// @flow strict import find from '../../polyfills/find'; import objectEntries from '../../polyfills/objectEntries'; import type { ObjMap } from '../../jsutils/ObjMap'; import inspect from '../../jsutils/inspect'; import { GraphQLError } from '../../error/GraphQLError'; import type { ASTVisitor } from '../../language/visitor'; import type { SelectionSetNode, ValueNode, FieldNode, ArgumentNode, FragmentDefinitionNode, } from '../../language/ast'; import { Kind } from '../../language/kinds'; import { print } from '../../language/printer'; import type { GraphQLNamedType, GraphQLOutputType, GraphQLCompositeType, GraphQLField, } from '../../type/definition'; import { getNamedType, isNonNullType, isLeafType, isObjectType, isListType, isInterfaceType, } from '../../type/definition'; import { typeFromAST } from '../../utilities/typeFromAST'; import type { ValidationContext } from '../ValidationContext'; function reasonMessage(reason: ConflictReasonMessage): string { if (Array.isArray(reason)) { return reason .map( ([responseName, subReason]) => `subfields "${responseName}" conflict because ` + reasonMessage(subReason), ) .join(' and '); } return reason; } /** * Overlapping fields can be merged * * A selection set is only valid if all fields (including spreading any * fragments) either correspond to distinct response names or can be merged * without ambiguity. */ export function OverlappingFieldsCanBeMergedRule( context: ValidationContext, ): ASTVisitor { // A memoization for when two fragments are compared "between" each other for // conflicts. Two fragments may be compared many times, so memoizing this can // dramatically improve the performance of this validator. const comparedFragmentPairs = new PairSet(); // A cache for the "field map" and list of fragment names found in any given // selection set. Selection sets may be asked for this information multiple // times, so this improves the performance of this validator. const cachedFieldsAndFragmentNames = new Map(); return { SelectionSet(selectionSet) { const conflicts = findConflictsWithinSelectionSet( context, cachedFieldsAndFragmentNames, comparedFragmentPairs, context.getParentType(), selectionSet, ); for (const [[responseName, reason], fields1, fields2] of conflicts) { const reasonMsg = reasonMessage(reason); context.reportError( new GraphQLError( `Fields "${responseName}" conflict because ${reasonMsg}. Use different aliases on the fields to fetch both if this was intentional.`, fields1.concat(fields2), ), ); } }, }; } type Conflict = [ConflictReason, Array, Array]; // Field name and reason. type ConflictReason = [string, ConflictReasonMessage]; // Reason is a string, or a nested list of conflicts. type ConflictReasonMessage = string | Array; // Tuple defining a field node in a context. type NodeAndDef = [ GraphQLCompositeType, FieldNode, ?GraphQLField, ]; // Map of array of those. type NodeAndDefCollection = ObjMap>; /** * Algorithm: * * Conflicts occur when two fields exist in a query which will produce the same * response name, but represent differing values, thus creating a conflict. * The algorithm below finds all conflicts via making a series of comparisons * between fields. In order to compare as few fields as possible, this makes * a series of comparisons "within" sets of fields and "between" sets of fields. * * Given any selection set, a collection produces both a set of fields by * also including all inline fragments, as well as a list of fragments * referenced by fragment spreads. * * A) Each selection set represented in the document first compares "within" its * collected set of fields, finding any conflicts between every pair of * overlapping fields. * Note: This is the *only time* that a the fields "within" a set are compared * to each other. After this only fields "between" sets are compared. * * B) Also, if any fragment is referenced in a selection set, then a * comparison is made "between" the original set of fields and the * referenced fragment. * * C) Also, if multiple fragments are referenced, then comparisons * are made "between" each referenced fragment. * * D) When comparing "between" a set of fields and a referenced fragment, first * a comparison is made between each field in the original set of fields and * each field in the the referenced set of fields. * * E) Also, if any fragment is referenced in the referenced selection set, * then a comparison is made "between" the original set of fields and the * referenced fragment (recursively referring