundle: CurveBundleFactory;
1774
1775/**
1776 * A curve factory for cubic cardinal spline generators.
1777 */
1778export interface CurveCardinalFactory extends CurveFactory {
1779 /**
1780 * Returns a cardinal curve factory with the specified tension in the range [0, 1].
1781 * The tension determines the length of the tangents: a tension of one yields all zero tangents, equivalent to curveLinear; a tension of zero produces a uniform Catmull–Rom spline.
1782 *
1783 * @param tension A constant in the [0, 1] interval.
1784 */
1785 tension(tension: number): this;
1786}
1787
1788/**
1789 * A curve factory for cubic cardinal spline generators.
1790 *
1791 * The curve generators produce a cubic cardinal spline using the specified control points, with one-sided differences used for the first and last piece.
1792 * The default tension is 0.
1793 */
1794export const curveCardinal: CurveCardinalFactory;
1795
1796/**
1797 * A curve factory for closed cubic cardinal spline generators.
1798 *
1799 * The curve generators produce closed cubic cardinal spline using the specified control points.
1800 * When a line segment ends, the first three control points are repeated, producing a closed loop.
1801 * The default tension is 0.
1802 */
1803export const curveCardinalClosed: CurveCardinalFactory;
1804
1805/**
1806 * A curve factory for open cubic cardinal spline generators.
1807 *
1808 * The curve generators produce a cubic cardinal spline using the specified control points.
1809 * Unlike curveCardinal, one-sided differences are not used for the first and last piece,
1810 * and thus the curve starts at the second point and ends at the penultimate point.
1811 * The default tension is 0.
1812 */
1813export const curveCardinalOpen: CurveCardinalFactory;
1814
1815/**
1816 * A curve factory for cubic Catmull–Rom spline generators.
1817 */
1818export interface CurveCatmullRomFactory extends CurveFactory {
1819 /**
1820 * Returns a cubic Catmull–Rom curve factory with the specified alpha in the range [0, 1].
1821 * If alpha is zero, produces a uniform spline, equivalent to curveCardinal with a tension of zero;
1822 * if alpha is one, produces a chordal spline; if alpha is 0.5, produces a centripetal spline.
1823 * Centripetal splines are recommended to avoid self-intersections and overshoot.
1824 *
1825 * @param alpha A constant in the [0, 1] interval.
1826 */
1827 alpha(alpha: number): this;
1828}
1829
1830/**
1831 * A curve factory for cubic Catmull–Rom spline generators.
1832 *
1833 * The curve generators produce a cubic Catmull–Rom spline using the specified control points and the parameter alpha,
1834 * which defaults to 0.5, as proposed by Yuksel et al. in On the Parameterization of Catmull–Rom Curves,
1835 * with one-sided differences used for the first and last piece.
1836 */
1837export const curveCatmullRom: CurveCatmullRomFactory;
1838
1839/**
1840 * A curve factory for cubic Catmull–Rom spline generators.
1841 *
1842 * The curve generators produce a closed cubic Catmull–Rom spline using the specified control points and the parameter alpha,
1843 * which defaults to 0.5, as proposed by Yuksel et al. When a line segment ends,
1844 * the first three control points are repeated, producing a closed loop.
1845 */
1846export const curveCatmullRomClosed: CurveCatmullRomFactory;
1847
1848/**
1849 * A curve factory for cubic Catmull–Rom spline generators.
1850 *
1851 * The curve generators produce a cubic Catmull–Rom spline using the specified control points and the parameter alpha,
1852 * which defaults to 0.5, as proposed by Yuksel et al. Unlike curveCatmullRom, one-sided differences are not used for the first and last piece,
1853 * and thus the curve starts at the second point and ends at the penultimate point.
1854 */
1855export const curveCatmullRomOpen: CurveCatmullRomFactory;
1856
1857/**
1858 * A curve factory for polyline generators.
1859 *
1860 * The curve generators produce a polyline through the specified points.
1861 */
1862export const curveLinear: CurveFactory;
1863
1864/**
1865 * A curve factory for closed polyline generators.
1866 *
1867 * The curve generators produce a closed polyline through the specified points by repeating the first point when the line segment ends.
1868 */
1869export const curveLinearClosed: CurveFactory;
1870
1871/**
1872 * A curve factory for cubic spline generators preserving monotonicity in y.
1873 *
1874 * The curve generators produce a cubic spline that preserves monotonicity in y, assuming monotonicity in x, as proposed by Steffen in A simple method for monotonic interpolation in one dimension:
1875 * “a smooth curve with continuous first-order derivatives that passes through any given set of data points without spurious oscillations.
1876 * Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points.”
1877 */
1878export const curveMonotoneX: CurveFactory;
1879
1880/**
1881 * A curve factory for cubic spline generators preserving monotonicity in x.
1882 *
1883 * The curve generators produce a cubic spline that preserves monotonicity in x, assuming monotonicity in y, as proposed by Steffen in A simple method for monotonic interpolation in one dimension:
1884 * “a smooth curve with continuous first-order derivatives that passes through any given set of data points without spurious oscillations.
1885 * Local extrema can occur only at grid points where they are given by the data, but not in between two adjacent grid points.”
1886 */
1887export const curveMonotoneY: CurveFactory;
1888
1889/**
1890 * A curve factory for natural cubic spline generators.
