
CoffeeXƎLATEX
(CXLTX)

How to

Extend LATEX
with

A Real
Programming Language



Contents

1 CoffeeXeLaTeX (CXLTX) 3
1.1 What is it? And Why? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 TeX and NodeJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Method One: Spawning a node process . . . . . . . . . . . . . . . . . . 4
1.2.2 Method Two: Spawning curl . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Security Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Sample Command Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 Useful Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Examples 9
2.1 Spawning NodeJS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Evaluating Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Spawning cURL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Character Escaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Unicode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 The auxObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.6.1 The \aux* Commands . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6.2 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6.3 Labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 Implementing and Calling Functions . . . . . . . . . . . . . . . . . . . . . . . 16

3 Epilogue 18

4 Project Implementation Outline 23

5 References 23

Conventions: In this document, (most) command line / code stuff is printed in red, while (most)
remote command output is printed in green.



Click here to read the full documentation

1 CoffeeXeLaTeX (CXLTX)

1.1 What is it? And Why?

Everyone who has worked with LaTeX knows how hard it can often be to get seemingly simple
things done in this Turing-complete markup language. Let’s face it, (La)TeX has many problems;
the complectedness of its inner workings and the extremely uneven syntax of its commands put a
heavy burden on the average user.

The funny thing is that while TeX is all about computational text processing, doing math and
string processing are often really hard to get right (not to mention that TeX has no notion of
higher-order data types, such as, say, lists).

Often onewishes one could just do a simple calculation or build a typesetting object from available
data outside of all thatmakes LaTeX so difficult to get right. Turns out you can already do that, and
you don’t have to recompile TeX.

Most of the time, running TeX means to author a source file and have the TeX executable con-
vert that into a PDF. Of course, this implies reading and writing of files and executing binaries.
Interestingly for us, both capabilities—file access and command execution—are made available to
user-facing side of TeX: writing to a file happens via the \write command, while input from a file
is done with \input; command execution repurposes \write, whichmay be called with the special
stream number 18 (internally, TeX does almost everything with registers that are sometimes given
symbolic names; it also enumerates ‘channels’ for file operations, and reserves #18 for writing to
the command line and executing stuff). This is how the \exec command is (in essence) defined in
coffeexelatex.sty:

\newcommand{\CXLTXtempOutRoute}{/tmp/coffeexelatex.tex}

\newcommand{\exec}[1]{%
\immediate\write18{#1 > \CXLTXtempOutRoute}
\input{\CXLTXtempOutRoute}
}

With some TeXs, its possible to avoid the temporary file by using \@@input|"dir", but XeTeX as
provided by TeXLive 2013 does not allow that. The temporary file does have an advantage: in case
TeX should halt execution because of an error, and that error is due to a script with faulty output,
you can conveniently review the problematic source by opening the temporary file in your text
editor.

Besides \exec, there is also \execdebugwhich captures the stderr output of a command and ren-
ders it in red to the document in case any output occurred there.

3

https://github.com/loveencounterflow/cxltx/raw/master/cxltx-manual.pdf
http://www.infoq.com/presentations/Simple-Made-Easy


1.2 TeX and NodeJS

1.2.1 Method One: Spawning a node process

The whole idea of CXLTX is to have some external program receive data from inside a running
TeX invocation, process that data, and pass the result back to TeX.

The command given to \exec could be anything; for our purposes, wewill concentrate on running
NodeJS programs. The simplest thing is to have NodeJS evaluate a JavaScript expression and print
out the result; the \evaljs command has been defined to do just that:

\newcommand{\evaljs}[1]{\execdebug{node -p "#1"}}

% will insert `16 * 3 = 48` in TeX math mode (triggered by `$`):
$ 16 * 3 = \evaljs{16 * 3} $

This technique is easily adapted to work with CoffeeScript (or any other language that compiles to
JS):

\newcommand{\evalcs}[1]{\execdebug{coffee -e "console.log #1"}}

% will insert `[1,4,9]`
\evalcs{ ( n * n for n in [ 1, 2, 3 ] ) }

The Command Line Remote Command Interface (CL/RCI) Of course, evaluating one-liners will
give you only so much power, so why not execute more sizeable programs? That’s what \nodeRun
is for:

\usepackage[abspath]{currfile}
\newcommand{\CXLTXmainRoute}{../../lib/main}
\newcommand{\nodeRun}[2]{

\exec{node "\CXLTXmainRoute" "\currfileabsdir" "\jobname" "#1" "#2"}}

% will insert `Hello, world!`
\nodeRun{helo}{world}

\NodeRun will run NodeJS with the following arguments: (1) the route to our custom-made exe-
cutable; (2) the route to the parent directory where the currently processed TeX source files are; (3)
the current job name; (4) a command name (first argument to \nodeRun); and, lastly, (5) optional
command arguments (second argument to \nodeRun).

Observe that youmaywant to define your own routes in case the default values do notmatch your
needs; these can be easily done using \renewcommand:

\renewcommand{\CXLTXmainRoute}{../../lib/main}
\renewcommand{\CXLTXtempOutRoute}{/tmp/CXLTXtempout.tex}
\renewcommand{\CXLTXtempErrRoute}{/tmp/CXLTXtemperr.tex}

4

http://nodejs.org
http://coffeescript.org


1.2.2 Method Two: Spawning curl

Spawning a subprocess to ‘outsource’ a computing task is certainly not the cheapest or fastest way
to do stuff, as creating and taking down a process is relatively costly.

More specifically, spawning node is both comparatively expensive (in terms of memory) and slow.
Also, the subprocessmust run on the samemachine as themain process, and unless that subprocess
persisted some data (in a DB or in a file), the subprocess will run in a stateless fashion.

