UNPKG

5.2 kBJavaScriptView Raw
1import { deepMap } from '../../utils/collection'
2import { sign } from '../../utils/number'
3import { factory } from '../../utils/factory'
4
5const name = 'erf'
6const dependencies = [
7 'typed'
8]
9
10export const createErf = /* #__PURE__ */ factory(name, dependencies, ({ typed }) => {
11 /**
12 * Compute the erf function of a value using a rational Chebyshev
13 * approximations for different intervals of x.
14 *
15 * This is a translation of W. J. Cody's Fortran implementation from 1987
16 * ( https://www.netlib.org/specfun/erf ). See the AMS publication
17 * "Rational Chebyshev Approximations for the Error Function" by W. J. Cody
18 * for an explanation of this process.
19 *
20 * For matrices, the function is evaluated element wise.
21 *
22 * Syntax:
23 *
24 * math.erf(x)
25 *
26 * Examples:
27 *
28 * math.erf(0.2) // returns 0.22270258921047847
29 * math.erf(-0.5) // returns -0.5204998778130465
30 * math.erf(4) // returns 0.9999999845827421
31 *
32 * @param {number | Array | Matrix} x A real number
33 * @return {number | Array | Matrix} The erf of `x`
34 */
35 return typed('name', {
36 number: function (x) {
37 const y = Math.abs(x)
38
39 if (y >= MAX_NUM) {
40 return sign(x)
41 }
42 if (y <= THRESH) {
43 return sign(x) * erf1(y)
44 }
45 if (y <= 4.0) {
46 return sign(x) * (1 - erfc2(y))
47 }
48 return sign(x) * (1 - erfc3(y))
49 },
50
51 'Array | Matrix': function (n) {
52 return deepMap(n, this)
53 }
54
55 // TODO: For complex numbers, use the approximation for the Faddeeva function
56 // from "More Efficient Computation of the Complex Error Function" (AMS)
57
58 })
59
60 /**
61 * Approximates the error function erf() for x <= 0.46875 using this function:
62 * n
63 * erf(x) = x * sum (p_j * x^(2j)) / (q_j * x^(2j))
64 * j=0
65 */
66 function erf1 (y) {
67 const ysq = y * y
68 let xnum = P[0][4] * ysq
69 let xden = ysq
70 let i
71
72 for (i = 0; i < 3; i += 1) {
73 xnum = (xnum + P[0][i]) * ysq
74 xden = (xden + Q[0][i]) * ysq
75 }
76 return y * (xnum + P[0][3]) / (xden + Q[0][3])
77 }
78
79 /**
80 * Approximates the complement of the error function erfc() for
81 * 0.46875 <= x <= 4.0 using this function:
82 * n
83 * erfc(x) = e^(-x^2) * sum (p_j * x^j) / (q_j * x^j)
84 * j=0
85 */
86 function erfc2 (y) {
87 let xnum = P[1][8] * y
88 let xden = y
89 let i
90
91 for (i = 0; i < 7; i += 1) {
92 xnum = (xnum + P[1][i]) * y
93 xden = (xden + Q[1][i]) * y
94 }
95 const result = (xnum + P[1][7]) / (xden + Q[1][7])
96 const ysq = parseInt(y * 16) / 16
97 const del = (y - ysq) * (y + ysq)
98 return Math.exp(-ysq * ysq) * Math.exp(-del) * result
99 }
100
101 /**
102 * Approximates the complement of the error function erfc() for x > 4.0 using
103 * this function:
104 *
105 * erfc(x) = (e^(-x^2) / x) * [ 1/sqrt(pi) +
106 * n
107 * 1/(x^2) * sum (p_j * x^(-2j)) / (q_j * x^(-2j)) ]
108 * j=0
109 */
110 function erfc3 (y) {
111 let ysq = 1 / (y * y)
112 let xnum = P[2][5] * ysq
113 let xden = ysq
114 let i
115
116 for (i = 0; i < 4; i += 1) {
117 xnum = (xnum + P[2][i]) * ysq
118 xden = (xden + Q[2][i]) * ysq
119 }
120 let result = ysq * (xnum + P[2][4]) / (xden + Q[2][4])
121 result = (SQRPI - result) / y
122 ysq = parseInt(y * 16) / 16
123 const del = (y - ysq) * (y + ysq)
124 return Math.exp(-ysq * ysq) * Math.exp(-del) * result
125 }
126})
127
128/**
129 * Upper bound for the first approximation interval, 0 <= x <= THRESH
130 * @constant
131 */
132const THRESH = 0.46875
133
134/**
135 * Constant used by W. J. Cody's Fortran77 implementation to denote sqrt(pi)
136 * @constant
137 */
138const SQRPI = 5.6418958354775628695e-1
139
140/**
141 * Coefficients for each term of the numerator sum (p_j) for each approximation
142 * interval (see W. J. Cody's paper for more details)
143 * @constant
144 */
145const P = [[
146 3.16112374387056560e00, 1.13864154151050156e02,
147 3.77485237685302021e02, 3.20937758913846947e03,
148 1.85777706184603153e-1
149], [
150 5.64188496988670089e-1, 8.88314979438837594e00,
151 6.61191906371416295e01, 2.98635138197400131e02,
152 8.81952221241769090e02, 1.71204761263407058e03,
153 2.05107837782607147e03, 1.23033935479799725e03,
154 2.15311535474403846e-8
155], [
156 3.05326634961232344e-1, 3.60344899949804439e-1,
157 1.25781726111229246e-1, 1.60837851487422766e-2,
158 6.58749161529837803e-4, 1.63153871373020978e-2
159]]
160
161/**
162 * Coefficients for each term of the denominator sum (q_j) for each approximation
163 * interval (see W. J. Cody's paper for more details)
164 * @constant
165 */
166const Q = [[
167 2.36012909523441209e01, 2.44024637934444173e02,
168 1.28261652607737228e03, 2.84423683343917062e03
169], [
170 1.57449261107098347e01, 1.17693950891312499e02,
171 5.37181101862009858e02, 1.62138957456669019e03,
172 3.29079923573345963e03, 4.36261909014324716e03,
173 3.43936767414372164e03, 1.23033935480374942e03
174], [
175 2.56852019228982242e00, 1.87295284992346047e00,
176 5.27905102951428412e-1, 6.05183413124413191e-2,
177 2.33520497626869185e-3
178]]
179
180/**
181 * Maximum/minimum safe numbers to input to erf() (in ES6+, this number is
182 * Number.[MAX|MIN]_SAFE_INTEGER). erf() for all numbers beyond this limit will
183 * return 1
184 */
185const MAX_NUM = Math.pow(2, 53)