1891 *
1892 * The curve generators produce a natural cubic spline with the second derivative of the spline set to zero at the endpoints.
1893 */
1894export const curveNatural: CurveFactory;
1895
1896/**
1897 * A curve factory for step function (midpoint) generators.
1898 *
1899 * The curve generators produce a piecewise constant function (a step function) consisting of alternating horizontal and vertical lines.
1900 * The y-value changes at the midpoint of each pair of adjacent x-values.
1901 */
1902export const curveStep: CurveFactory;
1903
1904/**
1905 * A curve factory for step function (after) generators.
1906 *
1907 * The curve generators produce a piecewise constant function (a step function) consisting of alternating horizontal and vertical lines.
1908 * The y-value changes after the x-value.
1909 */
1910export const curveStepAfter: CurveFactory;
1911
1912/**
1913 * A curve factory for step function (before) generators.
1914 *
1915 * The curve generators produce a piecewise constant function (a step function) consisting of alternating horizontal and vertical lines.
1916 * The y-value changes before the x-value.
1917 */
1918export const curveStepBefore: CurveFactory;
1919
1920// -----------------------------------------------------------------------------------
1921// LINKS
1922// -----------------------------------------------------------------------------------
1923
1924/**
1925 * An interface describing the default Link Data structure expected
1926 * by the Link and LinkRadial generators.
1927 */
1928export interface DefaultLinkObject {
1929 /**
1930 * Source node of the link.
1931 *
1932 * For a link in a Cartesian coordinate system, the two element array contains
1933 * the coordinates [x, y].
1934 *
1935 * For a radial link, the two element array contains
1936 * the coordinates [angle, radius]. The angle is stated in radians, with 0 at -y (12 o’clock).
1937 * The radius measures the distance from the origin ⟨0,0⟩.
1938 */
1939 source: [number, number];
1940 /**
1941 * Target node of the link.
1942 *
1943 * For a link in a Cartesian coordinate system, the two element array contains
1944 * the coordinates [x, y].
1945 *
1946 * For a radial link, the two element array contains
1947 * the coordinates [angle, radius]. The angle is stated in radians, with 0 at -y (12 o’clock).
1948 * The radius measures the distance from the origin ⟨0,0⟩.
1949 */
1950 target: [number, number];
1951}
1952
1953/**
1954 * A link generator for a Cartesian coordinate system. The link shape generates a smooth cubic Bézier curve from a
1955 * source point to a target point. The tangents of the curve at the start and end are either vertical, horizontal.
1956 *
1957 * The first generic corresponds to the type of the "this" context within which the link generator and its accessor functions will be invoked.
1958 *
1959 * The second generic corresponds to the datum type of the link object for which the link is to be generated.
1960 *
1961 * The third generic corresponds to the datum type of the source/target node contained in the link object.
1962 */
1963export interface Link<This, LinkDatum, NodeDatum> {
1964 /**
1965 * Generates a link for the given arguments.
1966 *
1967 * IMPORTANT: If the rendering context of the link generator is null,
1968 * then the link is returned as a path data string.
1969 *
1970 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
1971 * All arguments passed into this function, will be passed to the accessor functions of the generator.
1972 *
1973 * @param d The datum for which the link is to be generated.
1974 */
1975 (this: This, d: LinkDatum, ...args: any[]): string | null;
1976 /**
1977 * Generates an link for the given arguments.
1978 *
1979 * IMPORTANT: If the link generator has been configured with a rendering context,
1980 * then the link is rendered to this context as a sequence of path method calls and this function returns void.
1981 *
1982 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
1983 * All arguments passed into this function, will be passed to the accessor functions of the generator.
1984 *
1985 * @param d The datum for which the link is to be generated.
1986 */
1987 (this: This, d: LinkDatum, ...args: any[]): void;
1988
1989 /**
1990 * Returns the current source node accessor function.
1991 * The default source accessor function returns a two element array [x, y].
1992 */
1993 source(): (this: This, d: LinkDatum, ...args: any[]) => NodeDatum;
1994 /**
1995 * Sets the source accessor to the specified function and returns this link generator.
1996 *
1997 * @param source Source node accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
1998 * receives the same arguments that were passed into the link generator. The default target accessor function returns a two element array [x, y].
1999 */
2000 source(source: (this: This, d: LinkDatum, ...args: any[]) => NodeDatum): this;
2001
2002 /**
2003 * Returns the current target node accessor function.
2004 * The default target accessor function returns a two element array [x, y].
2005 */
2006 target(): (this: This, d: LinkDatum, ...args: any[]) => NodeDatum;
2007 /**
2008 * Sets the target accessor to the specified function and returns this link generator.
2009 *
2010 * @param target Target node accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2011 * receives the same arguments that were passed into the link generator. The default target accessor function returns a two element array [x, y].
2012 */
2013 target(target: (this: This, d: LinkDatum, ...args: any[]) => NodeDatum): this;
2014
2015 /**
2016 * Returns the current x-accessor, which defaults to a function accepting an number array
2017 * as its argument an returning the first element of the array.
2018 */
2019 x(): (this: This, node: NodeDatum, ...args: any[]) => number;
2020 /**
2021 * Sets the x-accessor to the specified function and returns this link generator.
