meow
Version:
CLI app helper
1,879 lines (1,488 loc) • 64.4 kB
TypeScript
/**
Matches any [primitive value](https://developer.mozilla.org/en-US/docs/Glossary/Primitive).
@category Type
*/
type Primitive =
| null
| undefined
| string
| number
| boolean
| symbol
| bigint;
/**
Matches a JSON object.
This type can be useful to enforce some input to be JSON-compatible or as a super-type to be extended from. Don't use this as a direct return type as the user would have to double-cast it: `jsonObject as unknown as CustomResponse`. Instead, you could extend your CustomResponse type from it to ensure your type only uses JSON-compatible types: `interface CustomResponse extends JsonObject { … }`.
@category JSON
*/
type JsonObject = {[Key in string]: JsonValue} & {[Key in string]?: JsonValue | undefined};
/**
Matches a JSON array.
@category JSON
*/
type JsonArray = JsonValue[] | readonly JsonValue[];
/**
Matches any valid JSON primitive value.
@category JSON
*/
type JsonPrimitive = string | number | boolean | null;
/**
Matches any valid JSON value.
@see `Jsonify` if you need to transform a type to one that is assignable to `JsonValue`.
@category JSON
*/
type JsonValue = JsonPrimitive | JsonObject | JsonArray;
/**
Returns a boolean for whether the given type is `any`.
@link https://stackoverflow.com/a/49928360/1490091
Useful in type utilities, such as disallowing `any`s to be passed to a function.
@example
```
import type {IsAny} from 'type-fest';
const typedObject = {a: 1, b: 2} as const;
const anyObject: any = {a: 1, b: 2};
function get<O extends (IsAny<O> extends true ? {} : Record<string, number>), K extends keyof O = keyof O>(obj: O, key: K) {
return obj[key];
}
const typedA = get(typedObject, 'a');
//=> 1
const anyA = get(anyObject, 'a');
//=> any
```
@category Type Guard
@category Utilities
*/
type IsAny<T> = 0 extends 1 & NoInfer<T> ? true : false;
/**
Returns a boolean for whether the given key is an optional key of type.
This is useful when writing utility types or schema validators that need to differentiate `optional` keys.
@example
```
import type {IsOptionalKeyOf} from 'type-fest';
interface User {
name: string;
surname: string;
luckyNumber?: number;
}
interface Admin {
name: string;
surname?: string;
}
type T1 = IsOptionalKeyOf<User, 'luckyNumber'>;
//=> true
type T2 = IsOptionalKeyOf<User, 'name'>;
//=> false
type T3 = IsOptionalKeyOf<User, 'name' | 'luckyNumber'>;
//=> boolean
type T4 = IsOptionalKeyOf<User | Admin, 'name'>;
//=> false
type T5 = IsOptionalKeyOf<User | Admin, 'surname'>;
//=> boolean
```
@category Type Guard
@category Utilities
*/
type IsOptionalKeyOf<Type extends object, Key extends keyof Type> =
IsAny<Type | Key> extends true ? never
: Key extends keyof Type
? Type extends Record<Key, Type[Key]>
? false
: true
: false;
/**
Extract all optional keys from the given type.
This is useful when you want to create a new type that contains different type values for the optional keys only.
@example
```
import type {OptionalKeysOf, Except} from 'type-fest';
interface User {
name: string;
surname: string;
luckyNumber?: number;
}
const REMOVE_FIELD = Symbol('remove field symbol');
type UpdateOperation<Entity extends object> = Except<Partial<Entity>, OptionalKeysOf<Entity>> & {
[Key in OptionalKeysOf<Entity>]?: Entity[Key] | typeof REMOVE_FIELD;
};
const update1: UpdateOperation<User> = {
name: 'Alice'
};
const update2: UpdateOperation<User> = {
name: 'Bob',
luckyNumber: REMOVE_FIELD
};
```
@category Utilities
*/
type OptionalKeysOf<Type extends object> =
Type extends unknown // For distributing `Type`
? (keyof {[Key in keyof Type as
IsOptionalKeyOf<Type, Key> extends false
? never
: Key
]: never
}) & keyof Type // Intersect with `keyof Type` to ensure result of `OptionalKeysOf<Type>` is always assignable to `keyof Type`
: never; // Should never happen
/**
Extract all required keys from the given type.
This is useful when you want to create a new type that contains different type values for the required keys only or use the list of keys for validation purposes, etc...
@example
```
import type {RequiredKeysOf} from 'type-fest';
declare function createValidation<Entity extends object, Key extends RequiredKeysOf<Entity> = RequiredKeysOf<Entity>>(field: Key, validator: (value: Entity[Key]) => boolean): ValidatorFn;
interface User {
name: string;
surname: string;
luckyNumber?: number;
}
const validator1 = createValidation<User>('name', value => value.length < 25);
const validator2 = createValidation<User>('surname', value => value.length < 25);
```
@category Utilities
*/
type RequiredKeysOf<Type extends object> =
Type extends unknown // For distributing `Type`
? Exclude<keyof Type, OptionalKeysOf<Type>>
: never; // Should never happen
/**
Returns a boolean for whether the given type is `never`.
@link https://github.com/microsoft/TypeScript/issues/31751#issuecomment-498526919
@link https://stackoverflow.com/a/53984913/10292952
@link https://www.zhenghao.io/posts/ts-never
Useful in type utilities, such as checking if something does not occur.
@example
```
import type {IsNever, And} from 'type-fest';
// https://github.com/andnp/SimplyTyped/blob/master/src/types/strings.ts
type AreStringsEqual<A extends string, B extends string> =
And<
IsNever<Exclude<A, B>> extends true ? true : false,
IsNever<Exclude<B, A>> extends true ? true : false
>;
type EndIfEqual<I extends string, O extends string> =
AreStringsEqual<I, O> extends true
? never
: void;
function endIfEqual<I extends string, O extends string>(input: I, output: O): EndIfEqual<I, O> {
if (input === output) {
process.exit(0);
}
}
endIfEqual('abc', 'abc');
//=> never
endIfEqual('abc', '123');
//=> void
```
@category Type Guard
@category Utilities
*/
type IsNever<T> = [T] extends [never] ? true : false;
/**
An if-else-like type that resolves depending on whether the given `boolean` type is `true` or `false`.
Use-cases:
- You can use this in combination with `Is*` types to create an if-else-like experience. For example, `If<IsAny<any>, 'is any', 'not any'>`.