to step D). * * F) When comparing "between" two fragments, first a comparison is made between * each field in the first referenced set of fields and each field in the the * second referenced set of fields. * * G) Also, any fragments referenced by the first must be compared to the * second, and any fragments referenced by the second must be compared to the * first (recursively referring to step F). * * H) When comparing two fields, if both have selection sets, then a comparison * is made "between" both selection sets, first comparing the set of fields in * the first selection set with the set of fields in the second. * * I) Also, if any fragment is referenced in either selection set, then a * comparison is made "between" the other set of fields and the * referenced fragment. * * J) Also, if two fragments are referenced in both selection sets, then a * comparison is made "between" the two fragments. * */ // Find all conflicts found "within" a selection set, including those found // via spreading in fragments. Called when visiting each SelectionSet in the // GraphQL Document. function findConflictsWithinSelectionSet( context: ValidationContext, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, parentType: ?GraphQLNamedType, selectionSet: SelectionSetNode, ): Array { const conflicts = []; const [fieldMap, fragmentNames] = getFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, parentType, selectionSet, ); // (A) Find find all conflicts "within" the fields of this selection set. // Note: this is the *only place* `collectConflictsWithin` is called. collectConflictsWithin( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, fieldMap, ); if (fragmentNames.length !== 0) { // (B) Then collect conflicts between these fields and those represented by // each spread fragment name found. for (let i = 0; i < fragmentNames.length; i++) { collectConflictsBetweenFieldsAndFragment( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, false, fieldMap, fragmentNames[i], ); // (C) Then compare this fragment with all other fragments found in this // selection set to collect conflicts between fragments spread together. // This compares each item in the list of fragment names to every other // item in that same list (except for itself). for (let j = i + 1; j < fragmentNames.length; j++) { collectConflictsBetweenFragments( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, false, fragmentNames[i], fragmentNames[j], ); } } } return conflicts; } // Collect all conflicts found between a set of fields and a fragment reference // including via spreading in any nested fragments. function collectConflictsBetweenFieldsAndFragment( context: ValidationContext, conflicts: Array, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, areMutuallyExclusive: boolean, fieldMap: NodeAndDefCollection, fragmentName: string, ): void { const fragment = context.getFragment(fragmentName); if (!fragment) { return; } const [fieldMap2, fragmentNames2] = getReferencedFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, fragment, ); // Do not compare a fragment's fieldMap to itself. if (fieldMap === fieldMap2) { return; } // (D) First collect any conflicts between the provided collection of fields // and the collection of fields represented by the given fragment. collectConflictsBetween( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap, fieldMap2, ); // (E) Then collect any conflicts between the provided collection of fields // and any fragment names found in the given fragment. for (let i = 0; i < fragmentNames2.length; i++) { collectConflictsBetweenFieldsAndFragment( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap, fragmentNames2[i], ); } } // Collect all conflicts found between two fragments, including via spreading in // any nested fragments. function collectConflictsBetweenFragments( context: ValidationContext, conflicts: Array, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, areMutuallyExclusive: boolean, fragmentName1: string, fragmentName2: string, ): void { // No need to compare a fragment to itself. if (fragmentName1 === fragmentName2) { return; } // Memoize so two fragments are not compared for conflicts more than once. if ( comparedFragmentPairs.has( fragmentName1, fragmentName2, areMutuallyExclusive, ) ) { return; } comparedFragmentPairs.add(fragmentName1, fragmentName2, areMutuallyExclusive); const fragment1 = context.getFragment(fragmentName1); const fragment2 = context.getFragment(fragmentName2); if (!fragment1 || !fragment2) { return; } const [fieldMap1, fragmentNames1] = getReferencedFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, fragment1, ); const [fieldMap2, fragmentNames2] = getReferencedFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, fragment2, ); // (F) First, collect all conflicts between these two collections of fields // (not including any nested fragments). collectConflictsBetween( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap1, fieldMap2, ); // (G) Then collect conflicts between the first fragment and any nested // fragments spread in the second fragment. for (let j = 0; j < fragmentNames2.length; j++) { collectConflictsBetweenFragments( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fragmentName1, fragmentNames2[j], ); } // (G) Then collect conflicts between the second fragment and any nested // fragments spread in the first fragment. for (let i = 0; i < fragmentNames1.length; i++) { collectConflictsBetweenFragments( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fragmentNames1[i], fragmentName2, ); } } // Find all conflicts found between two selection sets, including those found // via spreading in fragments. Called when determining if conflicts exist // between the sub-fields of two overlapping fields. function findConflictsBetweenSubSelectionSets( context: ValidationContext, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, areMutuallyExclusive: boolean, parentType1: ?GraphQLNamedType, selectionSet1: SelectionSetNode, parentType2: ?GraphQLNamedType, selectionSet2: SelectionSetNode, ): Array { const conflicts = []; const [fieldMap1, fragmentNames1] = getFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, parentType1, selectionSet1, ); const [fieldMap2, fragmentNames2] = getFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, parentType2, selectionSet2, ); // (H) First, collect all conflicts between these two collections of field. collectConflictsBetween( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap1, fieldMap2, ); // (I) Then collect conflicts between the first collection of fields and // those referenced by each fragment name associated with the second. if (fragmentNames2.length !== 0) { for (let j = 0; j < fragmentNames2.length; j++) { collectConflictsBetweenFieldsAndFragment( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap1, fragmentNames2[j], ); } } // (I) Then collect conflicts between the second collection of fields and // those referenced by each fragment name associated with the first. if (fragmentNames1.length !== 0) { for (let i = 0; i < fragmentNames1.length; i++) { collectConflictsBetweenFieldsAndFragment( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fieldMap2, fragmentNames1[i], ); } } // (J) Also collect conflicts between any fragment names by the first and // fragment names by the second. This compares each item in the first set of // names to each item in the second set of names. for (let i = 0; i < fragmentNames1.length; i++) { for (let j = 0; j < fragmentNames2.length; j++) { collectConflictsBetweenFragments( context, conflicts, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, fragmentNames1[i], fragmentNames2[j], ); } } return conflicts; } // Collect all Conflicts "within" one collection of fields. function collectConflictsWithin( context: ValidationContext, conflicts: Array, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, fieldMap: NodeAndDefCollection, ): void { // A field map is a keyed collection, where each key represents a response // name and the value at that key is a list of all fields which provide that // response name. For every response name, if there are multiple fields, they // must be compared to find a potential conflict. for (const [responseName, fields] of objectEntries(fieldMap)) { // This compares every field in the list to every other field in this list // (except to itself). If the list only has one item, nothing needs to // be compared. if (fields.length > 1) { for (let i = 0; i < fields.length; i++) { for (let j = i + 1; j < fields.length; j++) { const conflict = findConflict( context, cachedFieldsAndFragmentNames, comparedFragmentPairs, false, // within one collection is never mutually exclusive responseName, fields[i], fields[j], ); if (conflict) { conflicts.push(conflict); } } } } } } // Collect all Conflicts between two collections of fields. This is similar to, // but different from the `collectConflictsWithin` function above. This check // assumes that `collectConflictsWithin` has already been