2022 *
2023 * @param x x-coordinate accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2024 * receives as its first argument a node object followed by all additional arguments that were passed into the link generator.
2025 */
2026 x(x: (this: This, node: NodeDatum, ...args: any[]) => number): this;
2027
2028 /**
2029 * Returns the current y-accessor, which defaults to a function accepting an number array
2030 * as its argument an returning the second element of the array.
2031 */
2032 y(): (this: This, node: NodeDatum, ...args: any[]) => number;
2033 /**
2034 * Sets the y-accessor to the specified function and returns this link generator.
2035 *
2036 * @param y y-coordinate accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2037 * receives as its first argument a node object followed by all additional arguments that were passed into the link generator.
2038 */
2039 y(y: (this: This, node: NodeDatum, ...args: any[]) => number): this;
2040
2041 /**
2042 * Returns the current rendering context, which defaults to null.
2043 */
2044 context(): CanvasRenderingContext2D | null;
2045 /**
2046 * Sets the rendering context and returns this link generator.
2047 *
2048 * If the context is not null, then the generated link is rendered to this context as a sequence of path method calls.
2049 *
2050 * @param context The rendering context.
2051 */
2052 context(context: CanvasRenderingContext2D): this;
2053 /**
2054 * Sets the rendering context to null and returns this link generator.
2055 *
2056 * A path data string representing the generated link will be returned when the generator is invoked with data.
2057 *
2058 * @param context null, to remove rendering context.
2059 */
2060 context(context: null): this;
2061}
2062
2063/**
2064 * Constructs a new default link generator with horizontal tangents, for example, to visualize links in a tree diagram
2065 * rooted on the left edge of the display.
2066 *
2067 * With the default settings the link generator accepts a link object conforming to the DefaultLinkObject interface.
2068 */
2069export function linkHorizontal(): Link<any, DefaultLinkObject, [number, number]>;
2070/**
2071 * Constructs a new link generator with horizontal tangents, for example, to visualize links in a tree diagram
2072 * rooted on the left edge of the display.
2073 *
2074 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2075 * specified in the generics.
2076 *
2077 * The first generic corresponds to the datum type of the link object for which the link is to be generated.
2078 *
2079 * The second generic corresponds to the datum type of the source/target node contained in the link object.
2080 */
2081export function linkHorizontal<LinkDatum, NodeDatum>(): Link<any, LinkDatum, NodeDatum>;
2082/**
2083 * Constructs a new link generator with horizontal tangents, for example, to visualize links in a tree diagram
2084 * rooted on the left edge of the display.
2085 *
2086 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2087 * specified in the generics.
2088 *
2089 * The first generic corresponds to the type of the "this" context within which the link generator and its accessor functions will be invoked.
2090 *
2091 * The second generic corresponds to the datum type of the link object for which the link is to be generated.
2092 *
2093 * The third generic corresponds to the datum type of the source/target node contained in the link object.
2094 */
2095export function linkHorizontal<This, LinkDatum, NodeDatum>(): Link<This, LinkDatum, NodeDatum>;
2096
2097/**
2098 * Constructs a new default link generator with vertical tangents, for example, to visualize links in a tree diagram
2099 * rooted on the top edge of the display.
2100 *
2101 * With the default settings the link generator accepts a link object conforming to the DefaultLinkObject interface.
2102 */
2103export function linkVertical(): Link<any, DefaultLinkObject, [number, number]>;
2104/**
2105 * Constructs a new link generator with vertical tangents, for example, to visualize links in a tree diagram
2106 * rooted on the top edge of the display.
2107 *
2108 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2109 * specified in the generics.
2110 *
2111 * The first generic corresponds to the datum type of the link object for which the link is to be generated.
2112 *
2113 * The second generic corresponds to the datum type of the source/target node contained in the link object.
2114 */
2115export function linkVertical<LinkDatum, NodeDatum>(): Link<any, LinkDatum, NodeDatum>;
2116/**
2117 * Constructs a new link generator with vertical tangents, for example, to visualize links in a tree diagram
2118 * rooted on the top edge of the display.
2119 *
2120 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2121 * specified in the generics.
2122 *
2123 * The first generic corresponds to the type of the "this" context within which the link generator and its accessor functions will be invoked.
2124 *
2125 * The second generic corresponds to the datum type of the link object for which the link is to be generated.
2126 *
2127 * The third generic corresponds to the datum type of the source/target node contained in the link object.
2128 */
2129export function linkVertical<This, LinkDatum, NodeDatum>(): Link<This, LinkDatum, NodeDatum>;
2130
2131/**
2132 * A link generator for a radial coordinate system. The link shape generates a smooth cubic Bézier curve from a
2133 * source point to a target point. The tangents of the curve at the start and end are radial.
2134 *
2135 * The first generic corresponds to the type of the "this" context within which the radial link generator and its accessor functions will be invoked.
2136 *
2137 * The second generic corresponds to the datum type of the link object for which the link is to be generated.
2138 *
2139 * The third generic corresponds to the datum type of the source/target node contained in the link object.
2140 */
2141export interface LinkRadial<This, LinkDatum, NodeDatum> {
2142 /**
2143 * Generates a radial link for the given arguments.
2144 *
2145 * IMPORTANT: If the rendering context of the radial link generator is null,
2146 * then the link is returned as a path data string.