Note:
- Returns a union of if branch and else branch if the given type is `boolean` or `any`. For example, `If<boolean, 'Y', 'N'>` will return `'Y' | 'N'`.
- Returns the else branch if the given type is `never`. For example, `If<never, 'Y', 'N'>` will return `'N'`.
@example
```
import {If} from 'type-fest';
type A = If<true, 'yes', 'no'>;
//=> 'yes'
type B = If<false, 'yes', 'no'>;
//=> 'no'
type C = If<boolean, 'yes', 'no'>;
//=> 'yes' | 'no'
type D = If<any, 'yes', 'no'>;
//=> 'yes' | 'no'
type E = If<never, 'yes', 'no'>;
//=> 'no'
```
@example
```
import {If, IsAny, IsNever} from 'type-fest';
type A = If<IsAny<unknown>, 'is any', 'not any'>;
//=> 'not any'
type B = If<IsNever<never>, 'is never', 'not never'>;
//=> 'is never'
```
@example
```
import {If, IsEqual} from 'type-fest';
type IfEqual<T, U, IfBranch, ElseBranch> = If<IsEqual<T, U>, IfBranch, ElseBranch>;
type A = IfEqual<string, string, 'equal', 'not equal'>;
//=> 'equal'
type B = IfEqual<string, number, 'equal', 'not equal'>;
//=> 'not equal'
```
@category Type Guard
@category Utilities
*/
type If<Type extends boolean, IfBranch, ElseBranch> =
IsNever<Type> extends true
? ElseBranch
: Type extends true
? IfBranch
: ElseBranch;
/**
Represents an array with `unknown` value.
Use case: You want a type that all arrays can be assigned to, but you don't care about the value.
@example
```
import type {UnknownArray} from 'type-fest';
type IsArray<T> = T extends UnknownArray ? true : false;
type A = IsArray<['foo']>;
//=> true
type B = IsArray<readonly number[]>;
//=> true
type C = IsArray<string>;
//=> false
```
@category Type
@category Array
*/
type UnknownArray = readonly unknown[];
/**
Returns a boolean for whether A is false.
@example
```
Not<true>;
//=> false
Not<false>;
//=> true
```
*/
type Not<A extends boolean> = A extends true
? false
: A extends false
? true
: never;
/**
An if-else-like type that resolves depending on whether the given type is `any` or `never`.
@example
```
// When `T` is a NOT `any` or `never` (like `string`) => Returns `IfNotAnyOrNever` branch
type A = IfNotAnyOrNever<string, 'VALID', 'IS_ANY', 'IS_NEVER'>;
//=> 'VALID'
// When `T` is `any` => Returns `IfAny` branch
type B = IfNotAnyOrNever<any, 'VALID', 'IS_ANY', 'IS_NEVER'>;
//=> 'IS_ANY'
// When `T` is `never` => Returns `IfNever` branch
type C = IfNotAnyOrNever<never, 'VALID', 'IS_ANY', 'IS_NEVER'>;
//=> 'IS_NEVER'
```
*/
type IfNotAnyOrNever<T, IfNotAnyOrNever, IfAny = any, IfNever = never> =
If<IsAny<T>, IfAny, If<IsNever<T>, IfNever, IfNotAnyOrNever>>;
/**
Indicates the value of `exactOptionalPropertyTypes` compiler option.
*/
type IsExactOptionalPropertyTypesEnabled = [(string | undefined)?] extends [string?]
? false
: true;
/**
Transforms a tuple type by replacing it's rest element with a single element that has the same type as the rest element, while keeping all the non-rest elements intact.
@example
```
type A = CollapseRestElement<[string, string, ...number[]]>;
//=> [string, string, number]
type B = CollapseRestElement<[...string[], number, number]>;
//=> [string, number, number]
type C = CollapseRestElement<[string, string, ...Array<number | bigint>]>;
//=> [string, string, number | bigint]
type D = CollapseRestElement<[string, number]>;
//=> [string, number]
```
Note: Optional modifiers (`?`) are removed from elements unless the `exactOptionalPropertyTypes` compiler option is disabled. When disabled, there's an additional `| undefined` for optional elements.
@example
```
// `exactOptionalPropertyTypes` enabled
type A = CollapseRestElement<[string?, string?, ...number[]]>;
//=> [string, string, number]
// `exactOptionalPropertyTypes` disabled
type B = CollapseRestElement<[string?, string?, ...number[]]>;
//=> [string | undefined, string | undefined, number]
```
*/
type CollapseRestElement<TArray extends UnknownArray> = IfNotAnyOrNever<TArray, _CollapseRestElement<TArray>>;
type _CollapseRestElement<
TArray extends UnknownArray,
ForwardAccumulator extends UnknownArray = [],
BackwardAccumulator extends UnknownArray = [],
> =
TArray extends UnknownArray // For distributing `TArray`
? keyof TArray & `${number}` extends never
// Enters this branch, if `TArray` is empty (e.g., []),
// or `TArray` contains no non-rest elements preceding the rest element (e.g., `[...string[]]` or `[...string[], string]`).
? TArray extends readonly [...infer Rest, infer Last]
? _CollapseRestElement<Rest, ForwardAccumulator, [Last, ...BackwardAccumulator]> // Accumulate elements that are present after the rest element.
: TArray extends readonly []
? [...ForwardAccumulator, ...BackwardAccumulator]
: [...ForwardAccumulator, TArray[number], ...BackwardAccumulator] // Add the rest element between the accumulated elements.
: TArray extends readonly [(infer First)?, ...infer Rest]
? _CollapseRestElement<
Rest,
[
...ForwardAccumulator,
'0' extends OptionalKeysOf<TArray>
? If<IsExactOptionalPropertyTypesEnabled, First, First | undefined> // Add `| undefined` for optional elements, if `exactOptionalPropertyTypes` is disabled.
: First,
],
BackwardAccumulator
>
: never // Should never happen, since `[(infer First)?, ...infer Rest]` is a top-type for arrays.
: never; // Should never happen
type Whitespace =
| '\u{9}' // '\t'
| '\u{A}' // '\n'
| '\u{B}' // '\v'
| '\u{C}' // '\f'
| '\u{D}' // '\r'
| '\u{20}' // ' '
| '\u{85}'
| '\u{A0}'
| '\u{1680}'
| '\u{2000}'
| '\u{2001}'
| '\u{2002}'
| '\u{2003}'
| '\u{2004}'
| '\u{2005}'
| '\u{2006}'
| '\u{2007}'
| '\u{2008}'
| '\u{2009}'
| '\u{200A}'
| '\u{2028}'
| '\u{2029}'
| '\u{202F}'
| '\u{205F}'
| '\u{3000}'
| '\u{FEFF}';
type WordSeparators = '-' | '_' | Whitespace;
/**
Remove spaces from the left side.