Then again, since we’re using NodeJS anyway:What’s more obvious than tomake TeX communi-
cate with a long-running HTTP server?

Now i’ve not heard of any way to make TeX issue an HTTP request on its own behalf. But we
already knowwe can issue arbitrary command lines, so we certainly can spawn curl localhost to
communicate with a server.We still have to spawn a subprocess that way—butmaybe curl is both
lighter and faster than node!? It certainly is.

Here are some timings i obtained for running our simple echoing example, once spawning node,
and once spawning curl. The server is a very simple Express application; except for the command
line argument and HTTP parameter handling, the same code is ultimately executed:

time node "cxltx/lib/main" "cxltx/doc/" "cxltx-manual" \
"helo" "friends" \
> "/tmp/CXLTXtempout.tex" 2> "/tmp/CXLTXtemperr.tex"

real 0m0.140s
real 0m0.082s
real 0m0.083s

time curl --silent --show-error \
127.0.0.1:8910/foobar.tex/cxltx-manual/helo/friends \
> "/tmp/CXLTXtempout.tex" 2> "/tmp/CXLTXtemperr.tex"

real 0m0.010s
real 0m0.011s
real 0m0.010s

In so far these rather naïve benchmarks can be trusted, they would indicate that fetching the same
insignificant amount of data via curl from a local server is around ten times as performant as doing
the same thing by spawning node. The reason for this is partly attributable to the considerable size
of the NodeJS binary (respectively whatever actions are taken by NodeJS to ready itself).

Even doing time node -p "1" results in execution times of over 0.07s. Add to this the curl timings
of around 0.01s, and you roughly get the 0.08s needed to spawn node and get results—in other
words, curl itself seems to be quite fast.

The upshot of this is that using our first method we can call external code at a frequency around
10 per second, but using the curl method, we can get closer to almost 100 per second (depending
on the machine etc). The difference might matter if you plan to put out a lot of external calls, and
since the typical way of getting TeX source code right is running and re-runningTeX a lot of times,
doing it faster may help greatly.

5

http://expressjs.com/


The HTTP Remote Command Interface (H/RCI)

% This is the default setting for calling the CXLTX RCI:
\renewcommand{\node}{\nodeCurl}

\node{helo}{friends}

1.2.3 Security Considerations

Be aware that executing arbitrary code by way of mediation of a command line like

xelatex --enable-write18 --shell-escape somefile.tex

is inherently unsafe: a TeX file downloaded from somewhere could erase your disk, access your
email, or install a program on your computer. This is what the --enable-write18 switch is for:
it is by default fully or partially disabled so an arbitrary TeX source gets limited access to your
computer.

If you’re scared now, please hang on a second. I just want to tell you you should be really, really
scared. Why? Because if you ever downloaded some TeX source to compile it on your machine
even without the --enable-write18 switch you’ve already executed potentially harmful code. Few
people are aware of it, but many TeX installations are quite ‘liberal’ in respect to what TeX sources
—TeXprograms, really—are allowed todo even in absence of command line switches, and, as a result,
even people who are hosting public TeX installations for a living are susceptible tomalicious code.*

It is a misconception that TeX source is ‘safe’ because ‘TeX is text-based format’ (how stupid
is that, anyway?); the truth is that by doing latex xy.tex you’re executing code which may do
malicious things. Period. That said, the papers linked below make it quite clear that --enable-
write18 just ‘opens the barn door’, as it were, but in fact, there are quite a few other and less well
known avenues for TeX-based malware to do things on your computer.

And please don’t think you’re safe just because you’re not executing anything but your own TeX
source—that, in case you’re using LaTeX, is highly improbable: any given real-world LaTeX doc-
ument will start with a fair number of \usepackage{} statements, and each one of those refers to
a source that is publicly accessible on the internet and has been so for maybe five or ten or more
years. Someonemight even have managed to place a mildly useful package on CTAN, one that has
some obfuscated parts designed to take over world leadership on Friday, 13th—who knows?

The fact that TeX is a programming language that works by repeatedly re-writing itself does not
exactly help in doing static code analysis; in fact, such code is called ‘metamorphic code’ and is a
well-known technique employed by computer viruses.

I do not write this section of the present README to scare you away, just to inform whoever is
concerned of a little known fact of life. The gist of this is: don’t have --enable-write18 turned
on except you know what you’re doing, but be aware that running TeX has always been unsafe
anyway.

*) see e.g. http://cseweb.ucsd.edu/~hovav/dist/texhack.pdf

6

http://en.wikipedia.org/wiki/Metamorphic_code


1.3 Sample Command Lines

Tomake it easier for TeX to resolve \usepackage{cxltx}, put a symlink to your CXLTXdirectory
into a directory that is on LaTeX’s search path. On OSX with TeX Live, that can be achieved by
doing

cd ~/Library/texmf/tex/latex
ln -s route/to/cxltx cxltx

Here is what i do to build cxltx/cxltx-manual.pdf:

(1) use Pandoc to convert README.md to README.tex:

pandoc -o cxltx/doc/README.tex cxltx/README.md

(2) copy the aux file from the previous TeX compilation step to preserve its data for CXLTX to see:

cp cxltx/doc/cxltx-manual.aux cxltx/doc/cxltx-manual.auxcopy

(3) compile cxltx-manual.tex to cxltx-manual.pdf (--enable-write18: allows to access external
programs form within TeX; --halt-on-error: is a convenience so i don’t have to type x on each
TeX error; --recorder: needed by the currfile package to get absolute routes):

xelatex \
--output-directory cxltx/doc \
--halt-on-error \
--enable-write18 \
--recorder \
cxltx/doc/cxltx-manual.tex

