
Proposal — Dygraphs Data Handler API David Eberlein

April 24, 2013
Problem... 2

Overview...2
Data Formats..2

Loader..2
Initial Format...2
Per Series Format...3
Generalized Format..3
Point Creation...4

Conclusion..4
Proposal.. 4

General...4
Benefits...4
Costs..4

Unified Data Format..4
Data Handler...5

DataHandler.prototype.extractSeries(g, rawData, seriesIndex)..5
DataHandler.prototype.getExtremeYValues(g, unifiedData, dateWindow)..........................5
DataHandler.prototype.onPointCreated(g, seriesPoint, unifiedDataSample)......................5
DataHandler.prototype.onLineEvaluated(g, seriesPoints, dataset, setName).....................5

Implementation..6
General...6
Data Handlers:..6

Default Handlers...6
Bar Handlers...6

Compatibility..6
Automated Tests...6
Performance..6

Test setup...7
TestCase1: Init Dygraphs...7
TestCase2: Set Data: updateOptions(file)..7
TestCase3: Zoom In / Out: updateOptions(dateWindow)..7
Conclusion..7

Dygraph-Perf Benchmarks..8
General...8
Test setup...8
Test Case 1: No roll period...8
Test Case 2: Roll period of 10..8
Optimizations..8

Removal of data copying..8
onLineEvaluated instead of onPointCreated..9
Make onLineEvaluated optional...9

Optimized Test Case 1: No roll period..9
Optimized TestCase 2: Roll period of 10..9
Conclusion..9

Sequence Diagram..10

Problem

Overview
At Sauter we use custom data for our charts, since we have additional information which will then
be used by our custom plotters to correctly plot the data. Up until now we added a hack to make
this possible.
However, while looking through the dygraphs code and trying to find a good way to integrate this

feature I came along the complicated checks for the different formats supported by dygraphs,

scattered all over the place. (especially errorBars / customBars).

Dygraphs already provides the API to add custom data plotters, which is very powerful.
Additionally, dygraphs has hard-coded options that allow special forms of drawing the graph (e.g.
errorBars, CustomBars etc.) which are dependent on the plotters and the data format. It would be
very useful to be able to also add proprietary data with more information than x and y values and
be able to render them with a custom plotter. The error bars and custom bars options already do
this, but they do it in a very hard-coded and non-generic way. The code would become less
cluttered, faster, more generic and easier to maintain if there was a clear definition of data formats
and a generic handling of the data.

Data Formats

Loader
Dygraphs has two levels of data handling. The first one is the actual data that is inserted into
Dygraphs (e.g. CSV / JSON / ...). This data gets parsed initially into a JS Array. I don’t want to
handle this initial data parsing in this proposal, although I want to reference to Robert Konigsberg’s
proposal for generic Loaders1.

Initial Format
Here I want to focus on the second level of data handling. After the data is initially parsed, an n-
dimensional array is present that has the following format:

x (e.g. time) Series1 Series2 ... SeriesN

x1 y1(x1) y2(x1) ... yN(x1)

x2 y1(x2) y2(x2) ... yN(x2)

...

which in json would look like:

data = [
 [x1, valueSeries1, valueSeries2, ..., valueSeriesN],

 [x2, valueSeries1, valueSeries2, ..., valueSeriesN],
 ...

]

1https://docs.google.com/document/d/1TFea6KjCSRCOjVjivDiQ07WJs2MTwxQZZMHj8ZLxldc/edit#

https://docs.google.com/document/d/1TFea6KjCSRCOjVjivDiQ07WJs2MTwxQZZMHj8ZLxldc/edit#

The values of the series again may be one of the following:

Option Y-Value Data Format Y-Value Content Description

default num yVal single js number

errorBar [num,num] [yVal,yError] 2-element array with y value and
the error part

customBar [num,num,num] [yMin, yVal, yMax] 3D-element array containing a
min / mid (e.g. avg) / max value

