import { Decimal } from 'decimal.js' declare const math: math.MathJsStatic export as namespace math export = math type NoLiteralType = T extends number ? number : T extends string ? string : T extends boolean ? boolean : T declare namespace math { // TODO: introduce generics for MathCollection, MathMatrix, and MathArray type MathNumericType = number | BigNumber | Fraction | Complex type MathScalarType = MathNumericType | Unit type MathArray = MathNumericType[] | MathNumericType[][] // TODO: MathArray can also contain Unit type MathCollection = MathArray | Matrix type MathType = MathScalarType | MathCollection type MathExpression = string | string[] | MathCollection // eslint-disable-next-line @typescript-eslint/no-explicit-any type FactoryFunction = (scope: any) => T // FactoryFunctionMap can be nested; all nested objects will be flattened interface FactoryFunctionMap { // eslint-disable-next-line @typescript-eslint/no-explicit-any [key: string]: FactoryFunction | FactoryFunctionMap } /** Available options for parse */ interface ParseOptions { /** a set of custom nodes */ nodes?: Record } /** * Parse an expression. Returns a node tree, which can be evaluated by * invoking node.evaluate(). * * Note the evaluating arbitrary expressions may involve security risks, * see [https://mathjs.org/docs/expressions/security.html](https://mathjs.org/docs/expressions/security.html) for more information. * * Syntax: * * math.parse(expr) * math.parse(expr, options) * math.parse([expr1, expr2, expr3, ...]) * math.parse([expr1, expr2, expr3, ...], options) * * Example: * * const node1 = math.parse('sqrt(3^2 + 4^2)') * node1.compile().evaluate() // 5 * * let scope = {a:3, b:4} * const node2 = math.parse('a * b') // 12 * const code2 = node2.compile() * code2.evaluate(scope) // 12 * scope.a = 5 * code2.evaluate(scope) // 20 * * const nodes = math.parse(['a = 3', 'b = 4', 'a * b']) * nodes[2].compile().evaluate() // 12 * * See also: * * evaluate, compile */ interface ParseFunction { /** * Parse an expression. Returns a node tree, which can be evaluated by * invoking node.evaluate(); * * @param expr Expression to be parsed * @param options Available options * @returns A node */ (expr: MathExpression, options?: ParseOptions): MathNode /** * Parse an expression. Returns a node tree, which can be evaluated by * invoking node.evaluate(); * * @param exprs Expressions to be parsed * @param options Available options * @returns An array of nodes */ (exprs: MathExpression[], options?: ParseOptions): MathNode[] /** * Checks whether the current character `c` is a valid alpha character: * * - A latin letter (upper or lower case) Ascii: a-z, A-Z * - An underscore Ascii: _ * - A dollar sign Ascii: $ * - A latin letter with accents Unicode: \u00C0 - \u02AF * - A greek letter Unicode: \u0370 - \u03FF * - A mathematical alphanumeric symbol Unicode: \u{1D400} - \u{1D7FF} excluding invalid code points * * The previous and next characters are needed to determine whether * this character is part of a unicode surrogate pair. * * @param c Current character in the expression * @param cPrev Previous character * @param cNext Next character */ isAlpha(c: string, cPrev: string, cNext: string): boolean /** * Test whether a character is a valid latin, greek, or letter-like character * * @param c */ isValidLatinOrGreek(c: string): boolean /** * Test whether two given 16 bit characters form a surrogate pair of a * unicode math symbol. * * https://unicode-table.com/en/ * https://www.wikiwand.com/en/Mathematical_operators_and_symbols_in_Unicode * * Note: In ES6 will be unicode aware: * https://stackoverflow.com/questions/280712/javascript-unicode-regexes * https://mathiasbynens.be/notes/es6-unicode-regex * * @param high * @param low */ isValidMathSymbol(high: string, low: string): boolean /** * Check whether given character c is a white space character: space, tab, or enter * * @param c * @param nestingLevel */ isWhitespace(c: string, nestingLevel: number): boolean /** * Test whether the character c is a decimal mark (dot). * This is the case when it's not the start of a delimiter '.*', './', or '.^' * * @param c * @param cNext */ isDecimalMark(c: string, cNext: string): boolean /** * checks if the given char c is a digit or dot * * @param c a string with one character */ isDigitDot(c: string): boolean /** * checks if the given char c is a digit * * @param c a string with one character */ isDigit(c: string): boolean /** * checks if the given char c is a hex digit * * @param c a string with one character */ isHexDigit(c: string): boolean } interface NodeCtor { new (): MathNode } interface AccessorNode extends MathNode { type: 'AccessorNode' isAccessorNode: true object: TObject index: IndexNode name: string } interface AccessorNodeCtor { new ( object: TObject, index: IndexNode ): AccessorNode } interface ArrayNode extends MathNode { type: 'ArrayNode' isArrayNode: true items: TItems } interface ArrayNodeCtor { new ( items: MathNode[] ): ArrayNode } interface AssignmentNode extends MathNode { type: 'AssignmentNode' isAssignmentNode: true object: SymbolNode | AccessorNode index: IndexNode | null value: TValue name: string } interface AssignmentNodeCtor { new ( object: SymbolNode, value: TValue ): AssignmentNode new ( object: SymbolNode | AccessorNode, index: IndexNode, value: TValue ): AssignmentNode } interface BlockNode extends MathNode { type: 'BlockNode' isBlockNode: true blocks: Array<{ node: TNode; visible: boolean }> } interface BlockNodeCtor { new ( arr: Array<{ node: TNode } | { node: TNode; visible: boolean }> ): BlockNode } interface ConditionalNode< TCond extends MathNode = MathNode, TTrueNode extends MathNode = MathNode, TFalseNode extends MathNode = MathNode > extends MathNode { type: 'ConditionalNode' isConditionalNode: boolean condition: TCond trueExpr: TTrueNode falseExpr: TFalseNode } interface ConditionalNodeCtor { new < TCond extends MathNode = MathNode, TTrueNode extends MathNode = MathNode, TFalseNode extends MathNode = MathNode >( condition: TCond, trueExpr: TTrueNode, falseExpr: TFalseNode ): ConditionalNode } interface ConstantNode extends MathNode { type: 'ConstantNode' isConstantNode: true // eslint-disable-next-line @typescript-eslint/no-explicit-any value: TValue } interface ConstantNodeCtor { new ( value: TValue ): ConstantNode } interface FunctionAssignmentNode extends MathNode { type: 'FunctionAssignmentNode' isFunctionAssignmentNode: true name: string params: string[] expr: TExpr } interface FunctionAssignmentNodeCtor { new ( name: string, params: string[], expr: TExpr ): FunctionAssignmentNode } interface FunctionNode< TFn = SymbolNode, TArgs extends MathNode[] = MathNode[] > extends MathNode { type: 'FunctionNode' isFunctionNode: true fn: TFn args: TArgs } interface FunctionNodeCtor { new ( fn: TFn, args: TArgs ): FunctionNode // eslint-disable-next-line @typescript-eslint/no-explicit-any onUndefinedFunction: (name: string) => any } interface IndexNode extends MathNode { type: 'IndexNode' isIndexNode: true dimensions: TDims dotNotation: boolean } interface IndexNodeCtor { new (dimensions: TDims): IndexNode new ( dimensions: TDims, dotNotation: boolean ): IndexNode } interface ObjectNode< TProps extends Record = Record > extends MathNode { type: 'ObjectNode' isObjectNode: true properties: TProps } interface ObjectNodeCtor { new = Record>( properties: TProps ): ObjectNode } type OperatorNodeMap = { xor: 'xor' and: 'and' or: 'or' bitOr: '|' bitXor: '^|' bitAnd: '&' equal: '==' unequal: '!=' smaller: '<' larger: '>' smallerEq: '<=' largerEq: '>=' leftShift: '<<' rightArithShift: '>>' rightLogShift: '>>>' to: 'to' add: '+' subtract: '-' multiply: '*' divide: '/' dotMultiply: '.