(4)move the pdf file to its target location:

mv cxltx/doc/cxltx-manual.pdf cxltx

1.4 Useful Links

http://www.ctan.org/tex-archive/macros/latex/contrib/perltex

http://ctan.space-pro.be/tex-archive/macros/latex/contrib/perltex/perltex.pdf

http://www.tug.org/TUGboat/tb28-3/tb90mertz.pdf

https://www.tug.org/TUGboat/tb25-2/tb81pakin.pdf

1.5 Related Work

¶ PyTeX (also dubbedQATeX) is a laudable effort that has, sadly, been stalling for around 11 years
as of this writing (January 2014), so it is likely pretty much outdated. PyTeX’s approach is ap-
parently the opposite of what we do in CXLTX: they run TeX in daemon mode from Python,

7

http://http://johnmacfarlane.net/pandoc
http://www.pytex.org/


where we have NodeJS start a server that listens to our independently running TeX.—Just for
giggles, a quote from the above page: “XML is hard work to key by hand. It lacks the mark-up
minimization that SGML has” (my emphasis). Well, eleven years is a long time.

¶ PythonTeX is an interesting approach to bringing LaTeX and Python together. Unfortunately,
the authors are preconcerned with showing off Pygment’s syntax hiliting capabilities (which are
… not really that great) and how to print out integrals using SymPy; sadly, they fail to provide
sample code of interest to a wider audience. Their copious 128-page manual only dwells for one
and a half page on the topic of ‘how do i use this stuff’, and that only to show off more SymPy
capabilities. None of their sample code needs PythonTeX anyway, since none of it demonstrates
how to interact with the document typesetting process; as such, all their formulas and plotsmay
be produced offline, independently fromLaTeX.Given that the installation instructions are too
scary and longwinded for my taste, and that PythonTeX is not part of TeX Live, i’ve given up
on the matter.

(the below taken from http://get-software.net/macros/latex/contrib/pythontex):

¶ SageTeX allows code for the Sagemathematics software to be executed fromwithin a LATEXdoc-
ument.

¶ Martin R. Ehmsen’s python.sty provides a very basic method of executing Python code from
within a LaTeX document.

¶ SympyTeX allowsmore sophisticated Python execution, and is largely based on a subset of Sage-
TeX.

¶ LuaTeX extends the pdfTeX engine to provide Lua as an embedded scripting language, and as a
result yields tight, low-level Lua integration.

LuaTeX is one of the most interesting projects in this field as it represents an attempt to provide a
close coupling of a real programming language with LaTeX. Unfortunately, that language is Lua,
whose designers believe that Unicode strings should be stored as UTF-8 bytes (Go does the same,
btw). Equally unfortunately, LuaTeX uses pdfTeX, which can’t compare to XeLaTeX when it
comes to using custom TTF/OTF fonts.

8

https://github.com/gpoore/pythontex
http://www.ctan.org/tex-archive/macros/latex/contrib/sagetex
http://www.ctan.org/pkg/python
http://elec.otago.ac.nz/w/index.php/SympyTeX
http://www.luatex.org/


2 Examples

2.1 Spawning NodeJS

(1) The original technique to execute an arbitrary command:

\immediate\write18{node
"\CXLTXcliRoute"
"\CXLTXtexRoute"
","
"helo"
"readers (one)"
> /tmp/temp.dat}\input{/tmp/temp.dat}

(2) With ugly details largely hidden, the \exec{} command is still fully general:

\exec{node
"\CXLTXcliRoute"
"\CXLTXtexRoute"
","
"helo"
"readers (two)"}

(3) Like the previous example, but with standard values assumed as shown above. This is the form
that you will want to use most of the time (if you want to use the CL/RCI at all):

\nodeRun{helo}{readers (three)}

Outputs:

Hello, readers (one)!

Hello, readers (two)!

Hello, readers (three)!

2.2 Evaluating Expressions

The commands \evalcs{} and \evaljs{} allow you to evaluate an arbitrary self-contained expres-
sion, written either in CoffeeScript or in JavaScript:

$23 + 65 * 123 = \evalcs{23 + 65 * 123}$

23 + 65 ∗ 123 = 8018

9



2.3 Spawning cURL

Using the \exec command, we can spawn cURL to do a remote procedure call against ourNodeJS
HTTP server:

\StrSubstitute{\CXLTXtexRoute}{/}{\%2F}[\texRoute]
\exec{curl --silent --show-error 127.0.0.1:8910/\texRoute/,/helo/friends}

Hello, friends!

Since this method is much faster and more versatile than using \nodeRun, the \node command is
per default set to execute \nodeCurl; you may change that by using one of the following lines:

\renewcommand{\node}{\nodeRun}
% or (the default):
\renewcommand{\node}{\nodeCurl}

The \nodeCurl command (and, by extension, \node in its default incarnation) simplifies the above
by hiding the ugly details; most of the time, you’ll get awaywith two obligatory arguments, namely
the command name and the command parameters:

\node{helo}{friends}

Hello, friends!

2.4 Character Escaping

TheCXLTX command show-special-chrs demonstrates that it is easy to include TEX special char-
acters in the return value. The simple rule is that whenever the output of a command is meant to
be understood literally, it should be @escaped:

\nodeRun{show-special-chrs}{}

opening brace {
closing brace }
Dollar sign $
ampersand &
hash #
caret ^
underscore _
wave ~
percent sign %

10



2.5 Unicode

Thenext few examples demonstrate thatUnicode characters—even ones fromoutside theUnicode
Basic Multilingual plain, which frequently cause difficulties—can be transported to and from the
server without losses or Mojibake / squiggles:

\nodeCurl{helo}{äöüÄÖÜß}

Hello, äöüÄÖÜß!

Chinese characters from the Unicode BMP (‘16 bit’):

\nodeCurl{helo}{黎永強 }

Hello,黎永強!

