algebrite
Version:
Computer Algebra System in Coffeescript
128 lines (88 loc) • 1.44 kB
text/coffeescript
###
Laguerre function
Example
laguerre(x,3)
Result
1 3 3 2
- --- x + --- x - 3 x + 1
6 2
The computation uses the following recurrence relation.
L(x,0,k) = 1
L(x,1,k) = -x + k + 1
n*L(x,n,k) = (2*(n-1)+1-x+k)*L(x,n-1,k) - (n-1+k)*L(x,n-2,k)
In the "for" loop i = n-1 so the recurrence relation becomes
(i+1)*L(x,n,k) = (2*i+1-x+k)*L(x,n-1,k) - (i+k)*L(x,n-2,k)
###
Eval_laguerre = ->
# 1st arg
push(cadr(p1))
Eval()
# 2nd arg
push(caddr(p1))
Eval()
# 3rd arg
push(cadddr(p1))
Eval()
p2 = pop()
if (p2 == symbol(NIL))
push_integer(0)
else
push(p2)
laguerre()
#define X p1
#define N p2
#define K p3
#define Y p4
#define Y0 p5
#define Y1 p6
laguerre = ->
n = 0
save()
p3 = pop()
p2 = pop()
p1 = pop()
push(p2)
n = pop_integer()
if (n < 0 || isNaN(n))
push_symbol(LAGUERRE)
push(p1)
push(p2)
push(p3)
list(4)
restore()
return
if (issymbol(p1))
laguerre2(n)
else
p4 = p1; # do this when p1 is an expr
p1 = symbol(SECRETX)
laguerre2(n)
p1 = p4
push(symbol(SECRETX))
push(p1)
subst()
Eval()
restore()
laguerre2 = (n) ->
i = 0
push_integer(1)
push_integer(0)
p6 = pop()
for i in [0...n]
p5 = p6
p6 = pop()
push_integer(2 * i + 1)
push(p1)
subtract()
push(p3)
add()
push(p6)
multiply()
push_integer(i)
push(p3)
add()
push(p5)
multiply()
subtract()
push_integer(i + 1)
divide()