Per Series Format
This initial array is then extracted into one 2D array per series with the following format:

series[n] = [

 [x, y],
 [x, y],

 ...
]

Again, the y-value may have one of the formats described above:

Option Series Row

default [x, yVal]

errorBar [x, [yVal,yError]]

customBar [x, [yMin, yVal, yMax]]

Generalized Format
The rolling average method changes the format of the errorBar and customBar data once more.
(this is not very clean since one wouldn’t suspect this when reading the method name.)
The result of this method is a n-dimensional array per series with the following format:

Option Generalized Series Row

default [x, yVal]

errorBar /
customBar

[x, yVal, yTopVariance, yBottomVariance]

So from three possible data formats we are now down to two. Additionally now, independent of the
prior format, the primary x and y values of each point of a series may now be found in:
series[n][point][0] = x, and series[n][point][1] = y. This will be useful for the proposal.

Point Creation
Before rendering the data, a point array is created for each series. This point array is then passed
to the plotters for rendering. Each point is an own object containing different values relevant for
plotting.

Conclusion
Dygraphs supports various formats that are adapted and unified several times from their initial
input into dygraphs up until the point where they are actually plotted.

Proposal

General
The idea is to define a common, generic data format that works for all data that can be displayed in
dygraphs. Additionally a DataHandler interface is added that is implemented for different data
types supported by Dygraphs and returns Dygraphs-compliant formats.
By default, the correct DataHandler is chosen based on the options set. Optionally, the user may
use his own DataHandler (similar to the plugin system).

Benefits
● The code would become much clearer because a lot of if/else checks would be done in the

beginning (preDraw()) and wouldn't be scattered all over the code.
● Handling of one sort of data would be centralized in one place.
● Adding new special graph types could be easily done by adding new DataHandlers and

Plotters.
● Performance optimization since each DataHandler can assume that the date is in the

correct format which would obsolete the if / else checks
● Users may add their own DataHandlers if the provided ones aren't sufficient.
● Given that plotters can be defined per series and that all DataHandler methods are on a

per-series basis, one could even make DataHandler a per-series option, allowing users to
handle and plot different sorts of data in one graph.

Costs
● Minor duplications of code since some of the code snippets are used in more than one

handler.
● Nothing else I am aware of in the moment. Please add your comments if you can think of

something.

Unified Data Format
A great performance and readability benefit lies in a unified data format. (Discussed below.)
Dygraphs already shows that a Generalized data format is possible (see Generalized Format
above). The proposed data format is very similar:
series[n][point] = [x,y,(extras)]
This format contains the common basis that is needed to draw a series extended by optional extras
for more complex graphing types. It contains a primitive x value as first array entry, a primitive y
value as second array entry, and an optional extras object for additional data needed.

x must always be a number.
y must always be a number, NaN of type number, or null.
extras is optional and must be interpreted by the DataHandler. It may be of any type.

In practice this might look something like this:

Option Unified Series Row

default [x, yVal]

errorBar / customBar [x, yVal, [yTopVariance, yBottomVariance]]

custom [x, yVal, {valueReliability, min, max}]

The unified data is generated by the DataHandler described in the next chapter.

Data Handler
The data handler is responsible for all data-specific operations. All of the series data it receives
and returns is always in the unified data format. Initially the unified data is created by the
extractSeries method:

DataHandler.prototype .extractSeries(g, rawData, seriesIndex)
The extract series method is responsible for extracting a single series data from the general data
array. It must return the series in the unified data format. It may or may not add extras for later
usage.
DataHandler.prototype. rollingAverage (g, unifiedData, rollPeriod)
The rolling average method is called if the rollPeriod is larger than 1. It is supplied with the series
data generated by extractSeries and the rollPeriod.
It must return an array that is again compliant with the unified data format. Extras may be used if
needed.

DataHandler .prototype.getExtremeYValues(g, unifiedData, dateWindow)
This method computes the extremes of the supplied rolledData. It may be pruned compared to the
data returned by the DataHandler.rollingAverage method, but generally contains the data returned
from it. The given dateWindow must be considered for the computation of the extreme values.
Extras may be used if needed.