*/
type TrimLeft<V extends string> = V extends `${Whitespace}${infer R}` ? TrimLeft<R> : V;
/**
Remove spaces from the right side.
*/
type TrimRight<V extends string> = V extends `${infer R}${Whitespace}` ? TrimRight<R> : V;
/**
Remove leading and trailing spaces from a string.
@example
```
import type {Trim} from 'type-fest';
Trim<' foo '>
//=> 'foo'
```
@category String
@category Template literal
*/
type Trim<V extends string> = TrimLeft<TrimRight<V>>;
/**
Useful to flatten the type output to improve type hints shown in editors. And also to transform an interface into a type to aide with assignability.
@example
```
import type {Simplify} from 'type-fest';
type PositionProps = {
top: number;
left: number;
};
type SizeProps = {
width: number;
height: number;
};
// In your editor, hovering over `Props` will show a flattened object with all the properties.
type Props = Simplify<PositionProps & SizeProps>;
```
Sometimes it is desired to pass a value as a function argument that has a different type. At first inspection it may seem assignable, and then you discover it is not because the `value`'s type definition was defined as an interface. In the following example, `fn` requires an argument of type `Record<string, unknown>`. If the value is defined as a literal, then it is assignable. And if the `value` is defined as type using the `Simplify` utility the value is assignable. But if the `value` is defined as an interface, it is not assignable because the interface is not sealed and elsewhere a non-string property could be added to the interface.
If the type definition must be an interface (perhaps it was defined in a third-party npm package), then the `value` can be defined as `const value: Simplify<SomeInterface> = ...`. Then `value` will be assignable to the `fn` argument. Or the `value` can be cast as `Simplify<SomeInterface>` if you can't re-declare the `value`.
@example
```
import type {Simplify} from 'type-fest';
interface SomeInterface {
foo: number;
bar?: string;
baz: number | undefined;
}
type SomeType = {
foo: number;
bar?: string;
baz: number | undefined;
};
const literal = {foo: 123, bar: 'hello', baz: 456};
const someType: SomeType = literal;
const someInterface: SomeInterface = literal;
function fn(object: Record<string, unknown>): void {}
fn(literal); // Good: literal object type is sealed
fn(someType); // Good: type is sealed
fn(someInterface); // Error: Index signature for type 'string' is missing in type 'someInterface'. Because `interface` can be re-opened
fn(someInterface as Simplify<SomeInterface>); // Good: transform an `interface` into a `type`
```
@link https://github.com/microsoft/TypeScript/issues/15300
@see SimplifyDeep
@category Object
*/
type Simplify<T> = {[KeyType in keyof T]: T[KeyType]} & {};
/**
Omit any index signatures from the given object type, leaving only explicitly defined properties.
This is the counterpart of `PickIndexSignature`.
Use-cases:
- Remove overly permissive signatures from third-party types.
This type was taken from this [StackOverflow answer](https://stackoverflow.com/a/68261113/420747).
It relies on the fact that an empty object (`{}`) is assignable to an object with just an index signature, like `Record<string, unknown>`, but not to an object with explicitly defined keys, like `Record<'foo' | 'bar', unknown>`.
(The actual value type, `unknown`, is irrelevant and could be any type. Only the key type matters.)
```
const indexed: Record<string, unknown> = {}; // Allowed
const keyed: Record<'foo', unknown> = {}; // Error
// => TS2739: Type '{}' is missing the following properties from type 'Record<"foo" | "bar", unknown>': foo, bar
```
Instead of causing a type error like the above, you can also use a [conditional type](https://www.typescriptlang.org/docs/handbook/2/conditional-types.html) to test whether a type is assignable to another:
```
type Indexed = {} extends Record<string, unknown>
? '✅ `{}` is assignable to `Record<string, unknown>`'
: '❌ `{}` is NOT assignable to `Record<string, unknown>`';
// => '✅ `{}` is assignable to `Record<string, unknown>`'
type Keyed = {} extends Record<'foo' | 'bar', unknown>
? "✅ `{}` is assignable to `Record<'foo' | 'bar', unknown>`"
: "❌ `{}` is NOT assignable to `Record<'foo' | 'bar', unknown>`";
// => "❌ `{}` is NOT assignable to `Record<'foo' | 'bar', unknown>`"
```
Using a [mapped type](https://www.typescriptlang.org/docs/handbook/2/mapped-types.html#further-exploration), you can then check for each `KeyType` of `ObjectType`...
```
import type {OmitIndexSignature} from 'type-fest';
type OmitIndexSignature<ObjectType> = {
[KeyType in keyof ObjectType // Map each key of `ObjectType`...
]: ObjectType[KeyType]; // ...to its original value, i.e. `OmitIndexSignature<Foo> == Foo`.
};
```
...whether an empty object (`{}`) would be assignable to an object with that `KeyType` (`Record<KeyType, unknown>`)...
```
import type {OmitIndexSignature} from 'type-fest';
type OmitIndexSignature<ObjectType> = {
[KeyType in keyof ObjectType
// Is `{}` assignable to `Record<KeyType, unknown>`?
as {} extends Record<KeyType, unknown>
? ... // ✅ `{}` is assignable to `Record<KeyType, unknown>`
: ... // ❌ `{}` is NOT assignable to `Record<KeyType, unknown>`
]: ObjectType[KeyType];
};
```
If `{}` is assignable, it means that `KeyType` is an index signature and we want to remove it. If it is not assignable, `KeyType` is a "real" key and we want to keep it.
@example
```
import type {OmitIndexSignature} from 'type-fest';
interface Example {
// These index signatures will be removed.
[x: string]: any
[x: number]: any
[x: symbol]: any
[x: `head-${string}`]: string
[x: `${string}-tail`]: string
[x: `head-${string}-tail`]: string
[x: `${bigint}`]: string
[x: `embedded-${number}`]: string
// These explicitly defined keys will remain.
foo: 'bar';
qux?: 'baz';
}
type ExampleWithoutIndexSignatures = OmitIndexSignature<Example>;
// => { foo: 'bar'; qux?: 'baz' | undefined; }
```
@see PickIndexSignature
@category Object
*/
type OmitIndexSignature<ObjectType> = {
[KeyType in keyof ObjectType as {} extends Record<KeyType, unknown>
? never
: KeyType]: ObjectType[KeyType];
};
/**
Pick only index signatures from the given object type, leaving out all explicitly defined properties.
