// Copyright 2004-present Facebook. All Rights Reserved. /** * Immutable data encourages pure functions (data-in, data-out) and lends itself * to much simpler application development and enabling techniques from * functional programming such as lazy evaluation. * * While designed to bring these powerful functional concepts to JavaScript, it * presents an Object-Oriented API familiar to JavaScript engineers and closely * mirroring that of Array, Map, and Set. It is easy and efficient to convert to * and from plain JavaScript types. * Note: all examples are presented in [ES6][]. To run in all browsers, they * need to be translated to ES3. For example: * * // ES6 * foo.map(x => x * x); * // ES3 * foo.map(function (x) { return x * x; }); * * [ES6]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/New_in_JavaScript/ECMAScript_6_support_in_Mozilla */ declare module 'immutable' { /** * Deeply converts plain JS objects and arrays to Immutable Maps and Lists. * * If a `reviver` is optionally provided, it will be called with every * collection as a Seq (beginning with the most nested collections * and proceeding to the top-level collection itself), along with the key * referring to each collection and the parent JS object provided as `this`. * For the top level, object, the key will be `""`. This `reviver` is expected * to return a new Immutable Iterable, allowing for custom convertions from * deep JS objects. * * This example converts JSON to List and OrderedMap: * * Immutable.fromJS({a: {b: [10, 20, 30]}, c: 40}, function (key, value) { * var isIndexed = Immutable.Iterable.isIndexed(value); * return isIndexed ? value.toList() : value.toOrderedMap(); * }); * * // true, "b", {b: [10, 20, 30]} * // false, "a", {a: {b: [10, 20, 30]}, c: 40} * // false, "", {"": {a: {b: [10, 20, 30]}, c: 40}} * * If `reviver` is not provided, the default behavior will convert Arrays into * Lists and Objects into Maps. * * `reviver` acts similarly to the [same parameter in `JSON.parse`][1]. * * `Immutable.fromJS` is conservative in it's conversion. It will only convert * arrays which pass `Array.isArray` to Lists, and only raw objects (no custom * prototype) to Map. * * [1]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse#Example.3A_Using_the_reviver_parameter * "Using the reviver parameter" */ declare function fromJS( json: any, reviver?: (k: any, v: Iterable) => any ): any; /** * Value equality check with semantics similar to `Object.is`, but treats * Immutable `Iterable`s as values, equal if the second `Iterable` contains * equivalent values. * * It's used throughout Immutable when checking for equality, including `Map` * key equality and `Set` membership. * * var map1 = Immutable.Map({a:1, b:1, c:1}); * var map2 = Immutable.Map({a:1, b:1, c:1}); * assert(map1 !== map2); * assert(Object.is(map1, map2) === false); * assert(Immutable.is(map1, map2) === true); * * Note: Unlike `Object.is`, `Immutable.is` assumes `0` and `-0` are the same * value, matching the behavior of ES6 Map key equality. */ declare function is(first: any, second: any): boolean; /** * Lists are ordered indexed dense collections, much like a JavaScript * Array. * * Lists are immutable and fully persistent with O(log32 N) gets and sets, * and O(1) push and pop. * * Lists implement Deque, with efficient addition and removal from both the * end (`push`, `pop`) and beginning (`unshift`, `shift`). * * Unlike a JavaScript Array, there is no distinction between an * "unset" index and an index set to `undefined`. `List#forEach` visits all * indices from 0 to size, regardless of if they where explicitly defined. */ declare class List extends IndexedCollection { /** * Create a new immutable List containing the values of the provided * iterable-like. */ static (): List; static (iter: IndexedIterable): List; static (iter: SetIterable): List; static (iter: KeyedIterable): List; static (array: Array): List; static (iterator: Iterator): List; static (iterable: /*Iterable*/Object): List; /** * True if the provided value is a List */ static isList(maybeList: any): boolean; /** * Creates a new List containing `values`. */ static of(...values: T[]): List; map( mapper: (value: T, key: number, iter: this) => M, context?: any ): List; // Persistent changes /** * Returns a new List which includes `value` at `index`. If `index` already * exists in this List, it will be replaced. * * `index` may be a negative number, which indexes back from the end of the * List. `v.set(-1, "value")` sets the last item in the List. * * If `index` larger than `size`, the returned List's `size` will be large * enough to include the `index`. */ set(index: number, value: T): List; /** * Returns a new List which excludes this `index` and with a size 1 less * than this List. Values at indicies above `index` are shifted down by 1 to * fill the position. * * This is synonymous with `list.splice(index, 1)`. * * `index` may be a negative number, which indexes back from the end of the * List. `v.delete(-1)` deletes the last item in the List. * * Note: `delete` cannot be safely used in IE8 * @alias remove */ delete(index: number): List; remove(index: number): List; /** * Returns a new List with 0 size and no values. */ clear(): List; /** * Returns a new List with the provided `values` appended, starting at this * List's `size`. */ push(...values: T[]): List; /** * Returns a new List with a size ones less than this List, excluding * the last index in this List. * * Note: this differs from `Array#pop` because it returns a new * List rather than the removed value. Use `last()` to get the last value * in this List. */ pop(): List; /** * Returns a new List with the provided `values` prepended, shifting other * values ahead to higher indices. */ unshift(...values: T[]): List; /** * Returns a new List with a size ones less than this List, excluding * the first index in this List, shifting all other values to a lower index. * * Note: this differs from `Array#shift` because it returns a new * List rather than the removed value. Use `first()` to get the first * value in this List. */ shift(): List; /** * Returns a new List with an updated value at `index` with the return * value of calling `updater` with the existing value, or `notSetValue` if * `index` was not set. If called with a single argument, `updater` is * called with the List itself. * * `index` may be a negative number, which indexes back from the end of the * List. `v.update(-1)` updates the last item in the List. * * @see `Map#update` */ update(updater: (value: List) => List): List; update(index: number, updater: (value: T) => T): List; update(index: number, notSetValue: T, updater: (value: T) => T): List; /** * @see `Map#merge` */ merge(...iterables: IndexedIterable[]): List; merge(...iterables: Array[]): List; /** * @see `Map#mergeWith` */ mergeWith( merger: (previous: T, next: T) => T, ...iterables: IndexedIterable[] ): List; mergeWith( merger: (previous: T, next: T) => T, ...iterables: Array[] ): List; /** * @see `Map#mergeDeep` */ mergeDeep(...iterables: IndexedIterable[]): List; mergeDeep(...iterables: Array[]): List; /** * @see `Map#mergeDeepWith` */ mergeDeepWith( merger: (previous: T, next: T) => T, ...iterables: IndexedIterable[] ): List; mergeDeepWith( merger: (previous: T, next: T) => T, ...iterables: Array[] ): List; /** * Returns a new List with size `size`. If `size` is less than this * List's size, the new List will exclude values at the higher indices. * If `size` is greater than this List's size, the new List will have * undefined values for the newly available indices. * * When building a