DataHandler. prototype.onPointCreated(g, seriesPoint, unifiedDataSample)
Based on the provided x and y values, seriesPoints for each sample of a series are created. This
additional callback is called for every seriesPoint created. The original unifiedDataSample is also
given so that additional extras may be extracted and added to the seriesPoint. (e.g. the
DataHandlers for bars add y_top and y_bottom here which is needed to draw the error bars.)

DataHandler.prototype.onLineEvaluated(g, seriesPoints, dataset, setName)
Because of performance reasons, the onPointCreated callback was replaced by this method2. The
only difference is that this method is only called once per series, and not for every point of the
series. This saves us several method calls as well as several option reads that are done in the
onPointCreated.

2See chapter Dygraphs-Perf Benchmarks

Implementation

General
I have done a full implementation of my proposal on one of our branches3 that you could have a
look at.
This is all it basically needs for us to use custom formats; however, one would have to look at the
rest of the code to see which other bits should also be extracted. e.g. providing a separate method
for rollingAverage is questionable. The computations done in this method could either be done in
the extract series method or in a more generic applyFilters method.
See the new folder datahandler and the adaptations in dygraphs.js preDraw() (this.dataHandler_
was added there).
Don't worry about the enormous amount of code added to the extremeValues method. This fixes
"Issue 458: Autoscal", and doesn't have anything to do with the datahandler concept.

Data Handlers:

Default Handlers
The “default” handler is a very simple implementation used for normal x/y line line plots. It is the
default handler if no special option is set.
The “default-fractions” handler extends it and adds support for simple line charts based on
fractions data.

Bar Handlers
The “bar” handler is the base handler for all other bar handlers. It implements the
getYExtremeValues and onPointCreated methods since the unified data format allows us to reuse
these methods for all other bar handlers. Format specific extractions are done in the inherited bar
handlers.

Compatibility
The new implementation is option-wise 100% compatible to the current Dygraphs version. This
means that all options, including errorBars, customBars, fractions, and rollPeriod still work exactly
the same.
This also means that all current data formats including CSV, Gviz, and different types of JS Arrays
still work with 100% the same format.
All changes made for this proposal only concern the internal data handling. I have added several
test to the roll-period.js auto test that verify this.

Automated Tests
All automated tests pass. Since the options have stayed compatible, only a handful of tests which
called private Dygraphs methods had to be adapted.
I have also added several rolling-period tests since the test coverage of this option was not very
good.

Performance
I have added a benchmark test to the automated tests (deactivated because it takes quite a while
to run.) I let the benchmarks run both on my proposed version and on the current Dygraphs master
branch.

3https://github.com/sauter-hq/dygraphs/tree/sauter-custom-datahandler

https://github.com/sauter-hq/dygraphs/tree/sauter-custom-datahandler

Test setup
Browser: Chrome Version 26.0.1410.64
OS: Windows 7 Enterprise 64 Bit SP1
CPU: Intel Core i7-2600 @ 3.4GHz
RAM: 12GB

TestCase1: Init Dygraphs

num of points options master [ms] proposal [ms]

1,000,000 default 1200 1100

1,000,000 fractions 2500 1400

10,000 errorBars 1400 1400

10,000 errorBars, fractions 1400 1400

10,000 customBars, rollPeriod (500) 1400 1400

TestCase2: Set Data: updateOptions(file)

num of points options master [ms] proposal [ms]

1,000,000 default 1200 1200

1,000,000 fractions 2900 1500

10,000 errorBars 1400 1400

10,000 errorBars, fractions 1400 1400

10,000 customBars, rollPeriod (500) 1400 1400

TestCase3: Zoom In / Out: updateOptions(dateWindow)

num of points options master [ms] proposal [ms]

1,000,000 default 1300 1300

1,000,000 fractions 2900 2400

10,000 errorBars 800 800

10,000 errorBars, Fractoins 800 800

10,000 customBars, rollPeriod (500) 800 800

Conclusion
Performance-wise most of the tests come to the same results. Default data with fractions stands
out a bit but that is probably tweakable. Generally one can say that the performance definitely
doesn’t get worse with this solution, but it is rather faster.
So performance should not stand in the way of this proposal.