This is the counterpart of `OmitIndexSignature`.
@example
```
import type {PickIndexSignature} from 'type-fest';
declare const symbolKey: unique symbol;
type Example = {
// These index signatures will remain.
[x: string]: unknown;
[x: number]: unknown;
[x: symbol]: unknown;
[x: `head-${string}`]: string;
[x: `${string}-tail`]: string;
[x: `head-${string}-tail`]: string;
[x: `${bigint}`]: string;
[x: `embedded-${number}`]: string;
// These explicitly defined keys will be removed.
['kebab-case-key']: string;
[symbolKey]: string;
foo: 'bar';
qux?: 'baz';
};
type ExampleIndexSignature = PickIndexSignature<Example>;
// {
// [x: string]: unknown;
// [x: number]: unknown;
// [x: symbol]: unknown;
// [x: `head-${string}`]: string;
// [x: `${string}-tail`]: string;
// [x: `head-${string}-tail`]: string;
// [x: `${bigint}`]: string;
// [x: `embedded-${number}`]: string;
// }
```
@see OmitIndexSignature
@category Object
*/
type PickIndexSignature<ObjectType> = {
[KeyType in keyof ObjectType as {} extends Record<KeyType, unknown>
? KeyType
: never]: ObjectType[KeyType];
};
// Merges two objects without worrying about index signatures.
type SimpleMerge<Destination, Source> = {
[Key in keyof Destination as Key extends keyof Source ? never : Key]: Destination[Key];
} & Source;
/**
Merge two types into a new type. Keys of the second type overrides keys of the first type.
@example
```
import type {Merge} from 'type-fest';
interface Foo {
[x: string]: unknown;
[x: number]: unknown;
foo: string;
bar: symbol;
}
type Bar = {
[x: number]: number;
[x: symbol]: unknown;
bar: Date;
baz: boolean;
};
export type FooBar = Merge<Foo, Bar>;
// => {
// [x: string]: unknown;
// [x: number]: number;
// [x: symbol]: unknown;
// foo: string;
// bar: Date;
// baz: boolean;
// }
```
@category Object
*/
type Merge<Destination, Source> =
Simplify<
SimpleMerge<PickIndexSignature<Destination>, PickIndexSignature<Source>>
& SimpleMerge<OmitIndexSignature<Destination>, OmitIndexSignature<Source>>
>;
/**
Merges user specified options with default options.
@example
```
type PathsOptions = {maxRecursionDepth?: number; leavesOnly?: boolean};
type DefaultPathsOptions = {maxRecursionDepth: 10; leavesOnly: false};
type SpecifiedOptions = {leavesOnly: true};
type Result = ApplyDefaultOptions<PathsOptions, DefaultPathsOptions, SpecifiedOptions>;
//=> {maxRecursionDepth: 10; leavesOnly: true}
```
@example
```
// Complains if default values are not provided for optional options
type PathsOptions = {maxRecursionDepth?: number; leavesOnly?: boolean};
type DefaultPathsOptions = {maxRecursionDepth: 10};
type SpecifiedOptions = {};
type Result = ApplyDefaultOptions<PathsOptions, DefaultPathsOptions, SpecifiedOptions>;
// ~~~~~~~~~~~~~~~~~~~
// Property 'leavesOnly' is missing in type 'DefaultPathsOptions' but required in type '{ maxRecursionDepth: number; leavesOnly: boolean; }'.
```
@example
```
// Complains if an option's default type does not conform to the expected type
type PathsOptions = {maxRecursionDepth?: number; leavesOnly?: boolean};
type DefaultPathsOptions = {maxRecursionDepth: 10; leavesOnly: 'no'};
type SpecifiedOptions = {};
type Result = ApplyDefaultOptions<PathsOptions, DefaultPathsOptions, SpecifiedOptions>;
// ~~~~~~~~~~~~~~~~~~~
// Types of property 'leavesOnly' are incompatible. Type 'string' is not assignable to type 'boolean'.
```
@example
```
// Complains if an option's specified type does not conform to the expected type
type PathsOptions = {maxRecursionDepth?: number; leavesOnly?: boolean};
type DefaultPathsOptions = {maxRecursionDepth: 10; leavesOnly: false};
type SpecifiedOptions = {leavesOnly: 'yes'};
type Result = ApplyDefaultOptions<PathsOptions, DefaultPathsOptions, SpecifiedOptions>;
// ~~~~~~~~~~~~~~~~
// Types of property 'leavesOnly' are incompatible. Type 'string' is not assignable to type 'boolean'.
```
*/
type ApplyDefaultOptions<
Options extends object,
Defaults extends Simplify<Omit<Required<Options>, RequiredKeysOf<Options>> & Partial<Record<RequiredKeysOf<Options>, never>>>,
SpecifiedOptions extends Options,
> =
If<IsAny<SpecifiedOptions>, Defaults,
If<IsNever<SpecifiedOptions>, Defaults,
Simplify<Merge<Defaults, {
[Key in keyof SpecifiedOptions
as Key extends OptionalKeysOf<Options> ? undefined extends SpecifiedOptions[Key] ? never : Key : Key
]: SpecifiedOptions[Key]
}> & Required<Options>>>>;
/**
Returns a boolean for whether either of two given types are true.
Use-case: Constructing complex conditional types where multiple conditions must be satisfied.
@example
```
import type {Or} from 'type-fest';
type TT = Or<true, false>;
//=> true
type TF = Or<true, false>;
//=> true
type FT = Or<false, true>;
//=> true
type FF = Or<false, false>;
//=> false
```
Note: When `boolean` is passed as an argument, it is distributed into separate cases, and the final result is a union of those cases.
For example, `And<false, boolean>` expands to `And<false, true> | And<false, false>`, which simplifies to `true | false` (i.e., `boolean`).
@example
```
import type {And} from 'type-fest';
type A = Or<false, boolean>;
//=> boolean
type B = Or<boolean, false>;
//=> boolean
type C = Or<true, boolean>;
//=> true
type D = Or<boolean, true>;
//=> true
type E = Or<boolean, boolean>;
//=> boolean
```
Note: If `never` is passed as an argument, it is treated as `false` and the result is computed accordingly.