Chinese characters from the Unicode SIP (‘32 bit’—these needed a little trick to make XƎLATEX
choose the right font; see coffeexelatex.sty):

\nodeCurl{helo}{𠀀𠀐𠀙 }

Hello,𠀀𠀐𠀙!

2.6 The aux Object

To facilitate data exchange between the TEXprocess and the server,CXLTXprovides facilities to read
and write data from and to the aux file assoated with the current job:

¶ the TEX commands \aux, \auxc, \auxcs, and \auxpod, which write to the aux file;

¶ the method CXLTX.main.read_aux = ( handler ) ->, which reads (and parses) data written
with one of the above commands.

2.6.1 The \aux* Commands

Because they’re quite straightforward, let’s have a look at the actual definitions of the aux* com-
mands:

\makeatletter
\catcode`\%=11
\newcommand{\aux}[1]{\immediate\write\CXLTX.auxout{#1}}
\newcommand{\auxc}[1]{\immediate\write\CXLTX.auxout{% #1}}
\newcommand{\auxcs}[1]{\immediate\write\CXLTX.auxout{% coffee #1}}
\newcommand{\auxpod}[2]{\immediate\write\CXLTX.auxout{% coffee #1: \{ #2 \}}}
\catcode`\%=14
\makeatother

We see our old friend \immediate \write here, this time accessing channel \CXLTX.auxout. All
commands will write a single line to the aux file.

11



¶ \aux is the most basic command and will write text as-is to the aux file;

¶ \auxc puts whatever is written behind a % (percent sign), so it appears as a comment when TEX
re-reads the aux file;

¶ \auxcswrites text behind a % coffeemarker, facilitating recognition on the server side;

¶ \auxpod takes a name and a CoffeeScript Plain Old Dictionary literal (without the braces) to the
aux file; to the server, this will become available as CXLTX.aux[ name ];

The \auxgeo / @ \nodeCurl{show-geometry} {} command pair is a good example how to use
\auxpod.

2.6.2 Geometry

Use geometry data from aux file to render a table of layout dimensions into the document; note
the we could have used the \auxgeo command anywhere in the document and that this currently
only works for documents with a single, constant layout.

Also note we’re using a dash instead of an underscore here—in TEX, underscores are special, so
we conveniently allow dashes tomake things easier. TheCXLTX command show-geometry does not
take arguments, which is why the second pair of braces has been left empty:

\nodeCurl{show-geometry}{}

firstlinev 15.00 mm
footskip 10.54 mm
headheight 4.22 mm
headsep 8.79 mm
marginparsep 3.51 mm
marginparwidth 12.30 mm
paperheight 297.00 mm
paperwidth 210.00 mm
textheight 246.36 mm
textwidth 155.00 mm
topmargin –23.40 mm
voffset 25.40 mm

Aftershow-geometryhasbeenperformed, theCXLTX.auxobject has beenpopulatedwithdata from
the aux file; it then looks like this for the current document:

\nodeCurl{show-aux}{}

{ 'is-complete': false,
texroute: '/Volumes/Storage/cnd/node_modules/cxltx/doc',
auxroute: '/Volumes/Storage/cnd/node_modules/cxltx/doc/cxltx-manual.auxcopy',
jobname: 'cxltx-manual',
splitter: ',',
'method-name': 'show_aux',

12



parameters: [],
labels:
{ 'coffeexelatex-cxltx':

{ name: 'coffeexelatex-cxltx',
ref: '1',
pageref: '3',
title: 'CoffeeXeLaTeX (CXLTX)',
'is-duplicate': false },

'what-is-it-and-why':
{ name: 'what-is-it-and-why',

ref: '1.1',
pageref: '3',
title: 'What is it? And Why?',
'is-duplicate': false },

'tex-and-nodejs':
{ name: 'tex-and-nodejs',

ref: '1.2',
pageref: '4',
title: 'TeX and NodeJS',
'is-duplicate': false },

'the-command-line-remote-command-interface-clrci':
{ name: 'the-command-line-remote-command-interface-clrci',

ref: '1.2.1',
pageref: '4',
title: 'The Command Line Remote Command Interface (CL/RCI)',
'is-duplicate': false },

'the-http-remote-command-interface-hrci':
{ name: 'the-http-remote-command-interface-hrci',

ref: '1.2.2',
pageref: '6',
title: 'The HTTP Remote Command Interface (H/RCI)',
'is-duplicate': false },

'security-considerations':
{ name: 'security-considerations',

ref: '1.2.3',
pageref: '6',
title: 'Security Considerations',
'is-duplicate': false },

'sample-command-lines':
{ name: 'sample-command-lines',

ref: '1.3',
pageref: '7',
title: 'Sample Command Lines',
'is-duplicate': false },

'useful-links':
{ name: 'useful-links',

ref: '1.4',
pageref: '7',
title: 'Useful Links',
'is-duplicate': false },

'related-work':
{ name: 'related-work',

ref: '1.5',
pageref: '7',
title: 'Related Work',
'is-duplicate': false },

examples:
{ name: 'examples',

ref: '2',
pageref: '9',
title: 'Examples',

13



'is-duplicate': false },
spawningnodejs:
{ name: 'spawningnodejs',

ref: '2.1',
pageref: '9',
title: 'Spawning NodeJS',
'is-duplicate': false },

evalcs:
{ name: 'evalcs',

ref: '2.2',
pageref: '9',
title: 'Evaluating Expressions',
'is-duplicate': false },