called on each // provided collection of fields. This is true because this validator traverses // each individual selection set. function collectConflictsBetween( context: ValidationContext, conflicts: Array, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, parentFieldsAreMutuallyExclusive: boolean, fieldMap1: NodeAndDefCollection, fieldMap2: NodeAndDefCollection, ): void { // A field map is a keyed collection, where each key represents a response // name and the value at that key is a list of all fields which provide that // response name. For any response name which appears in both provided field // maps, each field from the first field map must be compared to every field // in the second field map to find potential conflicts. for (const responseName of Object.keys(fieldMap1)) { const fields2 = fieldMap2[responseName]; if (fields2) { const fields1 = fieldMap1[responseName]; for (let i = 0; i < fields1.length; i++) { for (let j = 0; j < fields2.length; j++) { const conflict = findConflict( context, cachedFieldsAndFragmentNames, comparedFragmentPairs, parentFieldsAreMutuallyExclusive, responseName, fields1[i], fields2[j], ); if (conflict) { conflicts.push(conflict); } } } } } } // Determines if there is a conflict between two particular fields, including // comparing their sub-fields. function findConflict( context: ValidationContext, cachedFieldsAndFragmentNames, comparedFragmentPairs: PairSet, parentFieldsAreMutuallyExclusive: boolean, responseName: string, field1: NodeAndDef, field2: NodeAndDef, ): ?Conflict { const [parentType1, node1, def1] = field1; const [parentType2, node2, def2] = field2; // If it is known that two fields could not possibly apply at the same // time, due to the parent types, then it is safe to permit them to diverge // in aliased field or arguments used as they will not present any ambiguity // by differing. // It is known that two parent types could never overlap if they are // different Object types. Interface or Union types might overlap - if not // in the current state of the schema, then perhaps in some future version, // thus may not safely diverge. const areMutuallyExclusive = parentFieldsAreMutuallyExclusive || (parentType1 !== parentType2 && isObjectType(parentType1) && isObjectType(parentType2)); if (!areMutuallyExclusive) { // Two aliases must refer to the same field. const name1 = node1.name.value; const name2 = node2.name.value; if (name1 !== name2) { return [ [responseName, `"${name1}" and "${name2}" are different fields`], [node1], [node2], ]; } // istanbul ignore next (See: 'https://github.com/graphql/graphql-js/issues/2203') const args1 = node1.arguments ?? []; // istanbul ignore next (See: 'https://github.com/graphql/graphql-js/issues/2203') const args2 = node2.arguments ?? []; // Two field calls must have the same arguments. if (!sameArguments(args1, args2)) { return [ [responseName, 'they have differing arguments'], [node1], [node2], ]; } } // The return type for each field. const type1 = def1?.type; const type2 = def2?.type; if (type1 && type2 && doTypesConflict(type1, type2)) { return [ [ responseName, `they return conflicting types "${inspect(type1)}" and "${inspect( type2, )}"`, ], [node1], [node2], ]; } // Collect and compare sub-fields. Use the same "visited fragment names" list // for both collections so fields in a fragment reference are never // compared to themselves. const selectionSet1 = node1.selectionSet; const selectionSet2 = node2.selectionSet; if (selectionSet1 && selectionSet2) { const conflicts = findConflictsBetweenSubSelectionSets( context, cachedFieldsAndFragmentNames, comparedFragmentPairs, areMutuallyExclusive, getNamedType(type1), selectionSet1, getNamedType(type2), selectionSet2, ); return subfieldConflicts(conflicts, responseName, node1, node2); } } function sameArguments( arguments1: $ReadOnlyArray, arguments2: $ReadOnlyArray, ): boolean { if (arguments1.length !== arguments2.length) { return false; } return arguments1.every((argument1) => { const argument2 = find( arguments2, (argument) => argument.name.value === argument1.name.value, ); if (!argument2) { return false; } return sameValue(argument1.value, argument2.value); }); } function sameValue(value1: ValueNode, value2: ValueNode): boolean { return print(value1) === print(value2); } // Two types conflict if both types could not apply to a value simultaneously. // Composite types are ignored as their individual field types will be compared // later recursively. However List and Non-Null types must match. function doTypesConflict( type1: GraphQLOutputType, type2: GraphQLOutputType, ): boolean { if (isListType(type1)) { return isListType(type2) ? doTypesConflict(type1.ofType, type2.ofType) : true; } if (isListType(type2)) { return true; } if (isNonNullType(type1)) { return isNonNullType(type2) ? doTypesConflict(type1.ofType, type2.ofType) : true; } if (isNonNullType(type2)) { return true; } if (isLeafType(type1) || isLeafType(type2)) { return type1 !