*' dotDivide: './' mod: 'mod' unaryPlus: '+' unaryMinus: '-' bitNot: '~' not: 'not' pow: '^' dotPow: '.^' factorial: '!' } type OperatorNodeOp = OperatorNodeMap[keyof OperatorNodeMap] type OperatorNodeFn = keyof OperatorNodeMap interface OperatorNode< TOp extends OperatorNodeMap[TFn] = never, TFn extends OperatorNodeFn = never, TArgs extends MathNode[] = MathNode[] > extends MathNode { type: 'OperatorNode' isOperatorNode: true op: TOp fn: TFn args: TArgs implicit: boolean isUnary(): boolean isBinary(): boolean } interface OperatorNodeCtor extends MathNode { new < TOp extends OperatorNodeMap[TFn], TFn extends OperatorNodeFn, TArgs extends MathNode[] >( op: TOp, fn: TFn, args: TArgs, implicit?: boolean ): OperatorNode } interface ParenthesisNode extends MathNode { type: 'ParenthesisNode' isParenthesisNode: true content: TContent } interface ParenthesisNodeCtor { new ( content: TContent ): ParenthesisNode } interface RangeNode< TStart extends MathNode = MathNode, TEnd extends MathNode = MathNode, TStep extends MathNode = MathNode > extends MathNode { type: 'RangeNode' isRangeNode: true start: TStart end: TEnd step: TStep | null } interface RangeNodeCtor { new < TStart extends MathNode = MathNode, TEnd extends MathNode = MathNode, TStep extends MathNode = MathNode >( start: TStart, end: TEnd, step?: TStep ): RangeNode } interface RelationalNode extends MathNode { type: 'RelationalNode' isRelationalNode: true conditionals: string[] params: TParams } interface RelationalNodeCtor { new ( conditionals: string[], params: TParams ): RelationalNode } interface SymbolNode extends MathNode { type: 'SymbolNode' isSymbolNode: true name: string } interface SymbolNodeCtor { new (name: string): SymbolNode // eslint-disable-next-line @typescript-eslint/no-explicit-any onUndefinedSymbol: (name: string) => any } /** * @deprecated since version 11.3. Prefer `MathNode` instead */ type MathNodeCommon = MathNode type MathJsFunctionName = keyof MathJsStatic interface LUDecomposition { L: MathCollection U: MathCollection p: number[] } interface SLUDecomposition extends LUDecomposition { q: number[] } interface QRDecomposition { Q: MathCollection R: MathCollection } interface SchurDecomposition { U: MathCollection T: MathCollection } interface FractionDefinition { a: number b: number } interface MathJsStatic extends FactoryDependencies { e: number pi: number i: number Infinity: number LN2: number LN10: number LOG2E: number LOG10E: number NaN: number phi: number SQRT1_2: number SQRT2: number tau: number // Class-like constructors Node: NodeCtor AccessorNode: AccessorNodeCtor ArrayNode: ArrayNodeCtor AssignmentNode: AssignmentNodeCtor BlockNode: BlockNodeCtor ConditionalNode: ConditionalNodeCtor ConstantNode: ConstantNodeCtor FunctionAssignmentNode: FunctionAssignmentNodeCtor FunctionNode: FunctionNodeCtor IndexNode: IndexNodeCtor ObjectNode: ObjectNodeCtor OperatorNode: OperatorNodeCtor ParenthesisNode: ParenthesisNodeCtor RangeNode: RangeNodeCtor RelationalNode: RelationalNodeCtor SymbolNode: SymbolNodeCtor Matrix: MatrixCtor /** * If null were to be included in this interface, it would be * auto-suggested as an import in VSCode. This causes issues because * `null` is not a valid label. * * @see https://github.com/josdejong/mathjs/issues/2019 */ // null: number; // eslint-disable-next-line @typescript-eslint/no-explicit-any uninitialized: any version: string expression: MathNode /** * Returns reviver function that can be used as reviver in JSON.parse function. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any reviver(): (key: any, value: any) => any /** * Returns replacer function that can be used as replacer in JSON.stringify function. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any replacer(): (key: any, value: any) => any /************************************************************************* * Core functions ************************************************************************/ /** * Set configuration options for math.js, and get current options. Will * emit a ‘config’ event, with arguments (curr, prev, changes). * @param options Available options: {number} epsilon Minimum relative * difference between two compared values, used by all comparison * functions. {string} matrix A string ‘Matrix’ (default) or ‘Array’. * {string} number A string ‘number’ (default), ‘BigNumber’, or * ‘Fraction’ {number} precision The number of significant digits for * BigNumbers. Not applicable for Numbers. {string} parenthesis How to * display parentheses in LaTeX and string output. {string} randomSeed * Random seed for seeded pseudo random number generator. Set to null to * randomly seed. * @returns Returns the current configuration */ config: (options: ConfigOptions) => ConfigOptions /** * Create a typed-function which checks the types of the arguments and * can match them against multiple provided signatures. The * typed-function automatically converts inputs in order to find a * matching signature. Typed functions throw informative errors in case * of wrong input arguments. * @param name Optional name for the typed-function * @param signatures Object with one or multiple function signatures * @returns The created typed-function. */ typed: ( name: string, // eslint-disable-next-line @typescript-eslint/no-explicit-any signatures: Record any> // eslint-disable-next-line @typescript-eslint/no-explicit-any ) => (...args: any[]) => any /************************************************************************* * Construction functions ************************************************************************/ /** * Create a BigNumber, which can store numbers with arbitrary precision. * When a matrix is provided, all elements will be converted to * BigNumber. * @param x Value for the big number, 0 by default. * @returns The created bignumber */ bignumber( x?: number | string | Fraction | BigNumber | Unit | boolean | null ): BigNumber bignumber(x: T): T /** * Create a boolean or convert a string or number to a boolean. In case * of a number, true is returned for non-zero numbers, and false in case * of zero. Strings can be 'true' or 'false', or can contain a number. * When value is a matrix, all elements will be converted to boolean. * @param x A value of any type * @returns The boolean value */ boolean(x: string | number | boolean | null): boolean boolean(x: MathCollection): MathCollection /** * Wrap any value in a chain, allowing to perform chained operations on * the value. All methods available in the math.js library can be called * upon the chain, and then will be evaluated with the value itself as * first argument. The chain can be closed by executing chain.done(), * which returns the final value. The chain has a number of special * functions: done() Finalize the chain and return the chain's value. * valueOf() The same as done() toString() Executes math.format() onto * the chain's value, returning a string representation of the value. * @param value A value of any type on which to start a chained * operation. * @returns The created chain */ // eslint-disable-next-line @typescript-eslint/no-explicit-any chain(value?: TValue): MathJsChain /** * Create a complex value or convert a value to a complex value. * @param args Arguments specifying the real and imaginary part of the * complex number * @returns Returns a complex value */ complex(arg?: MathNumericType | string | PolarCoordinates): Complex complex(arg?: MathCollection): MathCollection /** * @param re Argument specifying the real part of the complex number * @param im Argument specifying the imaginary part of the complex * number * @returns Returns a complex value */ complex(re: number, im: number): Complex /** * Create a user-defined unit and register it with the Unit type. * @param name The name of the new unit. Must be unique. Example: ‘knot’ * @param definition Definition of the unit in terms of existing units. * For example, ‘0.514444444 m / s’. * @param options (optional) An object containing any of the following * properties:
- prefixes {string} “none”, “short”, “long”, * “binary_short”, or “binary_long”. The default is “none”.
- * aliases {Array} Array of strings. Example: [‘knots’, ‘kt’, * ‘kts’]
- offset {Numeric} An offset to apply when converting from * the unit. For example, the offset for celsius is 273.15. Default is * 0. * @returns The new unit */ createUnit( name: string, definition?: string | UnitDefinition | Unit, options?: CreateUnitOptions ): Unit /** * Create a user-defined unit and register it with the Unit type. * @param units Definition of the unit * @param options * @returns The new unit */ createUnit( units: Record, options?: CreateUnitOptions ): Unit /** * Create a fraction convert a value to a fraction. * @param value Arguments specifying the numerator and denominator of the * fraction * @returns Returns a fraction */ fraction( value: number | string | BigNumber | Unit | Fraction | FractionDefinition ): Fraction fraction(values: MathCollection): MathCollection /** * @param numerator Argument specifying the numerator of the fraction * @param denominator Argument specifying the denominator of the * fraction * @returns Returns a fraction */ fraction(numerator: number, denominator: number): Fraction /** * Create an index. An Index can store ranges having start, step, and * end for multiple dimensions. Matrix.get, Matrix.set, and math.subset * accept an Index as input. * @param ranges Zero or more ranges or numbers. * @returns Returns the created index */ // eslint-disable-next-line @typescript-eslint/no-explicit-any index(...ranges: any[]): Index /** * Create a Matrix. The function creates a new math.type.Matrix object * from an Array. A Matrix has utility functions to manipulate the data * in the matrix, like getting the size and getting or setting values in * the matrix. Supported storage formats are 'dense' and 'sparse'. * @param format The Matrix storage format * @returns The created Matrix */ matrix(format?: 'sparse' | 'dense'): Matrix /** * @param data A multi dimensional array * @param format The Matrix storage format * @param dataType The Matrix data type * @returns The created Matrix */ matrix( data: MathCollection | string[], format?: 'sparse' | 'dense', dataType?: string ): Matrix /** * Create a number or convert a string, boolean, or unit to a number. * When value is a matrix, all elements will be converted to number. * @param value Value to be converted * @returns The created number */ number( value?: string | number | BigNumber | Fraction | boolean | Unit | null ): number number(value?: MathCollection): number | MathCollection /** * @param value Value to be converted * @param valuelessUnit A valueless unit, used to convert a unit to a * number * @returns The created number */ number(unit: Unit, valuelessUnit: Unit | string): number /** * Create a Sparse Matrix. The function creates a new math.type.Matrix * object from an Array. A Matrix has utility functions to manipulate * the data in the matrix, like getting the size and getting or setting * values in the matrix. * @param data A two dimensional array * @param dataType Sparse Matrix data type * @returns The created matrix */ sparse(data?: MathCollection, dataType?: string): Matrix /** * Split a unit in an array of units whose sum is equal to the original * unit. * @param unit A unit to be split * @param parts An array of strings or valueless units * @returns An array of units */ splitUnit(unit: Unit, parts: Unit[]): Unit[] /** * Create a string or convert any object into a string. Elements of * Arrays and Matrices are processed element wise. * @param value A value to convert to a string * @returns The created string */ string(value: MathNumericType | string | Unit | null): string string(value: MathCollection): MathCollection /** * Create a unit. Depending on the passed arguments, the function will * create and return a new math.type.Unit object. When a matrix is * provided, all elements will be converted to units. * @param unit The unit to be created * @returns The created unit */ unit(unit: string): Unit /** * @param unit The unit to be created * @returns The created unit */ unit(unit: Unit): Unit /** * @param value The value of the unit to be created * @param unit The unit to be created * @returns The created unit */ unit(value: MathNumericType, unit: string): Unit unit(value: MathCollection, unit: string): Unit[] /************************************************************************* * Expression functions ************************************************************************/ /** * Parse and compile an expression. Returns a an object with a function * evaluate([scope]) to evaluate the compiled expression. * @param expr The expression to be compiled * @returns An object with the compiled expression */ compile(expr: MathExpression): EvalFunction /** * @param exprs The expressions to be compiled * @returns An array of objects with the compiled expressions */ compile(exprs: MathExpression[]): EvalFunction[] // TODO properly type this /** * Evaluate an expression. * @param expr The expression to be evaluated * @param scope Scope to read/write variables * @returns The result of the expression */ evaluate( expr: MathExpression | Matrix, scope?: object // eslint-disable-next-line @typescript-eslint/no-explicit-any ): any evaluate( expr: MathExpression[], scope?: object // eslint-disable-next-line @typescript-eslint/no-explicit-any ): any[] /** * Retrieve help on a function or data type. Help files are retrieved * from the documentation in math.expression.docs. * @param search A function or function name for which to get help * @returns A help object */ // eslint-disable-next-line @typescript-eslint/no-explicit-any help(search: () => any): Help /** * Parse an expression. Returns a node tree, which can be evaluated by * invoking node.evaluate(); */ parse: ParseFunction /** * Create a parser. The function creates a new math.expression.Parser * object. * @returns A Parser object */ parser(): Parser /************************************************************************* * Algebra functions ************************************************************************/ /** * @param expr The expression to differentiate * @param variable The variable over which to differentiate * @param options There is one option available, simplify, which is true * by default. When false, output will not be simplified. * @returns The derivative of expr */ derivative( expr: MathNode | string, variable: MathNode | string, options?: { simplify: boolean } ): MathNode /** * Solves the linear equation system by forwards substitution. Matrix * must be a lower triangular matrix. * @param L A N x N matrix or array (L) * @param b A column vector with the b values * @returns A column vector with the linear system solution (x) */ lsolve(L: Matrix, b: MathCollection): Matrix lsolve(L: MathArray, b: MathCollection): MathArray /** * Calculate the Matrix LU decomposition with partial pivoting. Matrix A * is decomposed in two matrices (L, U) and a row permutation vector p * where A[p,:] = L * U * @param A A two dimensional matrix or array for which to get the LUP * decomposition. * @returns The lower triangular matrix, the upper triangular matrix and * the permutation matrix. */ lup(A?: MathCollection): LUDecomposition /** * Solves the linear system A * x = b where A is an [n x n] matrix and b * is a [n] column vector. * @param A Invertible Matrix or the Matrix LU decomposition * @param b Column Vector * @param order