spawningcurl:
{ name: 'spawningcurl',

ref: '2.3',
pageref: '10',
title: 'Spawning cURL',
'is-duplicate': false },

esc:
{ name: 'esc',

ref: '2.4',
pageref: '10',
title: 'Character Escaping',
'is-duplicate': false },

unicode:
{ name: 'unicode',

ref: '2.5',
pageref: '11',
title: 'Unicode',
'is-duplicate': false },

geo:
{ name: 'geo',

ref: '2.6.2',
pageref: '12',
title: 'Geometry',
'is-duplicate': false },

labels:
{ name: 'labels',

ref: '2.6.3',
pageref: '15',
title: 'Labels',
'is-duplicate': false },

'error-detection-works':
{ name: 'error-detection-works',

ref: '2.6.3',
pageref: '16',
title: 'Duplicate Labels (2)',
'is-duplicate': true },

functions:
{ name: 'functions',

ref: '2.7',
pageref: '16',
title: 'Implementing and Calling Functions',
'is-duplicate': false },

epilogue:
{ name: 'epilogue',

ref: '3',
pageref: '18',
title: 'Epilogue',
'is-duplicate': false },

14



outline:
{ name: 'outline',

ref: '4',
pageref: '23',
title: 'Project Implementation Outline',
'is-duplicate': false } },

'duplicate-labels':
{ 'error-detection-works':

[ { name: 'error-detection-works',
ref: '2.6.3',
pageref: '15',
title: 'Duplicate Labels (1)',
'is-duplicate': true },

{ name: 'error-detection-works',
ref: '2.6.3',
pageref: '16',
title: 'Duplicate Labels (2)',
'is-duplicate': true } ] },

geometry:
{ paperwidth: 210.0001,

paperheight: 297,
textwidth: 155.0001,
textheight: 246.3597,
headheight: 4.2176,
headsep: 8.7865,
footskip: 10.5438,
marginparsep: 3.5146,
marginparwidth: 12.3011,
voffset: 25.4,
topmargin: -23.404,
firstlinev: 15.0001 } }

2.6.3 Labels

As it stands,CXLTX will try and collect all pertinent data from the CXLTX.aux file when @read_aux
is called; this currently includes the namew of the labels, their ‘pageref‘ and ‘ref‘ attributes as well
(thanks to the hyperref package) the respective associated titles.

Remember that youwill have to re-runXƎLATEXwhenever there have been changes to your labels as
CXLTX can only read from the (copy of the) aux file of the previous XƎLATEX invocation, and LATEX
itself needs more than one pass in many cases, too.

You can easily have CXLTX print you out a table with an overview of the currently defined labels,
but observe that show-labels is currently implemented in a very simple-minded fashion, meaning
that it will make no adjustments to paper size or breaking the table across several pages. You may
want to have a look at the source of sample-provider.coffee to get an idea of how to use the data
provided for your own purposes.

\paragraph{Duplicate Labels (1)}\label{error-detection-works}

Duplicate Labels (1) One immediate benefit you can generate withCXLTX is to make it hunt for
duplicate lables. TEX source is not expecially convenient to write and macros can be hard to get

15

http://ftp.gwdg.de/pub/ctan/macros/latex/contrib/hyperref/doc/manual.pdf
https://github.com/loveencounterflow/cxltx/blob/master/src/sample-provider.coffee#L93


right, so it’s sort of a survival strategy to do a lot of copy-and-pasting—which may inadvertently
lead to duplicate labels.

\paragraph{Duplicate Labels (2)}\label{error-detection-works}

Duplicate Labels (2) Now LATEX is nice enough to warn you that duplicate labels have occurred,
but not bold enough to tell youwhich labels were affected—all you get is a cursory LaTeX Warning:
There were multiply-defined labels. It could do that as the data is plain to see in the aux file,
but it doesn’t do that for you.

Here is anoverviewof the labels in the current document; you’ll immediately notice those duplicate
labels since they are always put at the very top of the table, so nomatter howwide or long the table
gets, you’ll get to see them right away in the output:

\nodeCurl{clear-aux}{}
\nodeCurl{show-aux}{}

{ 'is-complete': false,
texroute: '/Volumes/Storage/cnd/node_modules/cxltx/doc',
auxroute: '/Volumes/Storage/cnd/node_modules/cxltx/doc/cxltx-manual.auxcopy',
jobname: 'cxltx-manual',
splitter: ',',
'method-name': 'show_aux',
parameters: [] }

2.7 Implementing and Calling Functions

It is simple to define own functions forCXLTX; let’s have a look on a particularly easy one:

% in sample-provider.coffee:

@add = ( P..., handler ) ->
P[ idx ] = parseFloat p, 10 for p, idx in P
R = 0
R += p for p in P
return handler new Error "unable to sum up #{rpr P}" unless isFinite R
handler null, R

% in examples.tex:

\node{add}{2,3,5,8}

Whenwe run this code, we get back 18, as expected. The three dots in the function signature, P...,
are a signal that the function expects any number of arguments; the last parameter, handler, is the
callback function that eachCXLTX provider method must call upon error or completion.

{\renewcommand{\CXLTXparameterSplitter}{!}
\node{add}{2!3!5!8}}

18

16



Ta
bl
e1

:O
ut

pu
to

fs
ho
w-
la
be
ls

na
m

e
pa

ge
re
f

re
f

tit
le

!
er
ro

r-d
et
ec
tio

n-
w
or

ks
15

2.
6.
3

D
up

lic
at
eL

ab
els

(1
)

!
er
ro

r-d
et
ec
tio

n-
w
or

ks
16

2.
6.
3

D
up

lic
at
eL

ab
els

(2
)

co
ffe

ex
ela

te
x-
cx

ltx
3

1
Co

ffe
eX

eL
aT

eX
(C

X
LT

X
)

w
ha

t-i
s-i

t-a
nd

-w
hy

3
1.1

W
ha

ti
si
t?