== type2; } return false; } // Given a selection set, return the collection of fields (a mapping of response // name to field nodes and definitions) as well as a list of fragment names // referenced via fragment spreads. function getFieldsAndFragmentNames( context: ValidationContext, cachedFieldsAndFragmentNames, parentType: ?GraphQLNamedType, selectionSet: SelectionSetNode, ): [NodeAndDefCollection, Array] { let cached = cachedFieldsAndFragmentNames.get(selectionSet); if (!cached) { const nodeAndDefs = Object.create(null); const fragmentNames = Object.create(null); _collectFieldsAndFragmentNames( context, parentType, selectionSet, nodeAndDefs, fragmentNames, ); cached = [nodeAndDefs, Object.keys(fragmentNames)]; cachedFieldsAndFragmentNames.set(selectionSet, cached); } return cached; } // Given a reference to a fragment, return the represented collection of fields // as well as a list of nested fragment names referenced via fragment spreads. function getReferencedFieldsAndFragmentNames( context: ValidationContext, cachedFieldsAndFragmentNames, fragment: FragmentDefinitionNode, ) { // Short-circuit building a type from the node if possible. const cached = cachedFieldsAndFragmentNames.get(fragment.selectionSet); if (cached) { return cached; } const fragmentType = typeFromAST(context.getSchema(), fragment.typeCondition); return getFieldsAndFragmentNames( context, cachedFieldsAndFragmentNames, fragmentType, fragment.selectionSet, ); } function _collectFieldsAndFragmentNames( context: ValidationContext, parentType: ?GraphQLNamedType, selectionSet: SelectionSetNode, nodeAndDefs, fragmentNames, ): void { for (const selection of selectionSet.selections) { switch (selection.kind) { case Kind.FIELD: { const fieldName = selection.name.value; let fieldDef; if (isObjectType(parentType) || isInterfaceType(parentType)) { fieldDef = parentType.getFields()[fieldName]; } const responseName = selection.alias ? selection.alias.value : fieldName; if (!nodeAndDefs[responseName]) { nodeAndDefs[responseName] = []; } nodeAndDefs[responseName].push([parentType, selection, fieldDef]); break; } case Kind.FRAGMENT_SPREAD: fragmentNames[selection.name.value] = true; break; case Kind.INLINE_FRAGMENT: { const typeCondition = selection.typeCondition; const inlineFragmentType = typeCondition ? typeFromAST(context.getSchema(), typeCondition) : parentType; _collectFieldsAndFragmentNames( context, inlineFragmentType, selection.selectionSet, nodeAndDefs, fragmentNames, ); break; } } } } // Given a series of Conflicts which occurred between two sub-fields, generate // a single Conflict. function subfieldConflicts( conflicts: $ReadOnlyArray, responseName: string, node1: FieldNode, node2: FieldNode, ): ?Conflict { if (conflicts.length > 0) { return [ [responseName, conflicts.map(([reason]) => reason)], conflicts.reduce((allFields, [, fields1]) => allFields.concat(fields1), [ node1, ]), conflicts.reduce( (allFields, [, , fields2]) => allFields.concat(fields2), [node2], ), ]; } } /** * A way to keep track of pairs of things when the ordering of the pair does * not matter. We do this by maintaining a sort of double adjacency sets. */ class PairSet { _data: ObjMap>; constructor() { this._data = Object.create(null); } has(a: string, b: string, areMutuallyExclusive: boolean): boolean { const first = this._data[a]; const result = first && first[b]; if (result === undefined) { return false; } // areMutuallyExclusive being false is a superset of being true, // hence if we want to know if this PairSet "has" these two with no // exclusivity, we have to ensure it was added as such. if (areMutuallyExclusive === false) { return result === false; } return true; } add(a: string, b: string, areMutuallyExclusive: boolean): void { this._pairSetAdd(a, b, areMutuallyExclusive); this._pairSetAdd(b, a, areMutuallyExclusive); } _pairSetAdd(a: string, b: string, areMutuallyExclusive: boolean): void { let map = this._data[a]; if (!map) { map = Object.create(null); this._data[a] = map; } map[b] = areMutuallyExclusive; } }