@example
```
import type {Or} from 'type-fest';
type A = Or<true, never>;
//=> true
type B = Or<never, true>;
//=> true
type C = Or<false, never>;
//=> false
type D = Or<never, false>;
//=> false
type E = Or<boolean, never>;
//=> boolean
type F = Or<never, boolean>;
//=> boolean
type G = Or<never, never>;
//=> false
```
@see {@link And}
*/
type Or<A extends boolean, B extends boolean> =
_Or<If<IsNever<A>, false, A>, If<IsNever<B>, false, B>>; // `never` is treated as `false`
type _Or<A extends boolean, B extends boolean> = A extends true
? true
: B extends true
? true
: false;
/**
@see {@link AllExtend}
*/
type AllExtendOptions = {
/**
Consider `never` elements to match the target type only if the target type itself is `never` (or `any`).
- When set to `true` (default), `never` is _not_ treated as a bottom type, instead, it is treated as a type that matches only itself (or `any`).
- When set to `false`, `never` is treated as a bottom type, and behaves as it normally would.
@default true
@example
```
import type {AllExtend} from 'type-fest';
type A = AllExtend<[1, 2, never], number, {strictNever: true}>;
//=> false
type B = AllExtend<[1, 2, never], number, {strictNever: false}>;
//=> true
type C = AllExtend<[never, never], never, {strictNever: true}>;
//=> true
type D = AllExtend<[never, never], never, {strictNever: false}>;
//=> true
type E = AllExtend<['a', 'b', never], any, {strictNever: true}>;
//=> true
type F = AllExtend<['a', 'b', never], any, {strictNever: false}>;
//=> true
type G = AllExtend<[never, 1], never, {strictNever: true}>;
//=> false
type H = AllExtend<[never, 1], never, {strictNever: false}>;
//=> false
```
*/
strictNever?: boolean;
};
type DefaultAllExtendOptions = {
strictNever: true;
};
/**
Returns a boolean for whether every element in an array type extends another type.
@example
```
import type {AllExtend} from 'type-fest';
type A = AllExtend<[1, 2, 3], number>;
//=> true
type B = AllExtend<[1, 2, '3'], number>;
//=> false
type C = AllExtend<[number, number | string], number>;
//=> boolean
type D = AllExtend<[true, boolean, true], true>;
//=> boolean
```
Note: Behaviour of optional elements depend on the `exactOptionalPropertyTypes` compiler option. When the option is disabled, the target type must include `undefined` for a successful match.
```
import type {AllExtend} from 'type-fest';
// `exactOptionalPropertyTypes` enabled
type A = AllExtend<[1?, 2?, 3?], number>;
//=> true
// `exactOptionalPropertyTypes` disabled
type B = AllExtend<[1?, 2?, 3?], number>;
//=> false
// `exactOptionalPropertyTypes` disabled
type C = AllExtend<[1?, 2?, 3?], number | undefined>;
//=> true
```
@see {@link AllExtendOptions}
@category Utilities
@category Array
*/
type AllExtend<TArray extends UnknownArray, Type, Options extends AllExtendOptions = {}> =
_AllExtend<CollapseRestElement<TArray>, Type, ApplyDefaultOptions<AllExtendOptions, DefaultAllExtendOptions, Options>>;
type _AllExtend<TArray extends UnknownArray, Type, Options extends Required<AllExtendOptions>> = IfNotAnyOrNever<TArray, If<IsAny<Type>, true,
TArray extends readonly [infer First, ...infer Rest]
? IsNever<First> extends true
? Or<IsNever<Type>, Not<Options['strictNever']>> extends true
// If target `Type` is also `never` OR `strictNever` is disabled, recurse further.
? _AllExtend<Rest, Type, Options>
: false
: First extends Type
? _AllExtend<Rest, Type, Options>
: false
: true
>, false, false>;
/**
Returns a boolean for whether the string is numeric.
This type is a workaround for [Microsoft/TypeScript#46109](https://github.com/microsoft/TypeScript/issues/46109#issuecomment-930307987).
*/
type IsNumeric<T extends string> = T extends `${number}`
? Trim<T> extends T
? true
: false
: false;
/**
Allows creating a union type by combining primitive types and literal types without sacrificing auto-completion in IDEs for the literal type part of the union.
Currently, when a union type of a primitive type is combined with literal types, TypeScript loses all information about the combined literals. Thus, when such type is used in an IDE with autocompletion, no suggestions are made for the declared literals.
This type is a workaround for [Microsoft/TypeScript#29729](https://github.com/Microsoft/TypeScript/issues/29729). It will be removed as soon as it's not needed anymore.
@example
```
import type {LiteralUnion} from 'type-fest';
// Before
type Pet = 'dog' | 'cat' | string;
const pet: Pet = '';
// Start typing in your TypeScript-enabled IDE.
// You **will not** get auto-completion for `dog` and `cat` literals.
// After
type Pet2 = LiteralUnion<'dog' | 'cat', string>;
const pet: Pet2 = '';
// You **will** get auto-completion for `dog` and `cat` literals.
```
@category Type
*/
type LiteralUnion<
LiteralType,
BaseType extends Primitive,
> = LiteralType | (BaseType & Record<never, never>);
/**
Returns a boolean for whether the given string literal is lowercase.
@example
```
import type {IsLowercase} from 'type-fest';
IsLowercase<'abc'>;
//=> true
IsLowercase<'Abc'>;
//=> false
IsLowercase<string>;
//=> boolean
```
*/
type IsLowercase<S extends string> = AllExtend<_IsLowercase<S>, true>;
/**
Loops through each part in the string and returns a boolean array indicating whether each part is lowercase.
*/
type _IsLowercase<S extends string, Accumulator extends boolean[] = []> = S extends `${infer First}${infer Rest}`
? _IsLowercase<Rest, [...Accumulator, IsLowercaseHelper<First>]>
: [...Accumulator, IsLowercaseHelper<S>];
/**
Returns a boolean for whether an individual part of the string is lowercase.
*/
type IsLowercaseHelper<S extends string> = S extends Lowercase<string>
? true
: S extends Uppercase<string> | Capitalize<string> | `${string}${Uppercase<string>}${string}`
? false
: boolean;
/**
Returns a boolean for whether the given string literal is uppercase.
@example
```
import type {IsUppercase} from 'type-fest';
IsUppercase<'ABC'>;
//=> true
IsUppercase<'Abc'>;
//=> false
IsUppercase<string>;
//=> boolean
```
*/
type IsUppercase<S extends string> = AllExtend<_IsUppercase<S>, true>;
/**
Loops through each part in the string and returns a boolean array indicating whether each part is uppercase.