A
nd

W
hy

?
te
x-
an

d-
no

de
js

4
1.2

Te
X

an
d
N
od

eJ
S

th
e-
co

m
m

an
d-

lin
e-
re
m

ot
e-
co

m
m

an
d-

in
te
rfa

ce
-cl

rc
i

4
1.2

.1
T
he

Co
m

m
an

d
Li

ne
R
em

ot
eC

om
m

an
d
In

te
rfa

ce
(C

L/
R
CI

)
th

e-
ht

tp
-re

m
ot

e-
co

m
m

an
d-

in
te
rfa

ce
-h

rc
i

6
1.2

.2
T
he

H
T
T
P
R
em

ot
eC

om
m

an
d
In

te
rfa

ce
(H

/R
CI

)
se
cu

rit
y-
co

ns
id
er
at
io
ns

6
1.2

.3
Se

cu
rit

yC
on

sid
er
at
io
ns

sa
m

pl
e-
co

m
m

an
d-

lin
es

7
1.3

Sa
m

pl
eC

om
m

an
d
Li

ne
s

us
ef
ul
-li
nk

s
7

1.4
U
se
fu

lL
in
ks

re
lat

ed
-w

or
k

7
1.5

R
ela

te
d
W

or
k

ex
am

pl
es

9
2

Ex
am

pl
es

sp
aw

ni
ng

no
de

js
9

2.
1

Sp
aw

ni
ng

N
od

eJ
S

ev
alc

s
9

2.
2

Ev
alu

at
in
gE

xp
re
ssi

on
s

sp
aw

ni
ng

cu
rl

10
2.
3

Sp
aw

ni
ng

cU
R
L

es
c

10
2.
4

Ch
ar
ac

te
rE

sc
ap

in
g

un
ico

de
11

2.
5

U
ni
co

de
ge

o
12

2.
6.
2

G
eo

m
et
ry

lab
els

15
2.
6.
3

La
be

ls
fu

nc
tio

ns
16

2.
7

Im
pl
em

en
tin

ga
nd

Ca
lli
ng

Fu
nc

tio
ns

ep
ilo

gu
e

18
3

Ep
ilo

gu
e

ou
tli

ne
23

4
Pr

oj
ec
tI

m
pl
em

en
ta
tio

n
O
ut

lin
e

17



3 Epilogue

TEXwasdesigned for typesetting, not forprogramming;
so it is at best “weird” when considered as a program-
ming language.1

We all know that all’s well that ends well, but the astute reader will have noticed that through the
lines of this manual there is a certain amount of despair shining through.

There is a somehwat icky metaphor popular among TEXnicians which compares the inner workings
of TEX to the digestive work done by the mouth and the bowels, a metaphor that never fails to leave
me both unimpressed and uninformed. Kind souls answering the question of neophytes and noobies
often draw on this picture to explicate why some \foo{\bar} invocation miserably flopped where the
seemingly equally innocuous \foo{\baz} succeeded, causing TEX to spit out unhelpfully obfuscated
lines, often ones spewn with @-signs, all decorated with a mysterious-slash-nonsensical error message
and a line number that quite frequently does not refer to the file currently being processed, before
offering the user the choice to either give up or else give up.2 As if that wasn’t bad enough, those kind
people that hang out on discussion websites will likely start talking about how TEX chews, digests,
ruminates, and, well, sometimes regurgitates its inputs when you go and ask them for help.

TEX’s behavior must be classified as singularly unhelpful and irritating; you might want to say
that TEX cannot be successfully run without the Internet, for everything save the shortest and most
boring documents will, with a chance of near-certainty, have some part—maybe something like a
\usepackage{x} statement that was inadvertently placed before another, superficially unrelated
\usepackage{y} instead of after it—that makes TEX screw up.

Well-meaning fellow TEX-users will tell you to read The TEX Book,3 but in case you can count you
will quickly see that—despite its purported reputation of being a fine manual—it actually is more a
challenge to read than anything else, and i’m specifically referring here to the fact that it has, on the
roughly 300 pages of the main part, no less than 284 exercises (of which only 71 are ‘plain’ exercises;
91 are labelled ‘dangerous‘ and 122 ‘ddangerous’). To be fair, answers are given. Alas, when you
peruse Appendix I: Index, it’ll make you think when you realize that there plainly is no keyword of
interest with less than, say, three or four, often six or ten page numbers next to it, meaning that to
look up anything at all you’ll always have to sort of embark on a small grand tour. Add to that the
author’s penchant for a witty style that often gets lost in obscure details4 before getting off at a tangent
and you’ll more often than not rather inquire about a problem on the Net right away rather than
consult The Book.

1 [Knu99], p235
2 reminds one of the now-classic Last Words Dialog featured in early versions of Microsoft Word (which in essence said

‘Something went bad’ and offered the choice to either ‘ignore’, ‘retry’ or ‘abort’, none of which buttons did react to
mouse clicking)

3 see [Knu90]
4 there are almost 30 pages dedicated to ‘Dirty Tricks’; that chapter is guarded with an eleven-fold ‘Danger!’-sign

18



Maybe the best thing that can be said about TEX is that ‘it is good at typesetting’, which, ultimately,
is of course why so many people are ready to put up with all that TEX is not so good at. Which is
a lot, to say the least. Like, adding numbers. Or, doing string processing. Or, doing any one of the
fundamental things that distinguish a markup language from a programming language: naming,
looping, branching, function building, and sensible data types (minimalists will claim much less is
needed for Turing-completeness, but practioners know that with much fewer tools, doing things will
become an inordinately arduous task).5

When i say functions, i mean functions, that is,

optionally named bundles of functionality which accept certain classes of inputs
(as arguments) and yield outputs (as return values) with or without having so-
called ‘side effects’.6