2147 *
2148 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
2149 * All arguments passed into this function, will be passed to the accessor functions of the generator.
2150 *
2151 * @param d The datum for which the link is to be generated.
2152 */
2153 (this: This, d: LinkDatum, ...args: any[]): string | null;
2154 /**
2155 * Generates an link for the given arguments.
2156 *
2157 * IMPORTANT: If the radial link generator has been configured with a rendering context,
2158 * then the link is rendered to this context as a sequence of path method calls and this function returns void.
2159 *
2160 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
2161 * All arguments passed into this function, will be passed to the accessor functions of the generator.
2162 *
2163 * @param d The datum for which the link is to be generated.
2164 */
2165 (this: This, d: LinkDatum, ...args: any[]): void;
2166
2167 /**
2168 * Returns the current source node accessor function.
2169 * The default source accessor function returns a two element array [x, y].
2170 */
2171 source(): (this: This, d: LinkDatum, ...args: any[]) => NodeDatum;
2172 /**
2173 * Sets the source accessor to the specified function and returns this radial link generator.
2174 *
2175 * @param source Source node accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2176 * receives the same arguments that were passed into the radial link generator. The default target accessor function returns a two element array [x, y].
2177 */
2178 source(source: (this: This, d: LinkDatum, ...args: any[]) => NodeDatum): this;
2179
2180 /**
2181 * Returns the current target node accessor function.
2182 * The default target accessor function returns a two element array [x, y].
2183 */
2184 target(): (this: This, d: LinkDatum, ...args: any[]) => NodeDatum;
2185 /**
2186 * Sets the target accessor to the specified function and returns this radial link generator.
2187 *
2188 * @param target Target node accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2189 * receives the same arguments that were passed into the radial link generator. The default target accessor function returns a two element array [x, y].
2190 */
2191 target(target: (this: This, d: LinkDatum, ...args: any[]) => NodeDatum): this;
2192
2193 /**
2194 * Returns the current angle accessor, which defaults to a function accepting an number array
2195 * as its argument an returning the first element of the array.
2196 */
2197 angle(): (this: This, node: NodeDatum, ...args: any[]) => number;
2198 /**
2199 * Sets the angle accessor to the specified function and returns this radial link generator.
2200 * The angle is stated in radians, with 0 at -y (12 o’clock).
2201 *
2202 * @param angle Angle accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2203 * receives as its first argument a node object followed by all additional arguments that were passed into the radial link generator.
2204 */
2205 angle(angle: (this: This, node: NodeDatum, ...args: any[]) => number): this;
2206
2207 /**
2208 * Returns the current radius accessor, which defaults to a function accepting an number array
2209 * as its argument an returning the second element of the array.
2210 */
2211 radius(): (this: This, node: NodeDatum, ...args: any[]) => number;
2212 /**
2213 * Sets the radius accessor to the specified function and returns this radial link generator.
2214 * The radius is measured as the distance from the origin ⟨0,0⟩.
2215 *
2216 * @param radius Radius accessor function. The accessor function is invoked in the same "this" context as the generator was invoked in and
2217 * receives as its first argument a node object followed by all additional arguments that were passed into the radial link generator.
2218 */
2219 radius(radius: (this: This, node: NodeDatum, ...args: any[]) => number): this;
2220
2221 /**
2222 * Returns the current rendering context, which defaults to null.
2223 */
2224 context(): CanvasRenderingContext2D | null;
2225 /**
2226 * Sets the rendering context and returns this radial link generator.
2227 *
2228 * If the context is not null, then the generated radial area is rendered to this context as a sequence of path method calls.
2229 *
2230 * @param context The rendering context.
2231 */
2232 context(context: CanvasRenderingContext2D): this;
2233 /**
2234 * Sets the rendering context to null and returns this radial link generator.
2235 *
2236 * A path data string representing the generated radial link will be returned when the generator is invoked with data.
2237 *
2238 * @param context null, to remove rendering context.
2239 */
2240 context(context: null): this;
2241}
2242
2243/**
2244 * @deprecated Use LinkRadial interface
2245 */
2246export type RadialLink<This, LinkDatum, NodeDatum> = LinkRadial<This, LinkDatum, NodeDatum>;
2247
2248/**
2249 * Constructs a new default link generator with radial tangents, for example, to visualize links in a tree diagram
2250 * rooted in the center of the display.
2251 *
2252 * With the default settings the link generator accepts a link object conforming to the DefaultLinkObject interface.
2253 */
2254export function linkRadial(): LinkRadial<any, DefaultLinkObject, [number, number]>;
2255/**
2256 * Constructs a new link generator with radial tangents, for example, to visualize links in a tree diagram
2257 * rooted in the center of the display.
2258 *
2259 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2260 * specified in the generics.
2261 *
2262 * The first generic corresponds to the datum type of the link object for which the link is to be generated.
2263 *
2264 * The second generic corresponds to the datum type of the source/target node contained in the link object.
2265 */
2266export function linkRadial<LinkDatum, NodeDatum>(): LinkRadial<any, LinkDatum, NodeDatum>;
2267/**
2268 * Constructs a new link generator with radial tangents, for example, to visualize links in a tree diagram
2269 * rooted in the center of the display.