*/
type _IsUppercase<S extends string, Accumulator extends boolean[] = []> = S extends `${infer First}${infer Rest}`
? _IsUppercase<Rest, [...Accumulator, IsUppercaseHelper<First>]>
: [...Accumulator, IsUppercaseHelper<S>];
/**
Returns a boolean for whether an individual part of the string is uppercase.
*/
type IsUppercaseHelper<S extends string> = S extends Uppercase<string>
? true
: S extends Lowercase<string> | Uncapitalize<string> | `${string}${Lowercase<string>}${string}`
? false
: boolean;
type SkipEmptyWord<Word extends string> = Word extends '' ? [] : [Word];
type RemoveLastCharacter<
Sentence extends string,
Character extends string,
> = Sentence extends `${infer LeftSide}${Character}`
? SkipEmptyWord<LeftSide>
: never;
/**
Words options.
@see {@link Words}
*/
type WordsOptions = {
/**
Split on numeric sequence.
@default true
@example
```
type Example1 = Words<'p2pNetwork', {splitOnNumbers: true}>;
//=> ["p", "2", "p", "Network"]
type Example2 = Words<'p2pNetwork', {splitOnNumbers: false}>;
//=> ["p2p", "Network"]
```
*/
splitOnNumbers?: boolean;
};
type DefaultWordsOptions = {
splitOnNumbers: true;
};
/**
Split a string (almost) like Lodash's `_.words()` function.
- Split on each word that begins with a capital letter.
- Split on each {@link WordSeparators}.
- Split on numeric sequence.
@example
```
import type {Words} from 'type-fest';
type Words0 = Words<'helloWorld'>;
//=> ['hello', 'World']
type Words1 = Words<'helloWORLD'>;
//=> ['hello', 'WORLD']
type Words2 = Words<'hello-world'>;
//=> ['hello', 'world']
type Words3 = Words<'--hello the_world'>;
//=> ['hello', 'the', 'world']
type Words4 = Words<'lifeIs42'>;
//=> ['life', 'Is', '42']
type Words5 = Words<'p2pNetwork', {splitOnNumbers: false}>;
//=> ['p2p', 'Network']
```
@category Change case
@category Template literal
*/
type Words<Sentence extends string, Options extends WordsOptions = {}> =
WordsImplementation<Sentence, ApplyDefaultOptions<WordsOptions, DefaultWordsOptions, Options>>;
type WordsImplementation<
Sentence extends string,
Options extends Required<WordsOptions>,
LastCharacter extends string = '',
CurrentWord extends string = '',
> = Sentence extends `${infer FirstCharacter}${infer RemainingCharacters}`
? FirstCharacter extends WordSeparators
// Skip word separator
? [...SkipEmptyWord<CurrentWord>, ...WordsImplementation<RemainingCharacters, Options>]
: LastCharacter extends ''
// Fist char of word
? WordsImplementation<RemainingCharacters, Options, FirstCharacter, FirstCharacter>
// Case change: non-numeric to numeric
: [false, true] extends [IsNumeric<LastCharacter>, IsNumeric<FirstCharacter>]
? Options['splitOnNumbers'] extends true
// Split on number: push word
? [...SkipEmptyWord<CurrentWord>, ...WordsImplementation<RemainingCharacters, Options, FirstCharacter, FirstCharacter>]
// No split on number: concat word
: WordsImplementation<RemainingCharacters, Options, FirstCharacter, `${CurrentWord}${FirstCharacter}`>
// Case change: numeric to non-numeric
: [true, false] extends [IsNumeric<LastCharacter>, IsNumeric<FirstCharacter>]
? Options['splitOnNumbers'] extends true
// Split on number: push word
? [...SkipEmptyWord<CurrentWord>, ...WordsImplementation<RemainingCharacters, Options, FirstCharacter, FirstCharacter>]
// No split on number: concat word
: WordsImplementation<RemainingCharacters, Options, FirstCharacter, `${CurrentWord}${FirstCharacter}`>
// No case change: concat word
: [true, true] extends [IsNumeric<LastCharacter>, IsNumeric<FirstCharacter>]
? WordsImplementation<RemainingCharacters, Options, FirstCharacter, `${CurrentWord}${FirstCharacter}`>
// Case change: lower to upper, push word
: [true, true] extends [IsLowercase<LastCharacter>, IsUppercase<FirstCharacter>]
? [...SkipEmptyWord<CurrentWord>, ...WordsImplementation<RemainingCharacters, Options, FirstCharacter, FirstCharacter>]
// Case change: upper to lower, brings back the last character, push word
: [true, true] extends [IsUppercase<LastCharacter>, IsLowercase<FirstCharacter>]
? [...RemoveLastCharacter<CurrentWord, LastCharacter>, ...WordsImplementation<RemainingCharacters, Options, FirstCharacter, `${LastCharacter}${FirstCharacter}`>]
// No case change: concat word
: WordsImplementation<RemainingCharacters, Options, FirstCharacter, `${CurrentWord}${FirstCharacter}`>
: [...SkipEmptyWord<CurrentWord>];
/**
CamelCase options.
@see {@link CamelCase}
*/
type CamelCaseOptions = {
/**
Whether to preserved consecutive uppercase letter.
@default false
*/
preserveConsecutiveUppercase?: boolean;
};
type DefaultCamelCaseOptions = {
preserveConsecutiveUppercase: false;
};
/**
Convert an array of words to camel-case.
*/
type CamelCaseFromArray<
Words extends string[],
Options extends Required<CamelCaseOptions>,
OutputString extends string = '',
> = Words extends [
infer FirstWord extends string,
...infer RemainingWords extends string[],
]
? Options['preserveConsecutiveUppercase'] extends true
? `${Capitalize<FirstWord>}${CamelCaseFromArray<RemainingWords, Options>}`
: `${Capitalize<Lowercase<FirstWord>>}${CamelCaseFromArray<RemainingWords, Options>}`
: OutputString;
/**
Convert a string literal to camel-case.
This can be useful when, for example, converting some kebab-cased command-line flags or a snake-cased database result.
By default, consecutive uppercase letter are preserved. See {@link CamelCaseOptions.preserveConsecutiveUppercase preserveConsecutiveUppercase} option to change this behaviour.