The Symbolic Ordering and Analysis order, see slu for * details. Matrix must be a SparseMatrix * @param threshold Partial pivoting threshold (1 for partial pivoting), * see slu for details. Matrix must be a SparseMatrix. * @returns Column vector with the solution to the linear system A * x = * b */ lusolve( A: Matrix, b: MathCollection, order?: number, threshold?: number ): Matrix lusolve( A: MathArray, b: MathCollection, order?: number, threshold?: number ): MathArray lusolve(A: LUDecomposition, b: MathCollection): Matrix /* Finds the roots of a polynomial of degree three or less. Coefficients are given constant first * followed by linear and higher powers in order; coefficients beyond the degree of the polynomial * need not be specified. * @param {number|Complex} constantCoeff * @param {number|Complex} linearCoeff * @param {number|Complex} quadraticCoeff * @param {number|Complex} cubicCoeff * @returns {Array} array of roots of specified polynomial */ polynomialRoot( constantCoeff: number | Complex, linearCoeff: number | Complex, quadraticCoeff?: number | Complex, cubicCoeff?: number | Complex ): (number | Complex)[] /** * Calculate the Matrix QR decomposition. Matrix A is decomposed in two * matrices (Q, R) where Q is an orthogonal matrix and R is an upper * triangular matrix. * @param A A two dimensional matrix or array for which to get the QR * decomposition. * @returns Q: the orthogonal matrix and R: the upper triangular matrix */ qr(A: MathCollection): QRDecomposition rationalize( expr: MathNode | string, optional?: object | boolean, detailed?: false ): MathNode /** * Transform a rationalizable expression in a rational fraction. If * rational fraction is one variable polynomial then converts the * numerator and denominator in canonical form, with decreasing * exponents, returning the coefficients of numerator. * @param expr The expression to check if is a polynomial expression * @param optional scope of expression or true for already evaluated * rational expression at input * @param detailed optional True if return an object, false if return * expression node (default) * @returns The rational polynomial of expr */ rationalize( expr: MathNode | string, optional?: object | boolean, detailed?: true ): { expression: MathNode | string variables: string[] coefficients: MathType[] } /** * Simplify an expression tree. * @param expr The expression to be simplified * @param [rules] (optional) A list of rules are applied to an expression, repeating * over the list until no further changes are made. It’s possible to * pass a custom set of rules to the function as second argument. A rule * can be specified as an object, string, or function. * @param [scope] (optional) Scope to variables * @param [options] (optional) An object with simplify options * @returns Returns the simplified form of expr */ simplify: Simplify simplifyConstant( expr: MathNode | string, options?: SimplifyOptions ): MathNode simplifyCore(expr: MathNode | string, options?: SimplifyOptions): MathNode /** * Replaces variable nodes with their scoped values * @param node Tree to replace variable nodes in * @param scope Scope to read/write variables */ // eslint-disable-next-line @typescript-eslint/no-explicit-any resolve(node: MathNode | string, scope?: Record): MathNode resolve( node: (MathNode | string)[], // eslint-disable-next-line @typescript-eslint/no-explicit-any scope?: Record ): MathNode[] // eslint-disable-next-line @typescript-eslint/no-explicit-any resolve(node: Matrix, scope?: Record): Matrix /** * Calculate the Sparse Matrix LU decomposition with full pivoting. * Sparse Matrix A is decomposed in two matrices (L, U) and two * permutation vectors (pinv, q) where P * A * Q = L * U * @param A A two dimensional sparse matrix for which to get the LU * decomposition. * @param order The Symbolic Ordering and Analysis order: 0 - Natural * ordering, no permutation vector q is returned 1 - Matrix must be * square, symbolic ordering and analisis is performed on M = A + A' 2 - * Symbolic ordering and analysis is performed on M = A' * A. Dense * columns from A' are dropped, A recreated from A'. This is appropriate * for LU factorization of non-symmetric matrices. 3 - Symbolic ordering * and analysis is performed on M = A' * A. This is best used for LU * factorization is matrix M has no dense rows. A dense row is a row * with more than 10*sqr(columns) entries. * @param threshold Partial pivoting threshold (1 for partial pivoting) * @returns The lower triangular matrix, the upper triangular matrix and * the permutation vectors. */ slu(A: Matrix, order: number, threshold: number): SLUDecomposition /** * Solves the linear equation system by backward substitution. Matrix * must be an upper triangular matrix. U * x = b * @param U A N x N matrix or array (U) * @param b A column vector with the b values * @returns A column vector with the linear system solution (x) */ usolve(U: Matrix, b: MathCollection): Matrix usolve(U: MathArray, b: MathCollection): MathArray /************************************************************************* * Arithmetic functions ************************************************************************/ /** * Calculate the absolute value of a number. For matrices, the function * is evaluated element wise. * @param x A number or matrix for which to get the absolute value * @returns Absolute value of x */ abs(x: T): T /** * Add two values, x + y. For matrices, the function is evaluated * element wise. * @param x First value to add * @param y Second value to add * @returns Sum of x and y */ add(x: T, y: T): T add(x: MathType, y: MathType): MathType /** * Calculate the cubic root of a value. * @param x Value for which to calculate the cubic root. * @param allRoots Optional, false by default. Only applicable when x is * a number or complex number. If true, all complex roots are returned, * if false (default) the principal root is returned. * @returns Returns the cubic root of x */ cbrt(x: Complex, allRoots?: boolean): Complex cbrt(x: T): T // Rounding functions, grouped for similarity, even though it breaks // the alphabetic order among arithmetic functions. /** * Round a value towards plus infinity If x is complex, both real and * imaginary part are rounded towards plus infinity. For matrices, the * function is evaluated element wise. * @param x Number to be rounded * @param n Number of decimals Default value: 0. * @returns Rounded value */ ceil( x: T, n?: number | BigNumber ): NoLiteralType ceil(x: MathNumericType, n: U): U /** * Round a value towards zero. For matrices, the function is evaluated * element wise. * @param x Number to be rounded * @param n Number of decimals Default value: 0. * @returns Rounded value */ fix( x: T, n?: number | BigNumber ): NoLiteralType fix(x: MathNumericType, n: U): U /** * Round a value towards minus infinity. For matrices, the function is * evaluated element wise. * @param x Number to be rounded * @param n Number of decimals Default value: 0. * @returns Rounded value */ floor( x: T, n?: number | BigNumber ): NoLiteralType floor(x: MathNumericType, n: U): U /** * Round a value towards the nearest integer. For matrices, the function * is evaluated element wise. * @param x Number to be rounded * @param n Number of decimals Default value: 0. * @returns Rounded value of x */ round( x: T, n?: number | BigNumber ): NoLiteralType round(x: MathNumericType, n: U): U // End of group of rounding functions /** * Compute the cube of a value, x * x * x. For matrices, the function is * evaluated element wise. * @param x Number for which to calculate the cube * @returns Cube of x */ cube(x: T): T /** * Divide two values, x / y. To divide matrices, x is multiplied with * the inverse of y: x * inv(y). * @param x Numerator * @param y Denominator * @returns Quotient, x / y */ divide(x: Unit, y: Unit): Unit | number divide(x: Unit, y: number): Unit divide(x: number, y: number): number divide(x: MathType, y: MathType): MathType /** * Divide two matrices element wise. The function accepts both matrices * and scalar values. * @param x Numerator * @param y Denominator * @returns Quotient, x ./ y */ dotDivide(x: T, y: MathType): T dotDivide(x: MathType, y: T): T dotDivide(x: Unit, y: MathType): Unit dotDivide(x: MathType, y: Unit): Unit dotDivide(x: MathNumericType, y: MathNumericType): MathNumericType /** * Multiply two matrices element wise. The function accepts both * matrices and scalar values. * @param x Left hand value * @param y Right hand value * @returns Multiplication of x and y */ dotMultiply(x: T, y: MathType): T dotMultiply(x: MathType, y: T): T dotMultiply(x: Unit, y: MathType): Unit dotMultiply(x: MathType, y: Unit): Unit dotMultiply(x: MathNumericType, y: MathNumericType): MathNumericType /** * Calculates the power of x to y element wise. * @param x The base * @param y The exponent * @returns The value of x to the power y */ dotPow(x: T, y: MathType): T /** * Calculate the exponent of a value. For matrices, the function is * evaluated element wise. * @param x A number or matrix to exponentiate * @returns Exponent of x */ exp(x: T): T /** * Calculate the value of subtracting 1 from the exponential value. For * matrices, the function is evaluated element wise. * @param x A number or matrix to apply expm1 * @returns Exponent of x */ expm1(x: T): T /** * Calculate the greatest common divisor for two or more values or * arrays. For matrices, the function is evaluated element wise. * @param args Two or more integer numbers * @returns The greatest common divisor */ gcd( ...args: T[] ): T gcd(args: T[]): T /** * Calculate the hypotenusa of a list with values. The hypotenusa is * defined as: hypot(a, b, c, ...) = sqrt(a^2 + b^2 + c^2 + ...) For * matrix input, the hypotenusa is calculated for all values in the * matrix. * @param args A list with numeric values or an Array or Matrix. Matrix * and Array input is flattened and returns a single number for the * whole matrix. * @returns Returns the hypothenuse of the input values. */ hypot(...args: T[]): T /** * Calculate the least common multiple for two or more values or arrays. * lcm is defined as: lcm(a, b) = abs(a * b) / gcd(a, b) For matrices, * the function is evaluated element wise. * @param a An integer number * @param b An integer number * @returns The least common multiple */ lcm(a: T, b: T): T /** * Calculate the logarithm of a value. * @param x Value for which to calculate the logarithm. * @param base Optional base for the logarithm. If not provided, the * natural logarithm of x is calculated. Default value: e. * @returns Returns the logarithm of x */ log( x: T, base?: number | BigNumber | Complex ): NoLiteralType /** * Calculate the 10-base of a value. This is the same as calculating * log(x, 10). For matrices, the function is evaluated element wise. * @param x Value for which to calculate the logarithm. * @returns Returns the 10-base logarithm of x */ log10(x: T): T /** * Calculate the logarithm of a value+1. For matrices, the function is * evaluated element wise. * @param x Value for which to calculate the logarithm. * @returns Returns the logarithm of x+1 */ log1p( x: T, base?: number | BigNumber | Complex ): T /** * Calculate the 2-base of a value. This is the same as calculating * log(x, 2). For matrices, the function is evaluated element wise. * @param x Value for which to calculate the logarithm. * @returns Returns the 2-base logarithm of x */ log2(x: T): T /** * Calculates the modulus, the remainder of an integer division. For * matrices, the function is evaluated element wise. The modulus is * defined as: x - y * floor(x / y) * @see http://en.wikipedia.org/wiki/Modulo_operation. * @param x Dividend * @param y Divisor * @returns Returns the remainder of x divided by y */ mod( x: T, y: number | BigNumber | Fraction | MathCollection ): NoLiteralType /** * Multiply two values, x * y. The result is squeezed. For matrices, the * matrix product is calculated. * @param x The first value to multiply * @param y The second value to multiply * @returns Multiplication of x and y */ multiply(x: T, y: MathType): Matrix multiply(x: MathType, y: T): Matrix multiply(x: T, y: T[]): T multiply(x: T[], y: T): T multiply(x: T, y: T): T multiply(x: Unit, y: Unit): Unit multiply(x: number, y: number): number multiply(x: MathType, y: MathType): MathType /** * Calculate the norm of a number, vector or matrix. The second * parameter p is optional. If not provided, it defaults to 2. * @param x Value for which to calculate the norm * @param p Vector space. Supported numbers include Infinity and * -Infinity. Supported strings are: 'inf', '-inf', and 'fro' (The * Frobenius norm) Default value: 2. * @returns the p-norm */ norm( x: number | BigNumber | Complex | MathCollection, p?: number | BigNumber | string ): number | BigNumber /** * Calculate the nth root of a value. The principal nth root of a * positive real number A, is the positive real solution of the equation * x^root = A For matrices, the function is evaluated element wise. * @param a Value for which to calculate the nth root * @param root The root. Default value: 2. * @return The nth root of a */ nthRoot( a: number | BigNumber | MathCollection | Complex, root?: number | BigNumber ): number | Complex | MathCollection /** * Calculates the power of x to y, x ^ y. Matrix exponentiation is * supported for square matrices x, and positive integer exponents y. * @param x The base * @param y The exponent * @returns x to the power y */ pow(x: MathType, y: number | BigNumber | Complex): MathType /** * Compute the sign of a value. The sign of a value x is: 1 when x > 1 * -1 when x < 0 0 when x == 0 For matrices, the function is evaluated * element wise. * @param x The number for which to determine the sign * @returns The sign of x */ sign(x: T): T /** * Calculate the square root of a value. For matrices, use either * sqrtm for the matrix square root, or map(M, sqrt) to take the * square root element wise. * @param x Value for which to calculate the square root * @returns Returns the square root of x */ sqrt(x: number): number | Complex sqrt(x: T): T /** * Compute the square of a value, x * x. * @param x Number for which to calculate the square * @returns Squared value */ square(x: T): T /** * Subtract two values, x - y. For matrices, the function is evaluated * element wise. * @param x Initial value * @param y Value to subtract from x * @returns Subtraction of x and y */ subtract(x: T, y: T): T subtract(x: MathType, y: MathType): MathType /** * Inverse the sign of a value, apply a unary minus operation. For * matrices, the function is evaluated element wise. Boolean values and * strings will be converted to a number. For complex numbers, both real * and complex value are inverted. * @param x Number to be inverted * @returns Retursn the value with inverted sign */ unaryMinus(x: T): T /** * Unary plus operation. Boolean values and strings will be converted to * a number, numeric values will be returned as is. For matrices, the * function is evaluated element wise. * @param x Input value * @returns Returns the input value when numeric, converts to a number * when input is non-numeric. */ unaryPlus(x: T): T /** * Calculate the extended greatest common divisor for two values. See * http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm. * @param a An integer number * @param b An integer number * @returns Returns an array containing 3 integers [div, m, n] where div * = gcd(a, b) and