2270 *
2271 * Important: Ensure that the accessor functions are configured to work with the link and node datum types
2272 * specified in the generics.
2273 *
2274 * The first generic corresponds to the type of the "this" context within which the link generator and its accessor functions will be invoked.
2275 *
2276 * The second generic corresponds to the datum type of the link object for which the link is to be generated.
2277 *
2278 * The third generic corresponds to the datum type of the source/target node contained in the link object.
2279 */
2280export function linkRadial<This, LinkDatum, NodeDatum>(): LinkRadial<This, LinkDatum, NodeDatum>;
2281
2282// -----------------------------------------------------------------------------------
2283// SYMBOLS
2284// -----------------------------------------------------------------------------------
2285
2286/**
2287 * A Symbol Type.
2288 *
2289 * Symbol types are typically not used directly, instead being passed to symbol.type.
2290 * However, you can define your own symbol type implementation should none of the built-in types satisfy your needs using the following interface.
2291 * You can also use this low-level interface with a built-in symbol type as an alternative to the symbol generator.
2292 */
2293export interface SymbolType {
2294 /**
2295 * Renders this symbol type to the specified context with the specified size in square pixels. The context implements the CanvasPath interface.
2296 * (Note that this is a subset of the CanvasRenderingContext2D interface!)
2297 *
2298 * @param context A rendering context implementing CanvasPath.
2299 * @param size Size of the symbol to draw.
2300 */
2301 draw(context: CanvasPath_D3Shape, size: number): void;
2302}
2303
2304/**
2305 * A symbol generator.
2306 *
2307 * Symbols provide a categorical shape encoding as is commonly used in scatterplots. Symbols are always centered at ⟨0,0⟩;
2308 * use a transform (see: SVG, Canvas) to move the arc to a different position.
2309 *
2310 * The first generic corresponds to the "this" context within which the symbol generator is invoked.
2311 * The second generic corresponds to the data type of the datum underlying the symbol.
2312 */
2313export interface Symbol<This, Datum> {
2314 /**
2315 * Generates a symbol for the given arguments.
2316 *
2317 * IMPORTANT: If the rendering context of the symbol generator is null,
2318 * then the symbol is returned as a path data string.
2319 *
2320 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
2321 * All arguments passed into this function, will be passed to the accessor functions of the generator.
2322 *
2323 * For example, with the default settings, no arguments are needed to produce a circle with area 64 square pixels.
2324 *
2325 * @param d The datum for which the symbol is to be generated.
2326 */
2327 (this: This, d?: Datum, ...args: any[]): string | null;
2328 /**
2329 * Generates an symbol for the given arguments.
2330 *
2331 * IMPORTANT: If the symbol generator has been configured with a rendering context,
2332 * then the symbol is rendered to this context as a sequence of path method calls and this function returns void.
2333 *
2334 * The "this" context within which this function is invoked, will be the context within which the accessor methods of the generator are invoked.
2335 * All arguments passed into this function, will be passed to the accessor functions of the generator.
2336 *
2337 * For example, with the default settings, no arguments are needed to produce a circle with area 64 square pixels.
2338 *
2339 * @param d The datum for which the symbol is to be generated.
2340 */
2341 (this: This, d?: Datum, ...args: any[]): void;
2342 /**
2343 * Returns the current size accessor, which defaults to a function returning a constant value of 64.
2344 */
2345 size(): (this: This, d: Datum, ...args: any[]) => number;
2346 /**
2347 * Sets the size to the specified number and returns this symbol generator.
2348 *
2349 * @param size A fixed size (area in square pixels).
2350 */
2351 size(size: number): this;
2352 /**
2353 * Sets the size to the specified function and returns this symbol generator.
2354 *
2355 * Specifying the size as a function is useful for constructing a scatterplot with a size encoding.
2356 * If you wish to scale the symbol to fit a given bounding box, rather than by area, try SVG’s getBBox.
2357 *
2358 * @param size An accessor function returning a number to be used as a symbol size. The accessor function is invoked in the same "this" context as the generator was invoked in and
2359 * receives the same arguments that were passed into the symbol generator.
2360 */
2361 size(size: (this: This, d: Datum, ...args: any[]) => number): this;
2362
2363 /**
2364 * Returns the current symbol type accessor, which defaults to a function returning the circle symbol type.
2365 */
2366 type(): (this: This, d: Datum, ...args: any[]) => SymbolType;
2367 /**
2368 * Sets the symbol type to the specified symbol type and returns this symbol generator.
2369 *
2370 * @param type A constant symbol type.
2371 */
2372 type(type: SymbolType): this;
2373 /**
2374 * Sets the symbol type to the specified function and returns this symbol generator.
2375 *
2376 * @param type An accessor function returning a symbol type. The accessor function is invoked in the same "this" context as the generator was invoked in and
2377 * receives the same arguments that were passed into the symbol generator. See symbols for the set of built-in symbol types.
2378 * To implement a custom symbol type, return an object that implements symbolType.draw.
2379 */
2380 type(type: (this: This, d: Datum, ...args: any[]) => SymbolType): this;
2381
2382 /**
2383 * Returns the current rendering context, which defaults to null.
2384 */
2385 context(): CanvasRenderingContext2D | null;
2386 /**
2387 * Sets the rendering context and returns this symbol generator.