Noticeably absent from this definition is the ability to do the one thing when called in one environ-
ment, and the other when called from within another environment—which is what too many TEX
macros actually do. In a Real programming language, you do not want a function f = ( x ) -> ...
to return 42 when called as 5 / ( f 3 ) but 71 when called as ( f 3 ) / 5 just because f happened
to have been situated once in the divisor and once in the dividend position of an expression; that
would be more than weird. There sure may be cases where such a behavior makes sense, but those
are few and far between.7 In particular, given the knowledge that f 3 returns some number, you do
not want that same call f 3 to blow up the VM with an error message when used in the context of,
say, a multiplication instead of a division.8

TEX macros frequently do exactly that, and while LATEX sure is a feat of a great thinker and many
ingenious and diligent minds have struggled to come up with useful packages to make typesetting
with TEX easier, presumably few have succeeded in providing ‘real’ functions in the sense outlined
above; in my experience, there’s always a good chance that a given command will break whenever
used outside of the select environments it has been tested in / was intended for.

As a case in point, consider the monospaced words appearing in some of the section titles of the

5 It can at times be bewildering to see people ‘doing it the hard way’ when easier ways are readily available, and why?
—‘just because they can’. While mental training is certainly a laudable way to spend time, i cannot help but feeling
that TEX has a way to waste mine, for the precise reason that for all the effort i put into mastering it i get back so
little in terms of re-usable knowledge. In a similar way, many in the field of CS are ready to jump from ‘it’s Turing-
complete’ to ‘you can and should use it to write programs with’. Hell, even CSS+HTML and certain card games
may be considered Turing-complete (see http://beza1e1.tuxen.de/articles/accidentally_turing_complete.html, http://
boingboing.net/ 2012/09/12/magic-the-gathering.html). For a short summary of my view on the topic, see http://
programmers.stackexchange.com/a/223933/114502 (i received downvotes because i deliberatelymistook the ‘minimal’
in the OP’s question as implying ‘for practical purposes’. Formally, my answer is, therefore, wrong.)

6 see https://en.wikipedia.org/wiki/Side_effect_(computer_science); essentially: “a function is said to have a side effect
if […] it also modifies some state or has an observable interaction with […] the outside world. For example, a function
might […]modify one of its arguments, raise an exception, write data to a display or file […].” In practical computing,
side effects are important because wewant to ‘do something’ (change state) and ‘produce something’ (namely output).

7 One exception to the rule is the output of many command line tools that will use colors when writing to the monitor,
but omit colors when writing to a file, as most viewers will fail to render colors and instead display unsightly control
codes.

8 except when an overflow occurs

19



document you’re now reading, like ‘The aux Object’. In most cases where the monospaced font
appears, the \verb#foo# command has been used (in fact, the last instance of monospaced text
appears as \verb!\verb#foo#! in the source; now you know what style The TEX Book is written
in). But \verb#x# happens to break when used in the argument to a \subsection{} command:

\subsection{The \verb#aux# Object}

The above just leads to tears:

Illegal parameter number in definition of \GetTitleStringResult.

Incidentally, you can’t use \verb in a \footnote{}, either, but this time you get a completely unre-
lated and equally opaque message:

You can't use `macro parameter character #' in horizontal mode.

I have no idea why there are quotes in this phrase, but maybe we’ve hit upon something here: Both
messages share the word ‘parameter’, and indeed, # is TEX’s way to mark parameters.9

OK great, not sure why that snazzy # works in a plain paragraph but not in arguments to (some?
all?) commands, but, hey, we sure can use another character in its place—after all, \verb#x# can
be rewritten as \verb&x& or \verbXxX (or with any other hedge character, so we can always find
one that does not interfere with the text meant to be displayed), so, sure enough!, we can drop that
problematic # and swap it for something else, can we?

\footnote{The \verb+aux+ Object}

Nope. Gets you this:

Missing } inserted.

Ah well. Let’s try that with \subsection then:

\subsection{The \verb+aux+ Object}

Nope. Gets you this:

LaTeX Error: \verb illegal in command argument.

I tried this with several hedge characters but to no avail. Needless to say the kind people that hang
out on websites dedicated to solving problems with TEX do provide solutions. Also needless to say that
the respective solutions suggested for \footnote and \subsection that i saw are rather orthogonal
to each other—apparently, the observed breakages are due to different aspects of the underlying code
that define \footnote and \subsection.

Let’s face it, programming is hard. Programming gets even harder when you have to work against the
grain with every step you take. Programming in TEX is especially hard because of the insanely high

9 in its own in-imitable ways: #1 refers to the first argument to a macro, but ##1must be used inside another macro that
is nested inside that first macro to refer back to the same argument. In case you should care: you’d use ####1 to refer to
the same argument if you were to try and define a macro nested inside a nested macro, not ###1.

20



degree of complectedness 10 the language features. What you do to manage the considerable overhead
that comes with a system of this complexity is using so-called ‘design patterns’, that is, bluntly, ‘coping
strategies for programmers’, and, even more bluntly, ‘copying strategies’.

Programming TEX, it would seem, is really only manageable (to a degree) by doing nothing but
applying design patterns, precisely because the language is only marginally more ergonomic than,
say, INTERCAL.11

In fact, it has been said that design patterns—while certainly being helpful in that they show people
how to tackle classes of problems—are really ‘anti-patterns’: signs that a given language is poorly
suited for a given way of doing things.

