1 | /** @fileOverview Javascript SHA-256 implementation.
|
2 | *
|
3 | * An older version of this implementation is available in the public
|
4 | * domain, but this one is (c) Emily Stark, Mike Hamburg, Dan Boneh,
|
5 | * Stanford University 2008-2010 and BSD-licensed for liability
|
6 | * reasons.
|
7 | *
|
8 | * Special thanks to Aldo Cortesi for pointing out several bugs in
|
9 | * this code.
|
10 | *
|
11 | * @author Emily Stark
|
12 | * @author Mike Hamburg
|
13 | * @author Dan Boneh
|
14 | */
|
15 |
|
16 | /**
|
17 | * Context for a SHA-256 operation in progress.
|
18 | * @constructor
|
19 | */
|
20 | sjcl.hash.sha256 = function (hash) {
|
21 | if (!this._key[0]) { this._precompute(); }
|
22 | if (hash) {
|
23 | this._h = hash._h.slice(0);
|
24 | this._buffer = hash._buffer.slice(0);
|
25 | this._length = hash._length;
|
26 | } else {
|
27 | this.reset();
|
28 | }
|
29 | };
|
30 |
|
31 | /**
|
32 | * Hash a string or an array of words.
|
33 | * @static
|
34 | * @param {bitArray|String} data the data to hash.
|
35 | * @return {bitArray} The hash value, an array of 16 big-endian words.
|
36 | */
|
37 | sjcl.hash.sha256.hash = function (data) {
|
38 | return (new sjcl.hash.sha256()).update(data).finalize();
|
39 | };
|
40 |
|
41 | sjcl.hash.sha256.prototype = {
|
42 | /**
|
43 | * The hash's block size, in bits.
|
44 | * @constant
|
45 | */
|
46 | blockSize: 512,
|
47 |
|
48 | /**
|
49 | * Reset the hash state.
|
50 | * @return this
|
51 | */
|
52 | reset:function () {
|
53 | this._h = this._init.slice(0);
|
54 | this._buffer = [];
|
55 | this._length = 0;
|
56 | return this;
|
57 | },
|
58 |
|
59 | /**
|
60 | * Input several words to the hash.
|
61 | * @param {bitArray|String} data the data to hash.
|
62 | * @return this
|
63 | */
|
64 | update: function (data) {
|
65 | if (typeof data === "string") {
|
66 | data = sjcl.codec.utf8String.toBits(data);
|
67 | }
|
68 | var i, b = this._buffer = sjcl.bitArray.concat(this._buffer, data),
|
69 | ol = this._length,
|
70 | nl = this._length = ol + sjcl.bitArray.bitLength(data);
|
71 | if (nl > 9007199254740991){
|
72 | throw new sjcl.exception.invalid("Cannot hash more than 2^53 - 1 bits");
|
73 | }
|
74 |
|
75 | if (typeof Uint32Array !== 'undefined') {
|
76 | var c = new Uint32Array(b);
|
77 | var j = 0;
|
78 | for (i = 512+ol - ((512+ol) & 511); i <= nl; i+= 512) {
|
79 | this._block(c.subarray(16 * j, 16 * (j+1)));
|
80 | j += 1;
|
81 | }
|
82 | b.splice(0, 16 * j);
|
83 | } else {
|
84 | for (i = 512+ol - ((512+ol) & 511); i <= nl; i+= 512) {
|
85 | this._block(b.splice(0,16));
|
86 | }
|
87 | }
|
88 | return this;
|
89 | },
|
90 |
|
91 | /**
|
92 | * Complete hashing and output the hash value.
|
93 | * @return {bitArray} The hash value, an array of 8 big-endian words.
|
94 | */
|
95 | finalize:function () {
|
96 | var i, b = this._buffer, h = this._h;
|
97 |
|
98 | // Round out and push the buffer
|
99 | b = sjcl.bitArray.concat(b, [sjcl.bitArray.partial(1,1)]);
|
100 |
|
101 | // Round out the buffer to a multiple of 16 words, less the 2 length words.
|
102 | for (i = b.length + 2; i & 15; i++) {
|
103 | b.push(0);
|
104 | }
|
105 |
|
106 | // append the length
|
107 | b.push(Math.floor(this._length / 0x100000000));
|
108 | b.push(this._length | 0);
|
109 |
|
110 | while (b.length) {
|
111 | this._block(b.splice(0,16));
|
112 | }
|
113 |
|
114 | this.reset();
|
115 | return h;
|
116 | },
|
117 |
|
118 | /**
|
119 | * The SHA-256 initialization vector, to be precomputed.