2388 *
2389 * If the context is not null, then the generated symbol is rendered to this context as a sequence of path method calls.
2390 *
2391 * @param context The rendering context.
2392 */
2393 context(context: CanvasRenderingContext2D): this;
2394 /**
2395 * Sets the rendering context to null and returns this symbol generator.
2396 *
2397 * A path data string representing the generated symbol will be returned when the generator is invoked with data.
2398 *
2399 * @param context null, to remove rendering context.
2400 */
2401 context(context: null): this;
2402}
2403
2404/**
2405 * Constructs a new symbol generator of the specified type and size.
2406 * If not specified, type defaults to a circle, and size defaults to 64.
2407 *
2408 * The first generic corresponds to the "this" context within which the symbol generator is invoked.
2409 * The second generic corresponds to the data type of the datum underlying the symbol.
2410 *
2411 * @param type The specified type.
2412 * @param size The specified size.
2413 */
2414export function symbol<Datum = any>(
2415 type?: SymbolType | ((this: any, d: Datum, ...args: any[]) => SymbolType),
2416 size?: number | ((this: any, d: Datum, ...args: any[]) => number)
2417): Symbol<any, Datum>;
2418
2419/**
2420 * Constructs a new symbol generator of the specified type and size.
2421 * If not specified, type defaults to a circle, and size defaults to 64.
2422 *
2423 * The first generic corresponds to the "this" context within which the symbol generator is invoked.
2424 * The second generic corresponds to the data type of the datum underlying the symbol.
2425 *
2426 * @param type The specified type.
2427 * @param size The specified size.
2428 */
2429export function symbol<This, Datum>(
2430 type?: SymbolType | ((this: This, d: Datum, ...args: any[]) => SymbolType),
2431 size?: number | ((this: This, d: Datum, ...args: any[]) => number)
2432): Symbol<This, Datum>;
2433
2434/**
2435 * An array containing the set of all built-in symbol types: circle, cross, diamond, square, star, triangle, and wye.
2436 * Useful for constructing the range of an ordinal scale should you wish to use a shape encoding for categorical data.
2437 */
2438export const symbols: SymbolType[];
2439
2440/**
2441 * The circle symbol type.
2442 */
2443export const symbolCircle: SymbolType;
2444
2445/**
2446 * The Greek cross symbol type, with arms of equal length.
2447 */
2448export const symbolCross: SymbolType;
2449
2450/**
2451 * The rhombus symbol type.
2452 */
2453export const symbolDiamond: SymbolType;
2454
2455/**
2456 * The square symbol type.
2457 */
2458export const symbolSquare: SymbolType;
2459
2460/**
2461 * The pentagonal star (pentagram) symbol type.
2462 */
2463export const symbolStar: SymbolType;
2464
2465/**
2466 * The up-pointing triangle symbol type.
2467 */
2468export const symbolTriangle: SymbolType;
2469
2470/**
2471 * The Y-shape symbol type.
2472 */
2473export const symbolWye: SymbolType;
2474
2475// -----------------------------------------------------------------------------------
2476// pointRadial
2477// -----------------------------------------------------------------------------------
2478
2479/**
2480 * Returns the point [x, y] for the given angle and the given radius.
2481 * @param angle Angle in radians, with 0 at -y (12 o’clock) and positive angles proceeding clockwise.
2482 * @param radius Radius.
2483 */
2484export function pointRadial(angle: number, radius: number): [number, number];
2485
2486// -----------------------------------------------------------------------------------
2487// STACKS
2488// -----------------------------------------------------------------------------------
2489
2490/**
2491 * Each series point j in a stack chart corresponds to the jth element in the input data.
2492 * Each point is represented as an array [y0, y1] where y0 is the lower value (baseline) and y1 is the upper value (topline);
2493 * the difference between y0 and y1 corresponds to the computed value for this point.
2494 *
2495 * SeriesPoint is a [number, number] two-element Array with added data and index properties
2496 * related to the data element which formed the basis for theSeriesPoint.
2497 */
2498export interface SeriesPoint<Datum> extends Array<number> {
2499 /**
2500 * Corresponds to y0, the lower value (baseline).
2501 */
2502 0: number;
2503 /**
2504 * Corresponds to y1, the upper value (topline).
2505 */
2506 1: number;
2507 /**
2508 * The data element underlying the series point.
2509 */
2510 data: Datum;
2511}
2512
2513/**
2514 * The series are determined by the keys accessor; each series i in the returned array corresponds to the ith key.
2515 * Each series is an array of points, where each point j corresponds to the jth element in the input data.
2516 *
2517 * The key for each series is available as series.key, and the index as series.index.
2518 */
2519export interface Series<Datum, Key> extends Array<SeriesPoint<Datum>> {
2520 /**
2521 * Key of the series.
2522 */
2523 key: Key;
2524 /**
2525 * Index of the series in the series array returned by stack generator.
2526 */
2527 index: number;
2528}
2529
2530/**
2531 * A stack generator.
2532 *
2533 * Some shape types can be stacked, placing one shape adjacent to another.
2534 * For example, a bar chart of monthly sales might be broken down into a multi-series bar chart by product category, stacking bars vertically.
2535 * This is equivalent to subdividing a bar chart by an ordinal dimension (such as product category) and applying a color encoding.