Art Atwood puts it this way:

If you find yourself frequently writing a bunch of boilerplate design pattern code
to deal with a “recurring design problem”, that’s not good engineering– it’s a sign
that your language is fundamentally broken. […] [design patterns] turn the pro-
grammer into a fancy macro processor.12

One comment i read stated that its writer could only come to grips with TEX by way of ‘uttering
incantations’ (i.e. copying black-box solutions found on the Internet and keeping fingers crossed they’ll
just work); in other words, people are—by the very design of the environment they’re put into—
encouraged to resort to that malicious, bad habit that is Cargo Cult Programming (which in this
world must be having more adherents than its close cousin, Object Oriented Programming).

Donald Knuth, famous inventor of TEX, writes, on page 400 in the aforementioned chapter ‘Dirty
Tricks’, that “[i]t would be possible to write an entire book about TEX ouput routines”; this is probably
more than a mild understatement in the face of comments like these:13
% We empty any left over kludge insert box here; this is a temporary fix.
% It should perhaps be applied to one page of cleared floats, but
% who cares? The whole of this stuff needs completely redoing for
% many such reasons.

which anyone with a LATEXinstallation can read on their own machine by opening ltoutput.dtx
in their text editor. These words (alongside with other delicious commentaries left by members of the
LATEX dev team) are both testament to the inner complexity of TEX and the limited capabilities of
us frail humans, beings who can only juggle with so many balls and hold on to only so many loose
ends at any given time.

Let us pinpoint a few observations on what makes TEX so hard.

10watch Rich Hickey on http://www.infoq.com/presentations/Simple-Made-Easy
11 see https://en.wikipedia.org/wiki/INTERCAL_programming_language
12 see http://www.codinghorror.com/blog/2007/07/rethinking-design-patterns.html
13recommended reading: http://tex.stackexchange.com/a/8736/28067; this answer contains links to a four-part article

series in the magazine TUGboat which may or may not substantiate the implicit claim made here (that some parts of
TEX are too hard even for the most dedicated).

21



XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX
XXXX XXXX XXXX XXXX XXXX XXXX XXXX

horrible error messages that drown in a sea of largely inconsequential informative output and occa-
sional warnings:

! Missing control sequence inserted.
<inserted text>

inaccessible
l.70 wrong.)}

no namespacing

catcodes (active characters would have sufficed)

macro expansion, \expandafter, \noexpand

dependency of outcome / success of macros on environment they are called from

some characters such as _ (underscore) make only ever sense in math mode—so why does TEX com-
plain when used outside of math mode? There’s even a specific catcode assigned to the underscore,
i.e. one out of 16 catcodes is specifically there to identify the role of the underscore in math mode
(which makes subscripts). Wouldn’t a more general solution have been more beneficial here? Active
characters, anyone?

no simple formulation of looping and branching

unobvious procedures; e.g. googling for latex references with section number toc gives me:

For standard classes (article, book, report), adding
\usepackage[nottoc,numbib]{tocbibind}
to your document preamble should work.

What kind of language is this where mumbling ‘nottoc numbib tocbibind’ makes the title of the
References section magically appear with a section number and in the table of contents? How is that
better than, say, ‘hax pax max deus adimax’ ? If it wasn’t for the Internet, where would i learn this
stuff? on Hogwart High?

22



4 Project Implementation Outline
cxltx/.................................................................................................................application folder

cxltx.sty...........................................................................................LATEXmodule to enableCXLTX
src/.....................................................................................................CXLTX CoffeeScript sources

cli.coffee..........................................................................provides command line RPC interface
main.coffee....................................................................CXLTX backend; mainly an RPC dispatcher
sample-provider.coffee...........................................................sample functionalities forCXLTX RPC
ids-provider.coffee.....................................................................................................dto.
server.coffee...............................................................................provides HTTP RPC interface

cxltx-manual.pdf.....................................................................................................this manual
doc/.........................................................................................................source for this manual

cxltx-manual.tex...............................................................................documentation master file
README.tex...............................................................TEXified version of README.md; input to manual
intro.tex.....................................................................................................input to manual
conventions.tex...........................................................................................................dto.
examples.tex...............................................................................................................dto.
epilogue.tex...............................................................................................................dto.
outline.tex................................................................................................................dto.
cxltx-manual.auxcopy.....................................................................auxiliary file produced byCXLTX
cxltx-manual.aux........................................................................................temporary TEX-file
cxltx-manual.toc.........................................................................................................dto.
cxltx-manual.bbl.........................................................................................................dto.
cxltx-manual.bib.........................................................................................................dto.
cxltx-manual.blg.........................................................................................................dto.
cxltx-manual.fls.........................................................................................................dto.
cxltx-manual.log.........................................................................................................dto.
cxltx-manual.out.........................................................................................................dto.

lib/......................................................................................contents of src transpiled to JavaScript
node_modules/.......................................................................................................... JS libraries
monitor-options.json..................................configuration of server monitor; enables restart on source change
package.json........................................................................Common JS / npm package configuration
README.md..............................................................................source of section 1 of the present manual
start-monitored-server.........................................................Bash script to startCXLTX HTTP RPC server

5 References

[Knu90] Donald E. Knuth. The TEXbook, volume A of Computers & Typesetting. Addison–
Wesley, Reading, MA, 1990. 10th printing.

[Knu99] Donald E. Knuth. Mini-indexes for literate programming. In Digital Typography, pages
225–245. CSLI Publications, Stanford, 1999.

23


	CoffeeXeLaTeX (CXLTX)
	What is it? And Why?
	TeX and NodeJS
	Method One: Spawning a node process
	Method Two: Spawning curl
	Security Considerations

	Sample Command Lines
	Useful Links
	Related Work

	Examples
	Spawning NodeJS
	Evaluating Expressions
	Spawning cURL
	Character Escaping
	Unicode
	The aux Object
	The \aux* Commands
	Geometry
	Labels

	Implementing and Calling Functions

	Epilogue
	Project Implementation Outline
	References