new List and the final size is known up front, `setSize` * used in conjunction with `withMutations` may result in the more * performant construction. */ setSize(size: number): List; // Deep persistent changes /** * Returns a new List having set `value` at this `keyPath`. If any keys in * `keyPath` do not exist, a new immutable Map will be created at that key. * * Index numbers are used as keys to determine the path to follow in * the List. */ setIn(keyPath: Array, value: any): List; setIn(keyPath: Iterable, value: any): List; /** * Returns a new List having removed the value at this `keyPath`. If any * keys in `keyPath` do not exist, a new immutable Map will be created at * that key. * * @alias removeIn */ deleteIn(keyPath: Array): List; deleteIn(keyPath: Iterable): List; removeIn(keyPath: Array): List; removeIn(keyPath: Iterable): List; /** * @see `Map#updateIn` */ updateIn( keyPath: Array, updater: (value: any) => any ): List; updateIn( keyPath: Array, notSetValue: any, updater: (value: any) => any ): List; updateIn( keyPath: Iterable, updater: (value: any) => any ): List; updateIn( keyPath: Iterable, notSetValue: any, updater: (value: any) => any ): List; /** * @see `Map#mergeIn` */ mergeIn( keyPath: Iterable, ...iterables: IndexedIterable[] ): List; mergeIn( keyPath: Array, ...iterables: IndexedIterable[] ): List; mergeIn( keyPath: Array, ...iterables: Array[] ): List; /** * @see `Map#mergeDeepIn` */ mergeDeepIn( keyPath: Iterable, ...iterables: IndexedIterable[] ): List; mergeDeepIn( keyPath: Array, ...iterables: IndexedIterable[] ): List; mergeDeepIn( keyPath: Array, ...iterables: Array[] ): List; // Transient changes /** * @see `Map#withMutations` */ withMutations(mutator: (mutable: List) => any): List; /** * @see `Map#asMutable` */ asMutable(): List; /** * @see `Map#asImmutable` */ asImmutable(): List; } /** * Immutable Map is an unordered KeyedIterable of (key, value) pairs with * `O(log32 N)` gets and `O(log32 N)` persistent sets. * * Iteration order of a Map is undefined, however is stable. Multiple * iterations of the same Map will iterate in the same order. * * Map's keys can be of any type, and use `Immutable.is` to determine key * equality. This allows the use of any value (including NaN) as a key. * * Because `Immutable.is` returns equality based on value semantics, and * Immutable collections are treated as values, any Immutable collection may * be used as a key. * * Map().set(List.of(1), 'listofone').get(List.of(1)); * // 'listofone' * * Any JavaScript object may be used as a key, however strict identity is used * to evaluate key equality. Two similar looking objects will represent two * different keys. * * Implemented by a hash-array mapped trie. */ declare class Map extends KeyedCollection { /** * Creates a new Immutable Map. * * Created with the same key value pairs as the provided KeyedIterable or * JavaScript Object or expects an Iterable of [K, V] tuple entries. * * var newMap = Map({key: "value"}); * var newMap = Map([["key", "value"]]); * */ static (): Map; static (iter: KeyedIterable): Map; static (iter: Iterable>): Map; static (array: Array>): Map; static (obj: {[key: string]: V}): Map; static (iterator: Iterator>): Map; static (iterable: /*Iterable<[K,V]>*/Object): Map; /** * True if the provided value is a Map */ static isMap(maybeMap: any): boolean; map( mapper: (value: V, key: K, iter: this) => M, context?: any ): Map; // Persistent changes /** * Returns a new Map also containing the new key, value pair. If an equivalent * key already exists in this Map, it will be replaced. */ set(key: K, value: V): Map; /** * Returns a new Map which excludes this `key`. * * Note: `delete` cannot be safely used in IE8, but is provided to mirror * the ES6 collection API. * @alias remove */ delete(key: K): Map; remove(key: K): Map; /** * Returns a new Map containing no keys or values. */ clear(): Map; /** * Returns a new Map having updated the value at this `key` with the return * value of calling `updater` with the existing value, or `notSetValue` if * the key was not set. If called with only a single argument, `updater` is * called with the Map itself. * * Equivalent to: `map.set(key, updater(map.get(key, notSetValue)))`. */ update(updater: (value: Map) => Map): Map; update(key: K, updater: (value: V) => V): Map; update(key: K, notSetValue: V, updater: (value: V) => V): Map; /** * Returns a new Map resulting from merging the provided Iterables * (or JS objects) into this Map. In other words, this takes each entry of * each iterable and sets it on this Map. * * If any of the values provided to `merge` are not Iterable (would return * false for `Immutable.isIterable`) then they are deeply converted via * `Immutable.fromJS` before being merged. However, if the value is an * Iterable but contains non-iterable JS objects or arrays, those nested * values will be preserved. * * var x = Immutable.Map({a: 10, b: 20, c: 30}); * var y = Immutable.Map({b: 40, a: 50, d: 60}); * x.merge(y) // { a: 50, b: 40, c: 30, d: 60 } * y.merge(x) // { b: 20, a: 10, d: 60, c: 30 } * */ merge(...iterables: Iterable[]): Map; merge(...iterables: {[key: string]: V}[]): Map; /** * Like `merge()`, `mergeWith()` returns a new Map resulting from merging * the provided Iterables (or JS objects) into this Map, but uses the * `merger` function for dealing with conflicts. * * var x = Immutable.Map({a: 10, b: 20, c: 30}); * var y = Immutable.Map({b: 40, a: 50, d: 60}); * x.mergeWith((prev, next) => prev / next, y) // { a: 0.2, b: 0.5, c: 30, d: 60 } * y.mergeWith((prev, next) => prev / next, x) // { b: 2, a: 5, d: 60, c: 30 } * */ mergeWith( merger: (previous: V, next: V) => V, ...iterables: Iterable[] ): Map; mergeWith( merger: (previous: V, next: V) => V, ...iterables: {[key: string]: V}[] ): Map; /** * Like `merge()`, but when two Iterables conflict, it merges them as well, * recursing deeply through the nested data. * * var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } }); * var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } }); * x.mergeDeep(y) // {a: { x: 2, y: 10 }, b: { x: 20, y: 5 }, c: { z: 3 } } * */ mergeDeep(...iterables: Iterable[]): Map; mergeDeep(...iterables: {[key: string]: V}[]): Map; /** * Like `mergeDeep()`, but when two non-Iterables conflict, it uses the * `merger` function to determine the resulting value. * * var x = Immutable.fromJS({a: { x: 10, y: 10 }, b: { x: 20, y: 50 } }); * var y = Immutable.fromJS({a: { x: 2 }, b: { y: 5 }, c: { z: 3 } }); * x.mergeDeepWith((prev, next) => prev / next, y) * // {a: { x: 5, y: 10 }, b: { x: 20, y: 10 }, c: { z: 3 } } * */ mergeDeepWith( merger: (previous: V, next: V) => V, ...iterables: Iterable[] ): Map; mergeDeepWith( merger: (previous: V, next: V) => V, ...iterables: {[key: string]: V}[] ): Map; // Deep persistent changes /** * Returns a new Map having set `value` at this `keyPath`. If any keys in * `keyPath` do not exist, a new immutable Map will be created at that key. */ setIn(keyPath: Array, value: V): Map; setIn(KeyPath: Iterable, value: V): Map; /** * Returns a new Map having removed the value at this `keyPath`. If any keys * in `keyPath` do not exist, a new immutable Map will be created at * that key. * * @alias removeIn */ deleteIn(keyPath: Array): Map; deleteIn(keyPath: Iterable): Map; removeIn(keyPath: Array): Map; removeIn(keyPath: Iterable): Map; /** * Returns a new Map having applied the `updater` to the entry found at the * keyPath. * * If any keys in `keyPath` do not exist, new Immutable `Map`s will * be created at those keys. If the `keyPath` does not already contain a * value, the `updater` function will be called with `notSetValue`, if * provided, otherwise `undefined`. * * var data = Immutable.fromJS({ a: { b: { c: 10 } } }); * data = data.updateIn(['a', 'b', 'c'], val => val * 2); * // { a: { b: { c: 20 } } } * * If the `updater` function returns the same value it was called with, then * no change will occur. This is still true if `notSetValue` is provided. * * var data1 = Immutable.fromJS({ a: { b: { c: 10 } } }); * data2 = data1.updateIn(['x', 'y', 'z'], 100, val => val); * assert(data2 === data1); * */ updateIn( keyPath: Array, updater: (value: any) => any ): Map; updateIn( keyPath: Array, notSetValue: any, updater: (value: any) => any ): Map; updateIn( keyPath: Iterable, updater: (value: any) => any ): Map; updateIn( keyPath: Iterable, notSetValue: any, updater: (value: any) => any ): Map; /** * A combination of `updateIn` and `merge`, returning a new Map, but * performing the merge at a point arrived at by following the keyPath. * In other words, these two lines are equivalent: * * x.updateIn(['a', 'b', 'c'], abc => abc.merge(y)); * x.mergeIn(['a', 'b', 'c'], y); * */ mergeIn( keyPath: Iterable, ...iterables: Iterable[] ): Map; mergeIn( keyPath: Array, ...iterables: Iterable[] ): Map; mergeIn( keyPath: Array, ...iterables: {[key: string]: V}[] ): Map; /** * A combination of `updateIn` and `mergeDeep`, returning a new Map, but * performing the deep merge at a point arrived at by following the keyPath. * In other words, these two lines are equivalent: * * x.updateIn(['a', 'b', 'c'], abc => abc.mergeDeep(y)); * x.mergeDeepIn(['a', 'b', 'c'], y); * */ mergeDeepIn( keyPath: Iterable, ...iterables: Iterable[] ): Map; mergeDeepIn( keyPath: Array, ...iterables: Iterable[] ): Map; mergeDeepIn( keyPath: Array, ...iterables: {[key: string]: V}[] ): Map; // Transient changes /** * Every time you call one of the above functions, a new immutable Map is * created. If a pure function calls a number of these to produce a final * return value, then a penalty on performance and memory has been paid by * creating all of the intermediate immutable Maps. * * If you need to apply a series of mutations to produce a new immutable * Map, `withMutations()` creates a temporary mutable copy of the Map which * can apply mutations in a highly performant manner. In fact, this is * exactly how complex mutations like `merge` are done. * * As an example, this results in the creation of 2, not 4, new Maps: * * var map1 = Immutable.Map(); * var map2 = map1.withMutations(map => { * map.set('a', 1).set('b', 2).set('c', 3); * }); * assert(map1.size === 0); * assert(map2.size === 3); * */ withMutations(mutator: (mutable: Map) => any): Map; /** * Another way to avoid creation of intermediate Immutable maps is to create * a mutable copy of this collection. Mutable copies *always* return `this`, * and thus shouldn't be used for equality. Your function should never return * a mutable copy of a collection, only use it internally to create a new * collection. If possible, use `withMutations` as it provides an easier to * use API. * * Note: if the collection is already mutable, `asMutable` returns itself. */ asMutable(): Map; /** * The yin to `asMutable`'s yang. Because it applies to mutable collections, * this operation is *mutable* and returns itself. Once performed, the mutable * copy has become immutable and can be safely returned from a function. */ asImmutable(): Map; } /** * A type of Map that has the additional guarantee that the iteration order of * entries will be the order in which they were set(). * * The iteration behavior of OrderedMap is the same as native ES6 Map and * JavaScript Object. * * Note that `OrderedMap` are more expensive than non-ordered `Map` and may * consume more memory. `OrderedMap#set` is amoratized O(log32 N), but not * stable. */ declare class OrderedMap extends Map { /** * Creates a new Immutable OrderedMap. * * Created with the same key value pairs as the provided KeyedIterable or * JavaScript Object or expects an Iterable of [K, V] tuple entries. * * The iteration order of key-value pairs provided to this constructor will * be preserved in the OrderedMap. * * var newOrderedMap = OrderedMap({key: "value"}); * var newOrderedMap = OrderedMap([["key", "value"]]); * */ static (): OrderedMap; static (iter: KeyedIterable): OrderedMap; static (iter: Iterable>): OrderedMap; static (array: Array>): OrderedMap; static (obj: {[key: string]: V}): OrderedMap; static (iterator: Iterator>): OrderedMap; static (iterable: /*Iterable<[K,V]>*/Object): OrderedMap; /** * True if the provided value is an OrderedMap. */ static isOrderedMap(maybeOrderedMap: any): boolean; } /** * A Collection of unique values with `O(log32 N)` adds and has. * * When iterating a Set, the entries will be (value, value) pairs. Iteration * order of a Set is undefined, however is stable. Multiple iterations of the * same Set will iterate in the same order. * * Set values, like Map keys, may be of any type. Equality is determined using * `Immutable.is`, enabling Sets to uniquely include other Immutable * collections, custom value types, and NaN. */ declare class Set extends SetCollection { /** * Create a new immutable Set containing the values of the provided * iterable-like. */ static (): Set; static (iter: SetIterable): Set; static (iter: IndexedIterable): Set; static (iter: KeyedIterable): Set; static (array: Array): Set; static (iterator: Iterator): Set; static (iterable: /*Iterable*/Object): Set; /** * True if the provided value is a Set */ static isSet(maybeSet: any): boolean; /** * Creates a new Set containing `values`. */ static of(...values: T[]): Set; /** * `Set.fromKeys()` creates a new immutable Set containing the keys from * this Iterable or JavaScript Object. */ static fromKeys(iter: Iterable | {[key: T]: any}): Set; // Persistent changes /** * Returns a new Set which also includes this value. */ add(value: T): Set; /** * Returns a new Set which excludes this value. * * Note: `delete` cannot be safely used in IE8 * @alias remove */ delete(value: T): Set; remove(value: T): Set; /** * Returns a new Set containing no values. */ clear(): Set; /** * Returns a Set including any value from `iterables` that does not already * exist in this Set. * @alias merge */ union(...iterables: Iterable[]): Set; union(...iterables: Array[]): Set; merge(...iterables: Iterable[]): Set; merge(...iterables: Array[]): Set; /** * Returns a Set which has removed any values not also contained * within `iterables`. */ intersect(...iterables: Iterable[]): Set; intersect(...iterables: Array[]): Set; /** * Returns a Set excluding any values contained within `iterables`. */ subtract(...iterables: Iterable[]): Set; subtract(...iterables: Array[]): Set; // Transient changes /** * @see `Map#withMutations` */ withMutations(mutator: (mutable: Set) => any): Set; /** * @see `Map#asMutable` */ asMutable(): Set; /** * @see `Map#asImmutable` */ asImmutable(): Set; } /** * A type of Set that has the additional guarantee that the iteration order of * values will be the order in which they were `add`ed. * * The iteration behavior of OrderedSet is the same as native ES6 Set. * * Note that `OrderedSet` are more expensive than non-ordered `Set` and may * consume more memory. `OrderedSet#add` is amoratized O(log32 N), but not * stable. */ declare class OrderedSet extends Set { /** * Create a new immutable OrderedSet containing the values of the provided * iterable-like. */ static (): OrderedSet; static (iter: SetIterable): OrderedSet; static (iter: IndexedIterable): OrderedSet; static (iter: KeyedIterable): OrderedSet; static (array: Array): OrderedSet; static (iterator: Iterator): OrderedSet; static (iterable: /*Iterable*/Object): OrderedSet; /** * True if the provided value is an OrderedSet. */ static isOrderedSet(maybeOrderedSet: any): boolean; /** * Creates a new OrderedSet containing `values`. */ static of(...values: T[]): OrderedSet; /** * `OrderedSet.fromKeys()` creates a new immutable OrderedSet containing * the keys from this Iterable or JavaScript Object. */ static fromKeys(iter: Iterable | {[key: T]: any}): OrderedSet; } /** * Stacks are indexed collections which support very efficient O(1) addition * and removal from the front using `unshift(v)` and `shift()`. * * For familiarity, Stack also provides `push(v)`, `pop()`, and `peek()`, but * be aware that they also operate on the front of the list, unlike List or * a JavaScript Array. * * Note: `reverse()` or any inherent reverse traversal (`reduceRight`, * `lastIndexOf`, etc.) is not efficient with a Stack. * * Stack is implemented with a Single-Linked List. */ declare class Stack extends IndexedCollection { /** * Create a new immutable Stack containing the values of the provided * iterable-like. * * The iteration order of the provided iterable is preserved in the * resulting `Stack`. */ static (): Stack; static (iter: IndexedIterable): Stack; static (iter: SetIterable): Stack; static (iter: KeyedIterable): Stack; static (array: Array): Stack; static (iterator: Iterator): Stack; static (iterable: /*Iterable*/Object): Stack; /** * True if the provided value is a Stack */ static isStack(maybeStack: any): boolean; /** * Creates a new Stack containing `values`. */ static of(...values: T[]): Stack; // Reading values /** * Alias for `Stack.first()`. */ peek(): T; // Persistent changes /** * Returns a new Stack with 0 size and no values. */ clear(): Stack; /** * Returns a new Stack with the provided `values` prepended, shifting other * values ahead to higher indices. * * This is very efficient for Stack. */ unshift(...values: T[]): Stack; /** * Like `Stack#unshift`, but accepts a iterable rather than varargs. */ unshiftAll(iter: Iterable): Stack; unshiftAll(iter: Array): Stack; /** * Returns a new Stack with a size ones less than this Stack, excluding * the first item in this Stack, shifting all other values to a lower index. * * Note: this differs from `Array#shift` because it returns a new * Stack rather than the removed value. Use `first()` or `peek()` to get the * first value in this Stack. */ shift(): Stack; /** * Alias for `Stack#unshift` and is not equivalent to `List#push`. */ push(...values: T[]): Stack; /** * Alias for `Stack#unshiftAll`. */ pushAll(iter: Iterable): Stack; pushAll(iter: Array): Stack; /** * Alias for `Stack#shift` and is not equivalent to `List#pop`. */ pop(): Stack; // Transient changes /** * @see `Map#withMutations` */ withMutations(mutator: (mutable: Stack) => any): Stack; /** * @see `Map#asMutable` */ asMutable(): Stack; /** * @see `Map#asImmutable` */ asImmutable(): Stack; } /** * Creates a new Class which produces Record instances. A record is similar to * a JS object, but enforce a specific set of allowed string keys, and have * default values. * * var ABRecord = Record({a:1, b:2}) * var myRecord = new ABRecord({b:3}) * * Records always have a value for the keys they define. `remove`ing a key * from a record simply resets it to the default value for that key. * * myRecord.size // 2 * myRecord.get('a') // 1 * myRecord.get('b') // 3 * myRecordWithoutB = myRecord.remove('b') * myRecordWithoutB.get('b') // 2 * myRecordWithoutB.size // 2 * * Values provided to the constructor not found in the Record type will * be ignored: * * var myRecord = new ABRecord({b:3, x:10}) * myRecord.get('x') // undefined * * Because Records have a known set of string keys, property get access works * as expected, however property sets will throw an Error. * * Note: IE8 does not support property access. Only use `get()` when * supporting IE8. * * myRecord.b // 3 * myRecord.b = 5 // throws Error * * Record Classes can be extended as well, allowing for custom methods on your * Record. This is not a common pattern in functional environments, but is in * many JS programs. * * Note: TypeScript does not support this type of subclassing. * * class ABRecord extends Record({a:1,b:2}) { * getAB() { * return this.a + this.b; * } * } * * var myRecord = new ABRecord(b:3) * myRecord.getAB() // 4 * */ declare class Record { // TODO (glevi) uncripple Record static (defaultValues: {[key: string]: any}, name?: string): any; constructor(values?: ?({[key: string]: any} | Iterable)): void; } /** * Represents a sequence of values, but may not be backed by a concrete data * structure. * * **Seq is immutable** - Once a Seq is created, it cannot be * changed, appended to, rearranged or otherwise modified. Instead, any * mutative method called on a `Seq` will return a new `Seq`. * * **Seq is lazy** - Seq does as little work as necessary to respond to any * method call. Values are often created during iteration, including implicit * iteration when reducing or converting to a concrete data structure such as * a `List` or JavaScript `Array`. * * For example, the following performs no work, because the resulting * Seq's values are never iterated: * * var oddSquares = Immutable.Seq.of(1,2,3,4,5,6,7,8) * .filter(x => x % 2).map(x => x * x); * * Once the Seq is used, it performs only the work necessary. In this * example, no intermediate data structures are ever created, filter is only * called three times, and map is only called twice: * * console.log(evenSquares.get(1)); // 9 * * Seq allows for the efficient chaining of operations, * allowing for the expression of logic that can otherwise be very tedious: * * Immutable.Seq({a:1, b:1, c:1}) * .flip().map(key => key.toUpperCase()).flip().toObject(); * // Map { A: 1, B: 1, C: 1 } * * As well as expressing logic that would otherwise be memory or time limited: * * Immutable.Range(1, Infinity) * .skip(1000) * .map(n => -n) * .filter(n => n % 2 === 0) * .take(2) * .reduce((r, n) => r * n, 1); * // 1006008 * * Seq is often used to provide a rich collection API to JavaScript Object. * * Immutable.Seq({ x: 0, y: 1, z: 2 }).map(v => v * 2).toObject(); * // { x: 0, y: 2, z: 4 } */ declare class Seq extends Iterable { /** * Creates a Seq. * * Returns a particular kind of `Seq` based on the input. * * * If a `Seq`, that same `Seq`. * * If an `Iterable`, a `Seq` of the same kind (Keyed, Indexed, or Set). * * If an Array-like, an `IndexedSeq`. * * If an Object with an Iterator, an `IndexedSeq`. * * If an Iterator, an `IndexedSeq`. * * If an Object, a `KeyedSeq`. * */ static (): Seq; static (seq: Seq): Seq; static (iterable: Iterable): Seq; static (array: Array): IndexedSeq; static (obj: {[key: string]: V}): KeyedSeq; static (iterator: Iterator): IndexedSeq; static (iterable: /*ES6Iterable*/Object): IndexedSeq; /** * True if `maybeSeq` is a Seq, it is not backed by a concrete * structure such as Map, List, or Set. */ static isSeq(maybeSeq: any): boolean; /** * Returns a Seq of the values provided. Alias for `IndexedSeq.of()`. */ static of(...values: T[]): Seq; /** * Some Seqs can describe their size lazily. When this is the case, * size will be an integer. Otherwise it will be undefined. * * For example, Seqs returned from `map()` or `reverse()` * preserve the size of the original `Seq` while `filter()` does not. * * Note: `Range`, `Repeat` and `Seq`s made from `Array`s and `Object`s will * always have a size. */ size: number/*?