2536 *
2537 * Stacked charts can show overall value and per-category value simultaneously; however, it is typically harder to compare across categories, as only the bottom layer of the stack is aligned.
2538 * So, chose the stack order carefully, and consider a streamgraph. (See also grouped charts.)
2539 *
2540 * Like the pie generator, the stack generator does not produce a shape directly. Instead it computes positions which you can then pass to an area generator or use directly, say to position bars.
2541 *
2542 * The first generic corresponds to the "this" context in which the stack generator and its accessor functions are invoked.
2543 *
2544 * The second generic corresponds to the data type of an element in the data array passed into the stack generator.
2545 *
2546 * The third generic corresponds to the data type of key used to identify a series.
2547 */
2548export interface Stack<This, Datum, Key> {
2549 /**
2550 * Generates a stack for the given array of data, returning an array representing each series.
2551 * The resulting array has one element per series. Each series in then typically passed to an area generator to render an area chart,
2552 * or used to construct rectangles for a bar chart.
2553 *
2554 * Any additional arguments are arbitrary; they are simply propagated to the generator’s accessor functions along with the this object.
2555 *
2556 * @param data Array of data elements.
2557 */
2558 (data: Iterable<Datum>, ...args: any[]): Array<Series<Datum, Key>>;
2559
2560 /**
2561 * Returns the current keys accessor, which defaults to the empty array.
2562 */
2563 keys(): (this: This, data: Datum[], ...args: any[]) => Key[];
2564 /**
2565 * Sets the keys accessor to the specified function or array and returns this stack generator.
2566 *
2567 * A series (layer) is generated for each key. Keys are typically strings, but they may be arbitrary values.
2568 * The series’ key is passed to the value accessor, along with each data point, to compute the point’s value.
2569 *
2570 * @param keys An array of keys.
2571 */
2572 keys(keys: Iterable<Key>): this;
2573 /**
2574 * Sets the keys accessor to the specified function or array and returns this stack generator.
2575 *
2576 * A series (layer) is generated for each key. Keys are typically strings, but they may be arbitrary values.
2577 * The series’ key is passed to the value accessor, along with each data point, to compute the point’s value.
2578 *
2579 * @param keys An accessor function returning the array of keys.
2580 * The accessor function is invoked with the "this" context of the Stack generator and passed the same arguments passed into the generator.
2581 */
2582 keys(keys: (this: This, data: Datum[], ...args: any[]) => Key[]): this;
2583
2584 /**
2585 * Returns the current value accessor, which defaults to a function return the property corresponding to the relevant key from the data element.
2586 *
2587 * Thus, by default the stack generator assumes that the input data is an array of objects, with each object exposing named properties with numeric values; see stack for an example.
2588 */
2589 value(): (d: Datum, key: Key, i: number, data: Datum[]) => number;
2590 /**
2591 * Sets the value accessor to the specified number and returns this stack generator.
2592 *
2593 * @param value A constant value.
2594 */
2595 value(value: number): this;
2596 /**
2597 * Sets the value accessor to the specified function and returns this stack generator.
2598 *
2599 * @param value A value accessor function which returns the numeric value for a given data element and key combination. The accessor function is invoked for each data element and key being passed
2600 * the datum, the key, index of the data element in the input data array, and the complete data array.
2601 */
2602 value(value: (d: Datum, key: Key, i: number, data: Datum[]) => number): this;
2603
2604 /**
2605 * Returns the current order accessor, which defaults to stackOrderNone; this uses the order given by the key accessor.
2606 */
2607 order(): (series: Series<Datum, Key>) => Iterable<number>;
2608 /**
2609 * Reset the order to use stackOrderNone; this uses the order given by the key accessor.
2610 *
2611 * @param order null to set to the default stackOrderNone.
2612 */
2613 order(order: null): this;
2614 /**
2615 * Sets the order accessor to the specified array and returns this stack generator.
2616 *
2617 * The stack order is computed prior to the offset; thus, the lower value for all points is zero at the time the order is computed.
2618 * The index attribute for each series is also not set until after the order is computed.
2619 *
2620 * @param order An array of numeric indexes representing the stack order.
2621 */
2622 order(order: Iterable<number>): this;
2623 /**
2624 * Sets the order accessor to the specified function and returns this stack generator.
2625 *
2626 * The stack order is computed prior to the offset; thus, the lower value for all points is zero at the time the order is computed.
2627 * The index attribute for each series is also not set until after the order is computed.
2628 *
2629 * See stack orders for the built-in orders.
2630 *
2631 * @param order A function returning a sort order array. It is passed the generated series array and must return an array of numeric indexes representing the stack order.
2632 */
2633 order(order: (series: Series<Datum, Key>) => Iterable<number>): this;
2634
2635 /**
2636 * Returns the current offset accessor, which defaults to stackOffsetNone; this uses a zero baseline.
2637 */
2638 offset(): (series: Series<Datum, Key>, order: number[]) => void;
2639 /**
2640 * Reset the offset to use stackOffsetNone; this uses a zero baseline.
2641 *
2642 * @param offset null to set to the default stackOffsetNone.
2643 */
2644 offset(offset: null): this;
2645 /**
2646 * Sets the offset accessor to the specified function and returns this stack generator.
2647 *
2648 * @param offset A function which is passed the generated series array and the order index array;
2649 * it is then responsible for updating the lower and upper values in the series array.