@example
```
import type {CamelCase} from 'type-fest';
// Simple
const someVariable: CamelCase<'foo-bar'> = 'fooBar';
const preserveConsecutiveUppercase: CamelCase<'foo-BAR-baz', {preserveConsecutiveUppercase: true}> = 'fooBARBaz';
// Advanced
type CamelCasedProperties<T> = {
[K in keyof T as CamelCase<K>]: T[K]
};
interface RawOptions {
'dry-run': boolean;
'full_family_name': string;
foo: number;
BAR: string;
QUZ_QUX: number;
'OTHER-FIELD': boolean;
}
const dbResult: CamelCasedProperties<RawOptions> = {
dryRun: true,
fullFamilyName: 'bar.js',
foo: 123,
bar: 'foo',
quzQux: 6,
otherField: false
};
```
@category Change case
@category Template literal
*/
type CamelCase<Type, Options extends CamelCaseOptions = {}> = Type extends string
? string extends Type
? Type
: Uncapitalize<CamelCaseFromArray<
Words<Type extends Uppercase<Type> ? Lowercase<Type> : Type>,
ApplyDefaultOptions<CamelCaseOptions, DefaultCamelCaseOptions, Options>
>>
: Type;
/**
Convert object properties to camel case but not recursively.
This can be useful when, for example, converting some API types from a different style.
@see CamelCasedPropertiesDeep
@see CamelCase
@example
```
import type {CamelCasedProperties} from 'type-fest';
interface User {
UserId: number;
UserName: string;
}
const result: CamelCasedProperties<User> = {
userId: 1,
userName: 'Tom',
};
const preserveConsecutiveUppercase: CamelCasedProperties<{fooBAR: string}, {preserveConsecutiveUppercase: true}> = {
fooBAR: 'string',
};
```
@category Change case
@category Template literal
@category Object
*/
type CamelCasedProperties<Value, Options extends CamelCaseOptions = {}> = Value extends Function
? Value
: Value extends Array<infer U>
? Value
: {
[K in keyof Value as
CamelCase<K, ApplyDefaultOptions<CamelCaseOptions, DefaultCamelCaseOptions, Options>>
]: Value[K];
};
declare namespace PackageJson {
/**
A person who has been involved in creating or maintaining the package.
*/
export type Person =
| string
| {
name: string;
url?: string;
email?: string;
};
export type BugsLocation =
| string
| {
/**
The URL to the package's issue tracker.
*/
url?: string;
/**
The email address to which issues should be reported.
*/
email?: string;
};
export type DirectoryLocations = {
[directoryType: string]: JsonValue | undefined;
/**
Location for executable scripts. Sugar to generate entries in the `bin` property by walking the folder.
*/
bin?: string;
/**
Location for Markdown files.
*/
doc?: string;
/**
Location for example scripts.
*/
example?: string;
/**
Location for the bulk of the library.
*/
lib?: string;
/**
Location for man pages. Sugar to generate a `man` array by walking the folder.
*/
man?: string;
/**
Location for test files.
*/
test?: string;
};
export type Scripts = {
/**
Run **before** the package is published (Also run on local `npm install` without any arguments).
*/
prepublish?: string;
/**
Run both **before** the package is packed and published, and on local `npm install` without any arguments. This is run **after** `prepublish`, but **before** `prepublishOnly`.
*/
prepare?: string;
/**
Run **before** the package is prepared and packed, **only** on `npm publish`.
*/
prepublishOnly?: string;
/**
Run **before** a tarball is packed (on `npm pack`, `npm publish`, and when installing git dependencies).
*/
prepack?: string;
/**
Run **after** the tarball has been generated and moved to its final destination.
*/
postpack?: string;
/**
Run **after** the package is published.
*/
publish?: string;
/**
Run **after** the package is published.
*/
postpublish?: string;
/**
Run **before** the package is installed.
*/
preinstall?: string;
/**
Run **after** the package is installed.
*/
install?: string;
/**
Run **after** the package is installed and after `install`.
*/
postinstall?: string;
/**
Run **before** the package is uninstalled and before `uninstall`.
*/
preuninstall?: string;
/**
Run **before** the package is uninstalled.
*/
uninstall?: string;
/**
Run **after** the package is uninstalled.
*/
postuninstall?: string;
/**
Run **before** bump the package version and before `version`.
*/
preversion?: string;
/**
Run **before** bump the package version.
*/
version?: string;
/**
Run **after** bump the package version.
*/
postversion?: string;
/**
Run with the `npm test` command, before `test`.
*/
pretest?: string;
/**
Run with the `npm test` command.
*/
test?: string;
/**
Run with the `npm test` command, after `test`.
*/
posttest?: string;
/**
Run with the `npm stop` command, before `stop`.
*/
prestop?: string;
/**
Run with the `npm stop` command.
*/
stop?: string;
/**
Run with the `npm stop` command, after `stop`.
*/
poststop?: string;
/**
Run with the `npm start` command, before `start`.
*/
prestart?: string;
/**
Run with the `npm start` command.
*/
start?: string;
/**
Run with the `npm start` command, after `start`.
*/
poststart?: string;
/**
Run with the `npm restart` command, before `restart`. Note: `npm restart` will run the `stop` and `start` scripts if no `restart` script is provided.
*/
prerestart?: string;
/**
Run with the `npm restart` command. Note: `npm restart` will run the `stop` and `start` scripts if no `restart` script is provided.
*/
restart?: string;
/**
Run with the `npm restart` command, after `restart`. Note: `npm restart` will run the `stop` and `start` scripts if no `restart` script is provided.
*/
postrestart?: string;
} & Partial<Record<string, string>>;
/**
Dependencies of the package. The version range is a string which has one or more space-separated descriptors. Dependencies can also be identified with a tarball or Git URL.
*/
export type Dependency = Partial<Record<string, string>>;
/**
A mapping of conditions and the paths to which they resolve.
*/
type ExportConditions = {
[condition: string]: Exports;
};
/**
Entry points of a module, optionally with conditions and subpath exports.
*/
export type Exports =
| null
| string
| Array<string | ExportConditions>
| ExportConditions;
/**
Import map entries of a module, optionally with conditions and subpath imports.
*/
export type Imports = {
[key: `#${string}`]: Exports;
};
// eslint-disable-next-line @typescript-eslint/consistent-type-definitions
export interface NonStandardEntryPoints {
/**
An ECMAScript module ID that is the primary entry point to the program.
*/
module?: string;
/**
A module ID with untranspiled code that is the primary entry point to the program.