Dygraph-Perf Benchmarks

General
Additionally, benchmarks based on the Dygraph-Perf4 project have been done, to test the two
implementations in their minified form.

Test setup
Engine: Phantom JS 1.9
OS: Ubuntu Linux 3.2.0-40-generic-pae i686 i386
CPU: Intel 2 Duo E7500 @ 2.93GHz
RAM: 2GB

Test Case 1: No roll period

p.p. series series data format roll period master [ms] proposal [ms] diff [%]

1000 100 line 1 165 174 -5.2

1000 100 fractions 1 235 220 +6.8

1000 10 errorBars 1 4752 4758 -0.1

1000 10 customBars 1 2375 2371 +0.2

Test Case 2: Roll period of 10

p.p. series series data format roll period master [ms] proposal [ms] diff [%]

1000 100 line 10 252 261 -3.4

1000 100 fractions 10 236 250 -5.6

1000 10 errorBars 10 741 750 -1.2

1000 10 customBars 10 2379 2381 -0.1

Optimizations
This sums up to an overall performance loss of -1.2% which is rather small, taking into account that
no optimizations have been done to make the performance better. The next step is to look at what
slows down the performance and add optimizations for the data handler implementation. The
following optimizations could be done:

Removal of data copying
Removed copying each series in the gatherDatasets_ (dygraphs.js) method. A comment there
stated that the series had to be copied due to issues when zooming with the errorBar option. I
removed the copy on both my proposal and the current master branch. The zoom bug was present
on the master trunk but it was not present anymore in my proposed version. The unified data
format seems to fix this bug.

4https://github.com/danvk/dygraphs-perf

https://github.com/danvk/dygraphs-perf

onLineEvaluated instead of onPointCreated
The onPointCreated callback, which was called for every single point, was responsible for most of
the performance reduction in my proposal. Now instead of calling this method for every point
created, a different callback method was added, called onLineEvaluated. This method is only
called once per series and is given all seriesPoints and the dataset for the series.

Make onLineEvaluated optional
Since the default data handlers don’t use the onLineEvaluated callback, they now set it to
“undefined”. dygraphs-layout.js now checks this and only calls the method if it is defined, which
also boosts the performance.

Optimized Test Case 1: No roll period

p.p. series series data format roll period master [ms] proposal [ms] diff [%]

1000 100 line 1 165 156 +5.5

1000 100 fractions 1 235 202 +14.0

1000 10 errorBars 1 4752 4745 +0.1

1000 10 customBars 1 2375 2360 +0.6

Optimized TestCase 2: Roll period of 10

p.p. series series data format roll period master [ms] proposal [ms] diff [%]

1000 100 line 10 252 243 +3.6

1000 100 fractions 10 236 232 +1.7

1000 10 errorBars 10 741 738 +0.4

1000 10 customBars 10 2379 2368 +0.5

Conclusion
With the optimizations done, this sums up to a overall performance gain of +3.3% which shows
that the new solution even has benefits performance-wise. Also one can see that this performance
benefit is consistent for every data format tested. None of the tests perform worse than the current
master which in my opinion is a great achievement. Additionally, the most commonly used data
format (simple line) even outdoes the overall 3.3% with a performance gain of +5.5% (from -5.6%
in the unoptimized version).
The relatively small performance gain using errorBars and customBars is mainly due to the
reduced numbers of series. The gain from not having to copy all the data per series therefore
doesn’t come into account that much. Also in contrast to the line and fractions data handlers, the
bars data handlers both implement the onLineEvaluated and therefore don’t profit from the
“undefined” optimization.

Sequence Diagram