*/; // Force evaluation /** * Because Sequences are lazy and designed to be chained together, they do * not cache their results. For example, this map function is called a total * of 6 times, as each `join` iterates the Seq of three values. * * var squares = Seq.of(1,2,3).map(x => x * x); * squares.join() + squares.join(); * * If you know a `Seq` will be used multiple times, it may be more * efficient to first cache it in memory. Here, the map function is called * only 3 times. * * var squares = Seq.of(1,2,3).map(x => x * x).cacheResult(); * squares.join() + squares.join(); * * Use this method judiciously, as it must fully evaluate a Seq which can be * a burden on memory and possibly performance. * * Note: after calling `cacheResult`, a Seq will always have a `size`. */ cacheResult(): this; } /** * `Seq` which represents key-value pairs. */ declare class KeyedSeq extends Seq mixins KeyedIterable { /** * Always returns a KeyedSeq, if input is not keyed, expects an * iterable of [K, V] tuples. */ static (): KeyedSeq; static (seq: KeyedIterable): KeyedSeq; static (seq: Iterable): KeyedSeq; static (array: Array): KeyedSeq; static (obj: {[key: string]: V}): KeyedSeq; static (iterator: Iterator): KeyedSeq; static (iterable: /*Iterable<[K,V]>*/Object): KeyedSeq; /** * Returns itself */ toSeq(): this; } /** * `Seq` which represents an ordered indexed list of values. */ declare class IndexedSeq extends Seq mixins IndexedIterable { /** * Always returns IndexedSeq, discarding associated keys and * supplying incrementing indices. */ static (): IndexedSeq; static (seq: IndexedIterable): IndexedSeq; static (seq: SetIterable): IndexedSeq; static (seq: KeyedIterable): IndexedSeq; static (array: Array): IndexedSeq; static (iterator: Iterator): IndexedSeq; static (iterable: /*Iterable*/Object): IndexedSeq; /** * Provides an IndexedSeq of the values provided. */ static of(...values: T[]): IndexedSeq; /** * Returns itself */ toSeq(): this; } /** * `Seq` which represents a set of values. * * Because `Seq` are often lazy, `SetSeq` does not provide the same guarantee * of value uniqueness as the concrete `Set`. */ declare class SetSeq extends Seq mixins SetIterable { /** * Always returns a SetSeq, discarding associated indices or keys. */ static (): SetSeq; static (seq: SetIterable): SetSeq; static (seq: IndexedIterable): SetSeq; static (seq: KeyedIterable): SetSeq; static (array: Array): SetSeq; static (iterator: Iterator): SetSeq; static (iterable: /*Iterable*/Object): SetSeq; /** * Returns a SetSeq of the provided values */ static of(...values: T[]): SetSeq; /** * Returns itself */ toSeq(): this; } /** * The `Iterable` is a set of (key, value) entries which can be iterated, and * is the base class for all collections in `immutable`, allowing them to * make use of all the Iterable methods (such as `map` and `filter`). * * Note: An iterable is always iterated in the same order, however that order * may not always be well defined, as is the case for the `Map` and `Set`. */ declare class Iterable { /** * Creates an Iterable. * * The type of Iterable created is based on the input. * * * If an `Iterable`, that same `Iterable`. * * If an Array-like, an `IndexedIterable`. * * If an Object with an Iterator, an `IndexedIterable`. * * If an Iterator, an `IndexedIterable`. * * If an Object, a `KeyedIterable`. * * This methods forces the conversion of Objects and Strings to Iterables. * If you want to ensure that a Iterable of one item is returned, use * `Seq.of`. */ static (iterable: Iterable): Iterable; static (array: Array): IndexedIterable; static (obj: {[key: string]: V}): KeyedIterable; static (iterator: Iterator): IndexedIterable; static (iterable: /*ES6Iterable*/Object): IndexedIterable; static (value: V): IndexedIterable; /** * True if `maybeIterable` is an Iterable, or any of its subclasses. */ static isIterable(maybeIterable: any): boolean; /** * True if `maybeKeyed` is a KeyedIterable, or any of its subclasses. */ static isKeyed(maybeKeyed: any): boolean; /** * True if `maybeIndexed` is a IndexedIterable, or any of its subclasses. */ static isIndexed(maybeIndexed: any): boolean; /** * True if `maybeAssociative` is either a keyed or indexed Iterable. */ static isAssociative(maybeAssociative: any): boolean; /** * True if `maybeOrdered` is an Iterable where iteration order is well * defined. True for IndexedIterable as well as OrderedMap and OrderedSet. */ static isOrdered(maybeOrdered: any): boolean; // Value equality /** * True if this and the other Iterable have value equality, as defined * by `Immutable.is()`. * * Note: This is equivalent to `Immutable.is(this, other)`, but provided to * allow for chained expressions. */ equals(other: Iterable): boolean; /** * Computes and returns the hashed identity for this Iterable. * * The `hashCode` of an Iterable is used to determine potential equality, * and is used when adding this to a `Set` or as a key in a `Map`, enabling * lookup via a different instance. * * var a = List.of(1, 2, 3); * var b = List.of(1, 2, 3); * assert(a !== b); // different instances * var set = Set.of(a); * assert(set.has(b) === true); * * If two values have the same `hashCode`, they are [not guaranteed * to be equal][Hash Collision]. If two values have different `hashCode`s, * they must not be equal. * * [Hash Collision]: http://en.wikipedia.org/wiki/Collision_(computer_science) */ hashCode(): number; // Reading values /** * Returns the value associated with the provided key, or notSetValue if * the Iterable does not contain this key. * * Note: it is possible a key may be associated with an `undefined` value, * so if `notSetValue` is not provided and this method returns `undefined`, * that does not guarantee the key was not found. */ get(key: K, notSetValue?: V): V; /** * True if a key exists within this `Iterable`. */ has(key: K): boolean; /** * True if a value exists within this `Iterable`. */ contains(value: V): boolean; includes(value: V): boolean; /** * The first value in the Iterable. */ first(): V; /** * The last value in the Iterable. */ last(): V; // Reading deep values /** * Returns the value found by following a path of keys or indices through * nested Iterables. */ getIn(searchKeyPath: Array, notSetValue?: any): any; getIn(searchKeyPath: Iterable, notSetValue?: any): any; /** * True if the result of following a path of keys or indices through nested * Iterables results in a set value. */ hasIn(searchKeyPath: Array, notSetValue?: any): boolean; hasIn(searchKeyPath: Iterable, notSetValue?: any): boolean; // Conversion to JavaScript types /** * Deeply converts this Iterable to equivalent JS. * * `IndexedIterables`, and `SetIterables` become Arrays, while * `KeyedIterables` become Objects. * * @alias toJSON */ toJS(): any; /** * Shallowly converts this iterable to an Array, discarding keys. */ toArray(): Array; /** * Shallowly converts this Iterable to an Object. * * Throws if keys are not strings. */ toObject(): { [key: string]: V }; // Conversion to Collections /** * Converts this Iterable to a Map, Throws if keys are not hashable. * * Note: This is equivalent to `Map(this.toKeyedSeq())`, but provided * for convenience and to allow for chained expressions. */ toMap(): Map; /** * Converts this Iterable to a Map, maintaining the order of iteration. * * Note: This is equivalent to `OrderedMap(this.toKeyedSeq())`, but * provided for convenience and to allow for chained expressions. */ toOrderedMap(): Map; /** * Converts this Iterable to a Set, discarding keys. Throws if values * are not hashable. * * Note: This is equivalent to `Set(this)`, but provided to allow for * chained expressions. */ toSet(): Set; /** * Converts this Iterable