*/
esnext?:
| string
| {
[moduleName: string]: string | undefined;
main?: string;
browser?: string;
};
/**
A hint to JavaScript bundlers or component tools when packaging modules for client side use.
*/
browser?:
| string
| Partial<Record<string, string | false>>;
/**
Denote which files in your project are "pure" and therefore safe for Webpack to prune if unused.
[Read more.](https://webpack.js.org/guides/tree-shaking/)
*/
sideEffects?: boolean | string[];
}
export type TypeScriptConfiguration = {
/**
Location of the bundled TypeScript declaration file.
*/
types?: string;
/**
Version selection map of TypeScript.
*/
typesVersions?: Partial<Record<string, Partial<Record<string, string[]>>>>;
/**
Location of the bundled TypeScript declaration file. Alias of `types`.
*/
typings?: string;
};
/**
An alternative configuration for workspaces.
*/
export type WorkspaceConfig = {
/**
An array of workspace pattern strings which contain the workspace packages.
*/
packages?: WorkspacePattern[];
/**
Designed to solve the problem of packages which break when their `node_modules` are moved to the root workspace directory - a process known as hoisting. For these packages, both within your workspace, and also some that have been installed via `node_modules`, it is important to have a mechanism for preventing the default Yarn workspace behavior. By adding workspace pattern strings here, Yarn will resume non-workspace behavior for any package which matches the defined patterns.
[Supported](https://classic.yarnpkg.com/blog/2018/02/15/nohoist/) by Yarn.
[Not supported](https://github.com/npm/rfcs/issues/287) by npm.
*/
nohoist?: WorkspacePattern[];
};
/**
A workspace pattern points to a directory or group of directories which contain packages that should be included in the workspace installation process.
The patterns are handled with [minimatch](https://github.com/isaacs/minimatch).
@example
`docs` → Include the docs directory and install its dependencies.
`packages/*` → Include all nested directories within the packages directory, like `packages/cli` and `packages/core`.
*/
type WorkspacePattern = string;
export type YarnConfiguration = {
/**
If your package only allows one version of a given dependency, and you’d like to enforce the same behavior as `yarn install --flat` on the command-line, set this to `true`.
Note that if your `package.json` contains `"flat": true` and other packages depend on yours (e.g. you are building a library rather than an app), those other packages will also need `"flat": true` in their `package.json` or be installed with `yarn install --flat` on the command-line.
*/
flat?: boolean;
/**
Selective version resolutions. Allows the definition of custom package versions inside dependencies without manual edits in the `yarn.lock` file.
*/
resolutions?: Dependency;
};
export type JSPMConfiguration = {
/**
JSPM configuration.
*/
jspm?: PackageJson;
};
/**
Type for [npm's `package.json` file](https://docs.npmjs.com/creating-a-package-json-file). Containing standard npm properties.
*/
// eslint-disable-next-line @typescript-eslint/consistent-type-definitions
export interface PackageJsonStandard {
/**
The name of the package.
*/
name?: string;
/**
Package version, parseable by [`node-semver`](https://github.com/npm/node-semver).
*/
version?: string;
/**
Package description, listed in `npm search`.
*/
description?: string;
/**
Keywords associated with package, listed in `npm search`.
*/
keywords?: string[];
/**
The URL to the package's homepage.
*/
homepage?: LiteralUnion<'.', string>;
/**
The URL to the package's issue tracker and/or the email address to which issues should be reported.
*/
bugs?: BugsLocation;
/**
The license for the package.
*/
license?: string;
/**
The licenses for the package.
*/
licenses?: Array<{
type?: string;
url?: string;
}>;
author?: Person;
/**
A list of people who contributed to the package.
*/
contributors?: Person[];
/**
A list of people who maintain the package.
*/
maintainers?: Person[];
/**
The files included in the package.
*/
files?: string[];
/**
Resolution algorithm for importing ".js" files from the package's scope.
[Read more.](https://nodejs.org/api/esm.html#esm_package_json_type_field)
*/
type?: 'module' | 'commonjs';
/**
The module ID that is the primary entry point to the program.
*/
main?: string;
/**
Subpath exports to define entry points of the package.
[Read more.](https://nodejs.org/api/packages.html#subpath-exports)
*/
exports?: Exports;
/**
Subpath imports to define internal package import maps that only apply to import specifiers from within the package itself.
[Read more.](https://nodejs.org/api/packages.html#subpath-imports)
*/
imports?: Imports;
/**
The executable files that should be installed into the `PATH`.
*/
bin?:
| string
| Partial<Record<string, string>>;
/**
Filenames to put in place for the `man` program to find.
*/
man?: string | string[];
/**
Indicates the structure of the package.
*/
directories?: DirectoryLocations;
/**
Location for the code repository.
*/
repository?:
| string
| {
type: string;
url: string;
/**
Relative path to package.json if it is placed in non-root directory (for example if it is part of a monorepo).
[Read more.](https://github.com/npm/rfcs/blob/latest/implemented/0010-monorepo-subdirectory-declaration.md)
*/
directory?: string;
};
/**
Script commands that are run at various times in the lifecycle of the package. The key is the lifecycle event, and the value is the command to run at that point.
*/
scripts?: Scripts;
/**
Is used to set configuration parameters used in package scripts that persist across upgrades.
*/
config?: JsonObject;
/**
The dependencies of the package.
*/
dependencies?: Dependency;
/**
Additional tooling dependencies that are not required for the package to work. Usually test, build, or documentation tooling.
*/
devDependencies?: Dependency;
/**
Dependencies that are skipped if they fail to install.
*/
optionalDependencies?: Dependency;
/**
Dependencies that will usually be required by the package user directly or via another dependency.
*/
peerDependencies?: Dependency;
/**
Indicate peer dependencies that are optional.
*/
peerDependenciesMeta?: Partial<Record<string, {optional: true}>>;
/**
Package names that are bundled when the package is published.
*/
bundledDependencies?: string[];
/**
Alias of `bundledDependencies`.
*/
bundleDependencies?: string[];
/**
Engines that this package runs on.
*/
engines?: {
[EngineName in 'npm' | 'node' | string]?: string;
};
/**
@deprecated
*/
engineStrict?: boolean;
/**
Operating systems the module runs on.
*/
os?: Array<LiteralUnion<
| 'aix'
| 'darwin'
| 'freebsd'
| 'linux'
| 'openbsd'
| 'sunos'
| 'win32'
| '!aix'
| '!darwin'
| '!freebsd'
| '!linux'