UNPKG

2.34 kBJavaScriptView Raw
1var md = require('markdown-it')(),
2 mk = require('./index');
3
4md.use(mk);
5
6var input = document.getElementById('input'),
7 output = document.getElementById('output'),
8 button = document.getElementById('button');
9
10button.addEventListener('click', function(ev){
11
12 var result = md.render(input.value);
13
14 output.innerHTML = result;
15
16});
17
18/*
19
20# Some Math
21
22$\sqrt{3x-1}+(1+x)^2$
23
24# Maxwells Equations
25
26$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
27= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$
28
29$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ (curl of $\vec{\mathbf{E}}$ is proportional to the time derivative of $\vec{\mathbf{B}}$)
30
31$\nabla \cdot \vec{\mathbf{B}} = 0$
32
33
34
35\sqrt{3x-1}+(1+x)^2
36
37c = \pm\sqrt{a^2 + b^2}
38
39Maxwell's Equations
40
41\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
42= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho
43
44\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}
45
46\nabla \cdot \vec{\mathbf{B}} = 0
47
48Same thing in a LaTeX array
49\begin{array}{c}
50
51\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &
52= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
53
54\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
55
56\nabla \cdot \vec{\mathbf{B}} & = 0
57
58\end{array}
59
60
61\begin{array}{c}
62y_1 \\
63y_2 \mathtt{t}_i \\
64z_{3,4}
65\end{array}
66
67\begin{array}{c}
68x' &=& &x \sin\phi &+& z \cos\phi \\
69z' &=& - &x \cos\phi &+& z \sin\phi \\
70\end{array}
71
72
73
74# Maxwell's Equations
75
76
77equation | description
78----------|------------
79$\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero
80$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$
81$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha?
82
83![electricity](http://i.giphy.com/Gty2oDYQ1fih2.gif)
84*/