to a Set, maintaining the order of iteration and * discarding keys. * * Note: This is equivalent to `OrderedSet(this.valueSeq())`, but provided * for convenience and to allow for chained expressions. */ toOrderedSet(): Set; /** * Converts this Iterable to a List, discarding keys. * * Note: This is equivalent to `List(this)`, but provided to allow * for chained expressions. */ toList(): List; /** * Converts this Iterable to a Stack, discarding keys. Throws if values * are not hashable. * * Note: This is equivalent to `Stack(this)`, but provided to allow for * chained expressions. */ toStack(): Stack; // Conversion to Seq /** * Converts this Iterable to a Seq of the same kind (indexed, * keyed, or set). */ toSeq(): Seq; /** * Returns a KeyedSeq from this Iterable where indices are treated as keys. * * This is useful if you want to operate on an * IndexedIterable and preserve the [index, value] pairs. * * The returned Seq will have identical iteration order as * this Iterable. * * Example: * * var indexedSeq = Immutable.Seq.of('A', 'B', 'C'); * indexedSeq.filter(v => v === 'B').toString() // Seq [ 'B' ] * var keyedSeq = indexedSeq.toKeyedSeq(); * keyedSeq.filter(v => v === 'B').toString() // Seq { 1: 'B' } * */ toKeyedSeq(): KeyedSeq; /** * Returns an IndexedSeq of the values of this Iterable, discarding keys. */ toIndexedSeq(): IndexedSeq; /** * Returns a SetSeq of the values of this Iterable, discarding keys. */ toSetSeq(): SetSeq; // Iterators /** * An iterator of this `Iterable`'s keys. */ keys(): Iterator; /** * An iterator of this `Iterable`'s values. */ values(): Iterator; /** * An iterator of this `Iterable`'s entries as `[key, value]` tuples. */ entries(): Iterator>; // Iterables (Seq) /** * Returns a new IndexedSeq of the keys of this Iterable, * discarding values. */ keySeq(): IndexedSeq; /** * Returns an IndexedSeq of the values of this Iterable, discarding keys. */ valueSeq(): IndexedSeq; /** * Returns a new IndexedSeq of [key, value] tuples. */ entrySeq(): IndexedSeq>; // Sequence algorithms /** * Returns a new Iterable of the same type with values passed through a * `mapper` function. * * Seq({ a: 1, b: 2 }).map(x => 10 * x) * // Seq { a: 10, b: 20 } * */ map( mapper: (value: V, key: K, iter: this) => M, context?: any ): Iterable; /** * Returns a new Iterable of the same type with only the entries for which * the `predicate` function returns a truthy value. * * Seq({a:1,b:2,c:3,d:4}).filter(x => x % 2 === 0) * // Seq { b: 2, d: 4 } * */ filter( predicate: (value: V, key: K, iter: this) => any, context?: any ): this; /** * Returns a new Iterable of the same type with only the entries for which * the `predicate` function returns a falsy value. * * Seq({a:1,b:2,c:3,d:4}).filterNot(x => x % 2 === 0) * // Seq { a: 1, c: 3 } * */ filterNot( predicate: (value: V, key: K, iter: this) => any, context?: any ): this; /** * Returns a new Iterable of the same type in reverse order. */ reverse(): this; /** * Returns a new Iterable of the same type which contains the same entries, * stably sorted by using a `comparator`. * * If a `comparator` is not provided, a default comparator uses `<` and `>`. * * `comparator(valueA, valueB)`: * * * Returns `0` if the elements should not be swapped. * * Returns `-1` (or any negative number) if `valueA` comes before `valueB` * * Returns `1` (or any positive number) if `valueA` comes after `valueB` * * Is pure, i.e. it must always return the same value for the same pair * of values. * * When sorting collections which have no defined order, their ordered * equivalents will be returned. e.g. `map.sort()` returns OrderedMap. */ sort(comparator?: (valueA: V, valueB: V) => number): this; /** * Like `sort`, but also accepts a `comparatorValueMapper` which allows for * sorting by more sophisticated means: * * hitters.sortBy(hitter => hitter.avgHits); * */ sortBy( comparatorValueMapper: (value: V, key: K, iter: this) => C, comparator?: (valueA: C, valueB: C) => number ): this; /** * Returns a `KeyedIterable` of `KeyedIterables`, grouped by the return * value of the `grouper` function. * * Note: This is always an eager operation. */ groupBy( grouper: (value: V, key: K, iter: this) => G, context?: any ): /*Map*/KeyedSeq; // Side effects /** * The `sideEffect` is executed for every entry in the Iterable. * * Unlike `Array#forEach`, if any call of `sideEffect` returns * `false`, the iteration will stop. Returns the number of entries iterated * (including the last iteration which returned false). */ forEach( sideEffect: (value: V, key: K, iter: this) => any, context?: any ): number; // Creating subsets /** * Returns a new Iterable of the same type representing a portion of this * Iterable from start up to but not including end. * * If begin is negative, it is offset from the end of the Iterable. e.g. * `slice(-2)` returns a Iterable of the last two entries. If it is not * provided the new Iterable will begin at the beginning of this Iterable. * * If end is negative, it is offset from the end of the Iterable. e.g. * `slice(0, -1)` returns an Iterable of everything but the last entry. If * it is not provided, the new Iterable will continue through the end of * this Iterable. * * If the requested slice is equivalent to the current Iterable, then it * will return itself. */ slice(begin?: number, end?: number): this; /** * Returns a new Iterable of the same type containing all entries except * the first. */ rest(): this; /** * Returns a new Iterable of the same type containing all entries except * the last. */ butLast(): this; /** * Returns a new Iterable of the same type which excludes the first `amount` * entries from this Iterable. */ skip(amount: number): this; /** * Returns a new Iterable of the same type which excludes the last `amount` * entries from this Iterable. */ skipLast(amount: number): this; /** * Returns a new Iterable of the same type which contains entries starting * from when `predicate` first returns false. * * Seq.of('dog','frog','cat','hat','god') * .skipWhile(x => x.match(/g/)) * // Seq [ 'cat', 'hat', 'god' ] * */ skipWhile( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): this; /** * Returns a new Iterable of the same type which contains entries starting * from when `predicate` first returns true. * * Seq.of('dog','frog','cat','hat','god') * .skipUntil(x => x.match(/hat/)) * // Seq [ 'hat', 'god' ] * */ skipUntil( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): this; /** * Returns a new Iterable of the same type which contains the first `amount` * entries from this Iterable. */ take(amount: number): this; /** * Returns a new Iterable of the same type which contains the last `amount` * entries from this Iterable. */ takeLast(amount: number): this; /** * Returns a new Iterable of the same type which contains entries from this * Iterable as long as the `predicate` returns true. * * Seq.of('dog','frog','cat','hat','god') * .takeWhile(x => x.match(/o/)) * // Seq [ 'dog', 'frog' ] * */ takeWhile( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): this; /** * Returns a new Iterable of the same type which contains entries from this * Iterable as long as the `predicate` returns false. * * Seq.of('dog','frog','cat','hat','god').takeUntil(x => x.match(/at/)) * // ['dog', 'frog'] * */ takeUntil( predicate: (value: V, key: K, iter?: this) => boolean, context?: any ): this; // Combination /** * Returns a new Iterable of the same type with other values and * iterable-like concatenated to this one. * * For Seqs, all entries will be present in * the resulting iterable, even if they have the same key. */ concat(...valuesOrIterables: /*Array|V*/any[]): this; /** * Flattens nested Iterables. * * Will deeply flatten the Iterable by default, returning an Iterable of the * same type, but a `depth` can be provided in the form of a number or * boolean (where true means to shallowly flatten one level). A depth of 0 * (or shallow: false) will deeply flatten. * * Flattens only others Iterable, not Arrays or Objects. * * Note: `flatten(true)` operates on Iterable> and * returns Iterable */ flatten(depth?: number): this; flatten(shallow?: boolean): this; /** * Flat-maps the Iterable, returning an Iterable of the same type. * * Similar to `iter.map(...).flatten(true)`. */ flatMap( mapper: (value: V, key: K, iter: this) => Iterable, context?: any ): this; flatMap( mapper: (value: V, key: K, iter: this) => /*iterable-like*/any, context?: any ): this; // Reducing a value /** * Reduces the Iterable to a value by calling the `reducer` for every entry * in the Iterable and passing along the reduced value. * * If `initialReduction` is not provided, or is null, the first item in the * Iterable will be used. * * @see `Array#reduce`. */ reduce( reducer: (reduction: R, value: V, key: K, iter: this) => R, initialReduction?: R, context?: any ): R; /** * Reduces the Iterable in reverse (from the right side). * * Note: Similar to this.reverse().reduce(), and provided for parity * with `Array#reduceRight`. */ reduceRight( reducer: (reduction: R, value: V, key: K, iter: this) => R, initialReduction?: R, context?: any ): R; /** * True if `predicate` returns true for all entries in the Iterable. */ every( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): boolean; /** * True if `predicate` returns true for any entry in the Iterable. */ some( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): boolean; /** * Joins values together as a string, inserting a separator between each. * The default separator is `","`. */ join(separator?: string): string; /** * Returns true if this Iterable contains no values. * * For some lazy `Seq`, `isEmpty` might need to iterate to determine * emptiness. At most one iteration will occur. */ isEmpty(): boolean; /** * Returns the size of this Iterable. * * Regardless of if this Iterable can describe its size lazily (some Seqs * cannot), this method will always return the correct size. E.g. it * evaluates a lazy `Seq` if necessary. * * If `predicate` is provided, then this returns the count of entries in the * Iterable for which the `predicate` returns true. */ count(): number; count( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): number; /** * Returns a `KeyedSeq` of counts, grouped by the return value of * the `grouper` function. * * Note: This is not a lazy operation. */ countBy( grouper: (value: V, key: K, iter: this) => G, context?: any ): Map; // Search for value /** * Returns the value for which the `predicate` returns true. */ find( predicate: (value: V, key: K, iter: this) => boolean, context?: any, notSetValue?: V ): V; /** * Returns the last value for which the `predicate` returns true. * * Note: `predicate` will be called for each entry in reverse. */ findLast( predicate: (value: V, key: K, iter: this) => boolean, context?: any, notSetValue?: V ): V; /** * Returns the maximum value in this collection. If any values are * comparatively equivalent, the first one found will be returned. * * The `comparator` is used in the same way as `Iterable#sort`. If it is not * provided, the default comparator is `>`. * * When two values are considered equivalent, the first encountered will be * returned. Otherwise, `max` will operate independent of the order of input * as long as the comparator is commutative. The default comparator `>` is * commutative *only* when types do not differ. * * If `comparator` returns 0 and either value is NaN, undefined, or null, * that value will be returned. */ max(comparator?: (valueA: V, valueB: V) => number): V; /** * Like `max`, but also accepts a `comparatorValueMapper` which allows for * comparing by more sophisticated means: * * hitters.maxBy(hitter => hitter.avgHits); * */ maxBy( comparatorValueMapper: (value: V, key: K, iter: this) => C, comparator?: (valueA: C, valueB: C) => number ): V; /** * Returns the maximum value in this collection. If any values are * comparatively equivalent, the first one found will be returned. * * The `comparator` is used in the same way as `Iterable#sort`. If it is not * provided, the default comparator is `<`. * * When two values are considered equivalent, the first encountered will be * returned. Otherwise, `min` will operate independent of the order of input * as long as the comparator is commutative. The default comparator `<` is * commutative *only* when types do not differ. * * If `comparator` returns 0 and either value is NaN, undefined, or null, * that value will be returned. */ min(comparator?: (valueA: V, valueB: V) => number): V; /** * Like `min`, but also accepts a `comparatorValueMapper` which allows for * comparing by more sophisticated means: * * hitters.minBy(hitter => hitter.avgHits); * */ minBy( comparatorValueMapper: (value: V, key: K, iter: this) => C, comparator?: (valueA: C, valueB: C) => number ): V; // Comparison /** * True if `iter` contains every value in this Iterable. */ isSubset(iter: Iterable): boolean; isSubset(iter: Array): boolean; /** * True if this Iterable contains every value in `iter`. */ isSuperset(iter: Iterable): boolean; isSuperset(iter: Array): boolean; /** * Note: this is here as a convenience to work around an issue with * TypeScript https://github.com/Microsoft/TypeScript/issues/285, but * Iterable does not define `size`, instead `Seq` defines `size` as * nullable number, and `Collection` defines `size` as always a number. * * @ignore */ size: number; } /** * Keyed Iterables have discrete keys tied to each value. * * When iterating `KeyedIterable`, each iteration will yield a `[K, V]` tuple, * in other words, `Iterable#entries` is the default iterator for Keyed * Iterables. */ declare class KeyedIterable extends Iterable { /** * Creates a KeyedIterable * * Similar to `Iterable()`, however it expects iterable-likes of [K, V] * tuples if not constructed from a KeyedIterable or JS Object. */ static (iter: KeyedIterable): KeyedIterable; static (iter: Iterable): KeyedIterable; static (array: Array): KeyedIterable; static (obj: {[key: string]: V}): KeyedIterable; static (iterator: Iterator): KeyedIterable; static (iterable: /*Iterable<[K,V]>*/Object): KeyedIterable; @@iterator(): Iterator<[K, V]>; /** * Returns KeyedSeq. * @override */ toSeq(): KeyedSeq; // Sequence functions /** * Returns a new KeyedIterable of the same type where the keys and values * have been flipped. * * Seq({ a: 'z', b: 'y' }).flip() // { z: 'a', y: 'b' } * */ flip(): this; /** * Returns a new KeyedIterable of the same type with keys passed through a * `mapper` function. * * Seq({ a: 1, b: 2 }) * .mapKeys(x => x.toUpperCase()) * // Seq { A: 1, B: 2 } * */ mapKeys( mapper: (key: K, value: V, iter: this) => M, context?: any ): this; /** * Returns a new KeyedIterable of the same type with entries * ([key, value] tuples) passed through a `mapper` function. * * Seq({ a: 1, b: 2 }) * .mapEntries(([k, v]) => [k.toUpperCase(), v * 2]) * // Seq { A: 2, B: 4 } * */ mapEntries( mapper: ( entry: /*(K, V)*/Array, index: number, iter: this ) => /*[KM, VM]*/Array, context?: any ): this; // Search for value /** * Returns the key associated with the search value, or undefined. */ keyOf(searchValue: V): K; /** * Returns the last key associated with the search value, or undefined. */ lastKeyOf(searchValue: V): K; /** * Returns the key for which the `predicate` returns true. */ findKey( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): K; /** * Returns the last key for which the `predicate` returns true. * * Note: `predicate` will be called for each entry in reverse. */ findLastKey( predicate: (value: V, key: K, iter: this) => boolean, context?: any ): K; } /** * Indexed Iterables have incrementing numeric keys. They exhibit * slightly different behavior than `KeyedIterable` for some methods in order * to better mirror the behavior of JavaScript's `Array`, and add methods * which do not make sense on non-indexed Iterables such as `indexOf`. * * Unlike JavaScript arrays, `IndexedIterable`s are always dense. "Unset" * indices and `undefined` indices are indistinguishable, and all indices from * 0 to `size` are visited when iterated. * * All IndexedIterable methods return re-indexed Iterables. In other words, * indices always start at 0 and increment until size. If you wish to * preserve indices, using them as keys, convert to a KeyedIterable by calling * `toKeyedSeq`. */ declare class IndexedIterable extends Iterable { /** * Creates a new IndexedIterable. */ static (iter: IndexedIterable): IndexedIterable; static (iter: SetIterable): IndexedIterable; static (iter: KeyedIterable): IndexedIterable; static (array: Array): IndexedIterable; static (iterator: Iterator): IndexedIterable; static (iterable: /*Iterable*/Object): IndexedIterable; @@iterator(): Iterator; // Reading values /** * Returns the value associated with the provided index, or notSetValue if * the index is beyond the bounds of the Iterable. * * `index` may be a negative number, which indexes back from the end of the * Iterable. `s.get(-1)` gets the last item in the Iterable. */ get(index: number, notSetValue?: T): T; // Conversion to Seq /** * Returns IndexedSeq. * @override */ toSeq(): IndexedSeq; /** * If this is an iterable of [key, value] entry tuples, it will return a * KeyedSeq of those entries. */ fromEntrySeq(): KeyedSeq; // Combination /** * Returns an Iterable of the same type with `separator` between each item * in this Iterable. */ interpose(separator: T): this; /** * Returns an Iterable of the same type with the provided `iterables` * interleaved into this iterable. * * The resulting Iterable contains the first item from each, then the * second from each, etc. * * I.Seq.of(1,2,3).interleave(I.Seq.of('A','B','C')) * // Seq [ 1, 'A', 2, 'B', 3, 'C' ] * * The shortest Iterable stops interleave. * * I.Seq.of(1,2,3).interleave( * I.Seq.of('A','B'), * I.Seq.of('X','Y','Z') * ) * // Seq [ 1, 'A', 'X', 2, 'B', 'Y' ] */ interleave(...iterables: Array>): this; /** * Splice returns a new indexed Iterable by replacing a region of this * Iterable with new values. If values are not provided, it only skips the * region to be removed. * * `index` may be a negative number, which indexes back from the end of the * Iterable. `s.splice(-2)` splices after the second to last item. * * Seq(['a','b','c','d']).splice(1, 2, 'q', 'r', 's') * // Seq ['a', 'q', 'r', 's', 'd'] * */ splice( index: number, removeNum: number, ...values: /*Array | T>*/any[] ): this; /** * Returns an Iterable of the same type "zipped" with the provided * iterables. * * Like `zipWith`, but using the default `zipper`: creating an `Array`. * * var a = Seq.of(1, 2, 3); * var b = Seq.of(4, 5, 6); * var c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] * */ zip(...iterables: Array>): this; /** * Returns an Iterable of the same type "zipped" with the provided * iterables by using a custom `zipper` function. * * Like `zipWith`, but using the default `zipper`: creating an `Array`. * * var a = Seq.of(1, 2, 3); * var b = Seq.of(4, 5, 6); * var c = a.zip(b); // Seq [ [ 1, 4 ], [ 2, 5 ], [ 3, 6 ] ] * */ zipWith( zipper: (value: T, otherValue: U) => Z, otherIterable: Iterable ): IndexedIterable; zipWith( zipper: (value: T, otherValue: U, thirdValue: V) => Z, otherIterable: Iterable, thirdIterable: Iterable ): IndexedIterable; zipWith( zipper: (...any: Array) => Z, ...iterables: Array> ): IndexedIterable; // Search for value /** * Returns the first index at which a given value can be found in the * Iterable, or -1 if it is not present. */ indexOf(searchValue: T): number; /** * Returns the last index at which a given value can be found in the * Iterable, or -1 if it is not present. */ lastIndexOf(searchValue: T): number; /** * Returns the first index in the Iterable where a value satisfies the * provided predicate function. Otherwise -1 is returned. */ findIndex( predicate: (value: T, index: number, iter: this) => boolean, context?: any ): number; /** * Returns the last index in the Iterable where a value satisfies the * provided predicate function. Otherwise -1 is returned. */ findLastIndex( predicate: (value: T, index: number, iter: this) => boolean, context?: any ): number; } /** * Set Iterables only represent values. They have no associated keys or * indices. Duplicate values are possible in SetSeqs, however the * concrete `Set` does not allow duplicate values. * * Iterable methods on SetIterable such as `map` and `forEach` will provide * the value as both the first and second arguments to the provided function. * * var seq = SetSeq.of('A', 'B', 'C'); * assert.equal(seq.every((v, k) => v === k), true); * */ declare class SetIterable extends Iterable { /** * Similar to `Iterable()`, but always returns a SetIterable. */ static (iter: SetIterable): SetIterable; static (iter: IndexedIterable): SetIterable; static (iter: KeyedIterable): SetIterable; static (array: Array): SetIterable; static (iterator: Iterator): SetIterable; static (iterable: /*Iterable*/Object): SetIterable; @@iterator(): Iterator; /** * Returns SetSeq. * @override */ toSeq(): SetSeq; } /** * Collection is the abstract base class for concrete data structures. It * cannot be constructed directly. * * Implementations should extend one of the subclasses, `KeyedCollection`, * `IndexedCollection`, or `SetCollection`. */ declare class Collection extends Iterable { /** * All collections maintain their current `size` as an integer. */ size: number; } /** * `Collection` which represents key-value pairs. */ declare class KeyedCollection extends Collection mixins KeyedIterable { /** * Returns KeyedSeq. * @override */ toSeq(): KeyedSeq; } /** * `Collection` which represents ordered indexed values. */ declare class IndexedCollection extends Collection mixins IndexedIterable { /** * Returns IndexedSeq. * @override */ toSeq(): IndexedSeq; } /** * `Collection` which represents values, unassociated with keys or indices. * * `SetCollection` implementations should guarantee value uniqueness. */ declare class SetCollection extends Collection mixins SetIterable { /** * Returns SetSeq. * @override */ toSeq(): SetSeq; } /** * Returns a IndexedSeq of numbers from `start` (inclusive) to `end` * (exclusive), by `step`, where `start` defaults to 0, `step` to 1, and `end` to * infinity. When `start` is equal to `end`, returns empty range. * * Range() // [0,1,2,3,...] * Range(10) // [10,11,12,13,...] * Range(10,15) // [10,11,12,13,14] * Range(10,30,5) // [10,15,20,25] * Range(30,10,5) // [30,25,20,15] * Range(30,30,5) // [] * */ declare function Range(start?: number, end?: number, step?: number): IndexedSeq; /** * Returns a IndexedSeq of `value` repeated `times` times. When `times` is * not defined, returns an infinite `Seq` of `value`. * * Repeat('foo') // ['foo','foo','foo',...] * Repeat('bar',4) // ['bar','bar','bar','bar'] * */ declare function Repeat(value: T, times?: number): IndexedSeq; }