2650 */
2651 offset(offset: (series: Series<Datum, Key>, order: number[]) => void): this;
2652}
2653
2654/**
2655 * Constructs a new stack generator with the default settings.
2656 *
2657 * Ensure that the accessors used with the stack generator correspond to the arguments passed into them.
2658 */
2659export function stack(): Stack<any, { [key: string]: number }, string>;
2660/**
2661 * Constructs a new stack generator with the default settings.
2662 *
2663 * Ensure that the accessors used with the stack generator correspond to the arguments passed into them.
2664 *
2665 * The generic corresponds to the data type of an element in the data array passed into the stack generator.
2666 */
2667export function stack<Datum>(): Stack<any, Datum, string>;
2668/**
2669 * Constructs a new stack generator with the default settings.
2670 *
2671 * Ensure that the accessors used with the stack generator correspond to the arguments passed into them.
2672 *
2673 * The first generic corresponds to the data type of an element in the data array passed into the stack generator.
2674 *
2675 * The second generic corresponds to the data type of key used to identify a series.
2676 */
2677export function stack<Datum, Key>(): Stack<any, Datum, Key>;
2678/**
2679 * Constructs a new stack generator with the default settings.
2680 *
2681 * Ensure that the accessors used with the stack generator correspond to the arguments passed into them.
2682 *
2683 * The first generic corresponds to the "this" context in which the stack generator and its accessor functions are invoked.
2684 *
2685 * The second generic corresponds to the data type of an element in the data array passed into the stack generator.
2686 *
2687 * The third generic corresponds to the data type of key used to identify a series.
2688 */
2689export function stack<This, Datum, Key>(): Stack<This, Datum, Key>;
2690
2691/**
2692 * Returns a series order such that the earliest series (according to the maximum value) is at the bottom.
2693 *
2694 * @param series A series generated by a stack generator.
2695 */
2696export function stackOrderAppearance(series: Series<any, any>): number[];
2697
2698/**
2699 * Returns a series order such that the smallest series (according to the sum of values) is at the bottom.
2700 *
2701 * @param series A series generated by a stack generator.
2702 */
2703export function stackOrderAscending(series: Series<any, any>): number[];
2704
2705/**
2706 * Returns a series order such that the largest series (according to the sum of values) is at the bottom.
2707 *
2708 * @param series A series generated by a stack generator.
2709 */
2710export function stackOrderDescending(series: Series<any, any>): number[];
2711
2712/**
2713 * Returns a series order such that the larger series (according to the sum of values) are on the inside and the smaller series are on the outside.
2714 * This order is recommended for streamgraphs in conjunction with the wiggle offset. See Stacked Graphs—Geometry & Aesthetics by Byron & Wattenberg for more information.
2715 *
2716 * @param series A series generated by a stack generator.
2717 */
2718export function stackOrderInsideOut(series: Series<any, any>): number[];
2719
2720/**
2721 * Returns the given series order [0, 1, … n - 1] where n is the number of elements in series. Thus, the stack order is given by the key accessor.
2722 *
2723 * @param series A series generated by a stack generator.
2724 */
2725export function stackOrderNone(series: Series<any, any>): number[];
2726
2727/**
2728 * Returns the reverse of the given series order [n - 1, n - 2, … 0] where n is the number of elements in series. Thus, the stack order is given by the reverse of the key accessor.
2729 *
2730 * @param series A series generated by a stack generator.
2731 */
2732export function stackOrderReverse(series: Series<any, any>): number[];
2733
2734/**
2735 * Applies a zero baseline and normalizes the values for each point such that the topline is always one.
2736 *
2737 * @param series A series generated by a stack generator.
2738 * @param order An array of numeric indexes representing the stack order.
2739 */
2740export function stackOffsetExpand(series: Series<any, any>, order: Iterable<number>): void;
2741
2742/**
2743 * Positive values are stacked above zero, while negative values are stacked below zero.
2744 *
2745 * @param series A series generated by a stack generator.
2746 * @param order An array of numeric indexes representing the stack order.
2747 */
2748export function stackOffsetDiverging(series: Series<any, any>, order: Iterable<number>): void;
2749
2750/**
2751 * Applies a zero baseline.
2752 *
2753 * @param series A series generated by a stack generator.
2754 * @param order An array of numeric indexes representing the stack order.
2755 */
2756export function stackOffsetNone(series: Series<any, any>, order: Iterable<number>): void;
2757
2758/**
2759 * Shifts the baseline down such that the center of the streamgraph is always at zero.
2760 *
2761 * @param series A series generated by a stack generator.
2762 * @param order An array of numeric indexes representing the stack order.
2763 */
2764export function stackOffsetSilhouette(series: Series<any, any>, order: Iterable<number>): void;
2765
2766/**
2767 * Shifts the baseline so as to minimize the weighted wiggle of layers. This offset is recommended for streamgraphs in conjunction with the inside-out order.
2768 * See Stacked Graphs—Geometry & Aesthetics by Bryon & Wattenberg for more information.
2769 *
2770 * @param series A series generated by a stack generator.
2771 * @param order An array of numeric indexes representing the stack order.
2772 */
2773export function stackOffsetWiggle(series: Series<any, any>, order: Iterable<number>): void;