a*m + b*n = div */ xgcd(a: number | BigNumber, b: number | BigNumber): MathArray /************************************************************************* * Bitwise functions ************************************************************************/ /** * Bitwise AND two values, x & y. For matrices, the function is * evaluated element wise. * @param x First value to and * @param y Second value to and * @returns AND of x and y */ bitAnd( x: T, y: number | BigNumber | MathCollection ): NoLiteralType /** * Bitwise NOT value, ~x. For matrices, the function is evaluated * element wise. For units, the function is evaluated on the best prefix * base. * @param x Value to not * @returns NOT of x */ bitNot(x: T): T /** * Bitwise OR two values, x | y. For matrices, the function is evaluated * element wise. For units, the function is evaluated on the lowest * print base. * @param x First value to or * @param y Second value to or * @returns OR of x and y */ bitOr(x: T, y: T): T /** * Bitwise XOR two values, x ^ y. For matrices, the function is * evaluated element wise. * @param x First value to xor * @param y Second value to xor * @returns XOR of x and y */ bitXor( x: T, y: number | BigNumber | MathCollection ): NoLiteralType /** * Bitwise left logical shift of a value x by y number of bits, x << y. * For matrices, the function is evaluated element wise. For units, the * function is evaluated on the best prefix base. * @param x Value to be shifted * @param y Amount of shifts * @returns x shifted left y times */ leftShift( x: T, y: number | BigNumber ): NoLiteralType /** * Bitwise right arithmetic shift of a value x by y number of bits, x >> * y. For matrices, the function is evaluated element wise. For units, * the function is evaluated on the best prefix base. * @param x Value to be shifted * @param y Amount of shifts * @returns x sign-filled shifted right y times */ rightArithShift( x: T, y: number | BigNumber ): NoLiteralType /** * Bitwise right logical shift of value x by y number of bits, x >>> y. * For matrices, the function is evaluated element wise. For units, the * function is evaluated on the best prefix base. * @param x Value to be shifted * @param y Amount of shifts * @returns x zero-filled shifted right y times */ rightLogShift( x: T, y: number ): NoLiteralType /************************************************************************* * Combinatorics functions ************************************************************************/ /** * The Bell Numbers count the number of partitions of a set. A partition * is a pairwise disjoint subset of S whose union is S. bellNumbers only * takes integer arguments. The following condition must be enforced: n * >= 0 * @param n Total number of objects in the set * @returns B(n) */ bellNumbers(n: T): T /** * The Catalan Numbers enumerate combinatorial structures of many * different types. catalan only takes integer arguments. The following * condition must be enforced: n >= 0 * @param n nth Catalan number * @returns Cn(n) */ catalan(n: T): T /** * The composition counts of n into k parts. Composition only takes * integer arguments. The following condition must be enforced: k <= n. * @param n Total number of objects in the set * @param k Number of objects in the subset * @returns Returns the composition counts of n into k parts. */ composition( n: T, k: number | BigNumber ): NoLiteralType /** * The Stirling numbers of the second kind, counts the number of ways to * partition a set of n labelled objects into k nonempty unlabelled * subsets. stirlingS2 only takes integer arguments. The following * condition must be enforced: k <= n. If n = k or k = 1, then s(n,k) = * 1 * @param n Total number of objects in the set * @param k Number of objects in the subset * @returns S(n,k) */ stirlingS2( n: T, k: number | BigNumber ): NoLiteralType /************************************************************************* * Complex functions ************************************************************************/ /** * Compute the argument of a complex value. For a complex number a + bi, * the argument is computed as atan2(b, a). For matrices, the function * is evaluated element wise. * @param x A complex number or array with complex numbers * @returns The argument of x */ arg(x: number | Complex): number arg(x: BigNumber | Complex): BigNumber arg(x: T): T /** * Compute the complex conjugate of a complex value. If x = a+bi, the * complex conjugate of x is a - bi. For matrices, the function is * evaluated element wise. * @param x A complex number or array with complex numbers * @returns The complex conjugate of x */ conj( x: T ): NoLiteralType /** * Get the imaginary part of a complex number. For a complex number a + * bi, the function returns b. For matrices, the function is evaluated * element wise. * @param x A complex number or array with complex numbers * @returns The imaginary part of x */ im(x: MathJsChain): MathJsChain im(x: MathJsChain): MathJsChain /** * Get the real part of a complex number. For a complex number a + bi, * the function returns a. For matrices, the function is evaluated * element wise. * @param x A complex number or array of complex numbers * @returns The real part of x */ re(x: MathJsChain): MathJsChain re(x: MathJsChain): MathJsChain /************************************************************************* * Geometry functions ************************************************************************/ /** * Calculates: The eucledian distance between two points in 2 and 3 * dimensional spaces. Distance between point and a line in 2 and 3 * dimensional spaces. Pairwise distance between a set of 2D or 3D * points NOTE: When substituting coefficients of a line(a, b and c), * use ax + by + c = 0 instead of ax + by = c For parametric equation of * a 3D line, x0, y0, z0, a, b, c are from: (x−x0, y−y0, z−z0) = t(a, b, * c) * @param x Coordinates of the first point * @param y Coordinates of the second point OR coefficients of a line in 3D OR first end-point of a line if the calculation is for distance between point and a line in 2D * @param z Coordinates of second end-point of a line if the calculation is for distance between point and a line in 2D * @returns Returns the distance from two/three points */ distance( x: MathCollection | object, y: MathCollection | object, z?: MathCollection | object ): number | BigNumber /** * Calculates the point of intersection of two lines in two or three * dimensions and of a line and a plane in three dimensions. The inputs * are in the form of arrays or 1 dimensional matrices. The line * intersection functions return null if the lines do not meet. Note: * Fill the plane coefficients as x + y + z = c and not as x + y + z + c * = 0. * @param w Co-ordinates of first end-point of first line * @param x Co-ordinates of second end-point of first line * @param y Co-ordinates of first end-point of second line OR * Coefficients of the plane's equation * @param z Co-ordinates of second end-point of second line OR null if * the calculation is for line and plane * @returns Returns the point of intersection of lines/lines-planes */ intersect( w: MathCollection, x: MathCollection, y: MathCollection, z?: MathCollection ): MathArray /************************************************************************* * Logical functions ************************************************************************/ /** * Logical and. Test whether two values are both defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param x First value to and * @param y Second value to and * @returns Returns true when both inputs are defined with a * nonzero/nonempty value. */ and( x: number | BigNumber | Complex | Unit | MathCollection, y: number | BigNumber | Complex | Unit | MathCollection ): boolean | MathCollection /** * Logical not. Flips boolean value of a given parameter. For matrices, * the function is evaluated element wise. * @param x First value to not * @returns Returns true when input is a zero or empty value. */ not( x: number | BigNumber | Complex | Unit | MathCollection ): boolean | MathCollection /** * Logical or. Test if at least one value is defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param x First value to or * @param y Second value to or * @returns Returns true when one of the inputs is defined with a * nonzero/nonempty value. */ or( x: number | BigNumber | Complex | Unit | MathCollection, y: number | BigNumber | Complex | Unit | MathCollection ): boolean | MathCollection /** * Logical xor. Test whether one and only one value is defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param x First value to xor * @param y Second value to xor * @returns Returns true when one and only one input is defined with a * nonzero/nonempty value. */ xor( x: number | BigNumber | Complex | Unit | MathCollection, y: number | BigNumber | Complex | Unit | MathCollection ): boolean | MathCollection /************************************************************************* * Matrix functions ************************************************************************/ /** * Apply a function that maps an array to a scalar along a given axis of a * matrix or array. Returns a new matrix or array with one less dimension * than the input. * @param array The input Matrix * @param dim The dimension along which the callback is applied * @param callback The callback function that is applied. This Function should take an * array or 1-d matrix as an input and return a number. * @returns The residual matrix with the function applied over some dimension. */ apply( array: T, dim: number, callback: (array: MathCollection) => number ): T /** * Concatenate two or more matrices. dim: number is a zero-based * dimension over which to concatenate the matrices. By default the last * dimension of the matrices. * @param args Two or more matrices * @returns Concatenated matrix */ concat(...args: Array): MathCollection /** * Calculate the cross product for two vectors in three dimensional * space. The cross product of A = [a1, a2, a3] and B =[b1, b2, b3] is * defined as: cross(A, B) = [ a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1 * * b2 - a2 * b1 ] * @param x First vector * @param y Second vector * @returns Returns the cross product of x and y */ cross(x: MathCollection, y: MathCollection): MathCollection /** * Calculate the determinant of a matrix. * @param x A Matrix * @returns the determinant of x */ det(x: MathCollection): number /** * Create a diagonal matrix or retrieve the diagonal of a matrix. When x * is a vector, a matrix with vector x on the diagonal will be returned. * When x is a two dimensional matrix, the matrixes kth diagonal will be * returned as vector. When k is positive, the values are placed on the * super diagonal. When k is negative, the values are placed on the sub * diagonal. * @param X A two dimensional matrix or a vector * @param k The diagonal where the vector will be filled in or * retrieved. Default value: 0. * @param format The matrix storage format. Default value: 'dense'. * @returns Diagonal matrix from input vector, or diagonal from input * matrix */ diag(X: MathCollection, format?: string): Matrix diag( X: MathCollection, k: number | BigNumber, format?: string ): MathCollection /** * Calculate the dot product of two vectors. The dot product of A = [a1, * a2, a3, ..., an] and B = [b1, b2, b3, ..., bn] is defined as: dot(A, * B) = a1 * b1 + a2 * b2 + a3 * b3 + ... + an * bn * @param x First vector * @param y Second vector * @returns Returns the dot product of x and y */ dot(x: MathCollection, y: MathCollection): number /** * Compute eigenvalues and eigenvectors of a matrix. * The eigenvalues are sorted by their absolute value, ascending. * An eigenvalue with multiplicity k will be listed k times. * The eigenvectors are returned as columns of a matrix – the eigenvector * that belongs to the j-th eigenvalue in the list (eg. values[j]) is the * j-th column (eg. column(vectors, j)). If the algorithm fails to converge, * it will throw an error – in that case, however, you may still find useful * information in err.values and err.vectors * @param x Matrix to be diagonalized * @param prec Precision, default value: 1e-15 * @returns Object containing an array of eigenvalues and a matrix with eigenvectors as columns. */ eigs( x: MathCollection, prec?: number | BigNumber ): { values: MathCollection; vectors: MathCollection } /** * Compute the matrix exponential, expm(A) = e^A. The matrix must be * square. Not to be confused with exp(a), which performs element-wise * exponentiation. The exponential is calculated using the Padé * approximant with scaling and squaring; see “Nineteen Dubious Ways to * Compute the Exponential of a Matrix,” by Moler and Van Loan. * @param x A square matrix * @returns The exponential of x */ expm(x: Matrix): Matrix /** * Solves the real-valued Sylvester equation AX-XB=C for X, where A, B and C are * matrices of appropriate dimensions, being A and B squared. The method used is * the Bartels-Stewart algorithm. * https://en.wikipedia.org/wiki/Sylvester_equation * @param A Matrix A * @param B Matrix B * @param C Matrix C * @returns Matrix X, solving the Sylvester equation */ sylvester( A: MathCollection, B: MathCollection, C: MathCollection ): MathCollection /** * Performs a real Schur decomposition of the real matrix A = UTU' where U is orthogonal * and T is upper quasi-triangular. * https://en.wikipedia.org/wiki/Schur_decomposition * @param A Matrix A * @returns Object containing both matrix U and T of the Schur Decomposition A=UTU' */ schur(A: MathCollection): SchurDecomposition /** * Solves the Continuous-time Lyapunov equation AP+PA'=Q for P, where Q is a positive semidefinite * matrix. * https://en.wikipedia.org/wiki/Lyapunov_equation * @param A Matrix A * @param Q Matrix Q * @returns Matrix P solution to the Continuous-time Lyapunov equation AP+PA'=Q */ lyap(A: MathCollection, Q: MathCollection): MathCollection /** * Create a 2-dimensional identity matrix with size m x n or n x n. The * matrix has ones on the diagonal and zeros elsewhere. * @param size The size for the matrix * @param format The Matrix storage format * @returns A matrix with ones on the diagonal */ identity( size: number | number[] | MathCollection, format?: string ): MathCollection | number /** * @param m The x dimension for the matrix * @param n The y dimension for the matrix * @param format The Matrix storage format * @returns A matrix with ones on the diagonal */ identity(m: number, n: number, format?: string): MathCollection | number /** * Filter the items in an array or one dimensional matrix. * @param x A one dimensional matrix or array to filter * @param test A function or regular expression to test items. All * entries for which test returns true are returned. When test is a * function, it is invoked with three parameters: the value of the * element, the index of the element, and the matrix/array being * traversed. The function must return a boolean. */ filter( x: MathCollection | string[], test: | (( // eslint-disable-next-line @typescript-eslint/no-explicit-any value: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any index: any, matrix: MathCollection | string[] ) => boolean) | RegExp ): MathCollection /** * Flatten a multi dimensional matrix into a single dimensional matrix. * @param x Matrix to be flattened * @returns Returns the flattened matrix */ flatten(x: T): T /** * Iterate over all elements