|
120 | * @private
|
121 | */
|
122 | _init:[],
|
123 | /*
|
124 | _init:[0x6a09e667,0xbb67ae85,0x3c6ef372,0xa54ff53a,0x510e527f,0x9b05688c,0x1f83d9ab,0x5be0cd19],
|
125 | */
|
126 |
|
127 | /**
|
128 | * The SHA-256 hash key, to be precomputed.
|
129 | * @private
|
130 | */
|
131 | _key:[],
|
132 | /*
|
133 | _key:
|
134 | [0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
|
135 | 0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
|
136 | 0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
|
137 | 0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
|
138 | 0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
|
139 | 0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
|
140 | 0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
|
141 | 0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2],
|
142 | */
|
143 |
|
144 |
|
145 | /**
|
146 | * Function to precompute _init and _key.
|
147 | * @private
|
148 | */
|
149 | _precompute: function () {
|
150 | var i = 0, prime = 2, factor, isPrime;
|
151 |
|
152 | function frac(x) { return (x-Math.floor(x)) * 0x100000000 | 0; }
|
153 |
|
154 | for (; i<64; prime++) {
|
155 | isPrime = true;
|
156 | for (factor=2; factor*factor <= prime; factor++) {
|
157 | if (prime % factor === 0) {
|
158 | isPrime = false;
|
159 | break;
|
160 | }
|
161 | }
|
162 | if (isPrime) {
|
163 | if (i<8) {
|
164 | this._init[i] = frac(Math.pow(prime, 1/2));
|
165 | }
|
166 | this._key[i] = frac(Math.pow(prime, 1/3));
|
167 | i++;
|
168 | }
|
169 | }
|
170 | },
|
171 |
|
172 | /**
|
173 | * Perform one cycle of SHA-256.
|
174 | * @param {Uint32Array|bitArray} w one block of words.
|
175 | * @private
|
176 | */
|
177 | _block:function (w) {
|
178 | var i, tmp, a, b,
|
179 | h = this._h,
|
180 | k = this._key,
|
181 | h0 = h[0], h1 = h[1], h2 = h[2], h3 = h[3],
|
182 | h4 = h[4], h5 = h[5], h6 = h[6], h7 = h[7];
|
183 |
|
184 | /* Rationale for placement of |0 :
|
185 | * If a value can overflow is original 32 bits by a factor of more than a few
|
186 | * million (2^23 ish), there is a possibility that it might overflow the
|
187 | * 53-bit mantissa and lose precision.
|
188 | *
|
189 | * To avoid this, we clamp back to 32 bits by |'ing with 0 on any value that
|
190 | * propagates around the loop, and on the hash state h[]. I don't believe
|
191 | * that the clamps on h4 and on h0 are strictly necessary, but it's close
|
192 | * (for h4 anyway), and better safe than sorry.
|
193 | *
|
194 | * The clamps on h[] are necessary for the output to be correct even in the
|
195 | * common case and for short inputs.
|
196 | */
|
197 | for (i=0; i<64; i++) {
|
198 | // load up the input word for this round
|
199 | if (i<16) {
|
200 | tmp = w[i];
|
201 | } else {
|
202 | a = w[(i+1 ) & 15];
|
203 | b = w[(i+14) & 15];
|
204 | tmp = w[i&15] = ((a>>>7 ^ a>>>18 ^ a>>>3 ^ a<<25 ^ a<<14) +
|
205 | (b>>>17 ^ b>>>19 ^ b>>>10 ^ b<<15 ^ b<<13) +
|
206 | w[i&15] + w[(i+9) & 15]) | 0;
|
207 | }
|
208 |
|
209 | tmp = (tmp + h7 + (h4>>>6 ^ h4>>>11 ^ h4>>>25 ^ h4<<26 ^ h4<<21 ^ h4<<7) + (h6 ^ h4&(h5^h6)) + k[i]); // | 0;
|
210 |
|
211 | // shift register
|
212 | h7 = h6; h6 = h5; h5 = h4;
|
213 | h4 = h3 + tmp | 0;
|
214 | h3 = h2; h2 = h1; h1 = h0;
|
215 |
|
216 | h0 = (tmp + ((h1&h2) ^ (h3&(h1^h2))) + (h1>>>2 ^ h1>>>13 ^ h1>>>22 ^ h1<<30 ^ h1<<19 ^ h1<<10)) | 0;
|
217 | }
|
218 |
|
219 | h[0] = h[0]+h0 | 0;
|
220 | h[1] = h[1]+h1 | 0;
|
221 | h[2] = h[2]+h2 | 0;
|
222 | h[3] = h[3]+h3 | 0;
|
223 | h[4] = h[4]+h4 | 0;
|
224 | h[5] = h[5]+h5 | 0;
|
225 | h[6] = h[6]+h6 | 0;
|
226 | h[7] = h[7]+h7 | 0;
|
227 | }
|
228 | };
|
229 |
|
230 |
|