of a matrix/array, and executes the given * callback function. * @param x The matrix to iterate on. * @param callback The callback function is invoked with three * parameters: the value of the element, the index of the element, and * the Matrix/array being traversed. */ forEach( x: T, // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (value: any, index: any, matrix: T) => void ): void /** * Calculate the inverse of a square matrix. * @param x Matrix to be inversed * @returns The inverse of x */ inv(x: T): NoLiteralType /** * Calculate the kronecker product of two matrices or vectors * @param x First vector * @param y Second vector * @returns Returns the kronecker product of x and y */ kron(x: MathCollection, y: MathCollection): Matrix /** * Iterate over all elements of a matrix/array, and executes the given * callback function. * @param x The matrix to iterate on. * @param callback The callback function is invoked with three * parameters: the value of the element, the index of the element, and * the Matrix/array being traversed. * @returns Transformed map of x */ map( x: T, // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (value: any, index: any, matrix: T) => MathType | string ): T /** * Create a matrix filled with ones. The created matrix can have one or * multiple dimensions. * @param size The size of each dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with ones */ ones( size?: number | number[] | BigNumber | BigNumber[], format?: string ): MathCollection /** * @param m The x dimension of the matrix * @param n The y dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with ones */ ones( m: number | BigNumber, n: number | BigNumber, format?: string ): MathCollection /** * @param m The x dimension of the matrix * @param n The y dimension of the matrix * @param p The z dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with ones */ ones( m: number | BigNumber, n: number | BigNumber, p: number | BigNumber, format?: string ): MathCollection /** Actually ones can take an arbitrary number of dimensions before the ** optional format, not sure how to write that in TypeScript **/ /** * Partition-based selection of an array or 1D matrix. Will find the kth * smallest value, and mutates the input array. Uses Quickselect. * @param x A one dimensional matrix or array to sort * @param k The kth smallest value to be retrieved; zero-based index * @param compare An optional comparator function. The function is * called as compare(a, b), and must return 1 when a > b, -1 when a < b, * and 0 when a == b. Default value: 'asc'. * @returns Returns the kth lowest value. */ partitionSelect( x: MathCollection, k: number, // eslint-disable-next-line @typescript-eslint/no-explicit-any compare?: 'asc' | 'desc' | ((a: any, b: any) => number) // eslint-disable-next-line @typescript-eslint/no-explicit-any ): any /** * Calculate the Moore–Penrose inverse of a matrix. * @param x Matrix to be inversed * @return The inverse of `x`. */ pinv(x: T): T /** * Create an array from a range. By default, the range end is excluded. * This can be customized by providing an extra parameter includeEnd. * @param str A string 'start:end' or 'start:step:end' * @param start Start of the range * @param end End of the range, excluded by default, included when * parameter includeEnd=true * @param step Step size. Default value is 1. * @param includeEnd: Option to specify whether to include the end or * not. False by default * @returns Parameters describing the ranges start, end, and optional * step. */ range(str: string, includeEnd?: boolean): Matrix range( start: number | BigNumber, end: number | BigNumber, includeEnd?: boolean ): Matrix range( start: number | BigNumber | Unit, end: number | BigNumber | Unit, step: number | BigNumber | Unit, includeEnd?: boolean ): Matrix /** * Reshape a multi dimensional array to fit the specified dimensions * @param x Matrix to be reshaped * @param sizes One dimensional array with integral sizes for each * dimension * @returns A reshaped clone of matrix x */ reshape(x: T, sizes: number[]): T /** * Resize a matrix * @param x Matrix to be resized * @param size One dimensional array with numbers * @param defaultValue Zero by default, except in case of a string, in * that case defaultValue = ' ' Default value: 0. * @returns A resized clone of matrix x */ resize( x: T, size: MathCollection, defaultValue?: number | string ): T /** * Return a Rotation Matrix for a given angle in radians * @param {number | BigNumber | Complex | Unit} theta Rotation angle * @param {Array | Matrix} [v] Rotation axis * @param {string} [format] Result Matrix storage format. Default value: 'dense'. * @return {Matrix} Rotation Matrix */ rotationMatrix( theta?: number | BigNumber | Complex | Unit, axis?: T, format?: 'sparse' | 'dense' ): T /** * Return a row from a Matrix. * @param value An array or matrix * @param row The index of the row * @returns The retrieved row */ row(value: T, row: number): T /** * Return a column from a Matrix. * @param value An array or matrix * @param column The index of the column * @returns The retrieved column */ column(value: T, column: number): T /** * Return a rotated matrix. * @param {Array | Matrix} w Vector to rotate * @param {number | BigNumber | Complex | Unit} theta Rotation angle * @param {Array | Matrix} [v] Rotation axis * @return {Array | Matrix} Multiplication of the rotation matrix and w */ rotate( w: T, theta: number | BigNumber | Complex | Unit, v?: T ): T /** * Calculate the size of a matrix or scalar. * @param A matrix * @returns A vector with the size of x */ size( x: boolean | number | Complex | Unit | string | MathCollection ): MathCollection /** * Sort the items in a matrix * @param x A one dimensional matrix or array to sort * @param compare An optional _comparator function or name. The function * is called as compare(a, b), and must return 1 when a > b, -1 when a < * b, and 0 when a == b. Default value: ‘asc’ * @returns Returns the sorted matrix */ sort( x: T, // eslint-disable-next-line @typescript-eslint/no-explicit-any compare: ((a: any, b: any) => number) | 'asc' | 'desc' | 'natural' ): T /** * Calculate the principal square root of a square matrix. The principal * square root matrix X of another matrix A is such that X * X = A. * @param A The square matrix A * @returns The principal square root of matrix A */ sqrtm(A: T): T /** * Squeeze a matrix, remove inner and outer singleton dimensions from a * matrix. * @param x Matrix to be squeezed * @returns Squeezed matrix */ squeeze(x: T): T /** * Get or set a subset of a matrix or string. * @param value An array, matrix, or string * @param index For each dimension, an index or list of indices to get or set. * @param replacement An array, matrix, or scalar. If provided, the * subset is replaced with replacement. If not provided, the subset is * returned * @param defaultValue Default value, filled in on new entries when the * matrix is resized. If not provided, math.matrix elements will be left * undefined. Default value: undefined. * @returns Either the retrieved subset or the updated matrix */ subset( value: T, index: Index, // eslint-disable-next-line @typescript-eslint/no-explicit-any replacement?: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any defaultValue?: any ): T /** * Calculate the trace of a matrix: the sum of the elements on the main * diagonal of a square matrix. * @param x A matrix * @returns The trace of x */ trace(x: MathCollection): number /** * Transpose a matrix. All values of the matrix are reflected over its * main diagonal. Only two dimensional matrices are supported. * @param x Matrix to be transposed * @returns The transposed matrix */ transpose(x: T): T /** * Create a matrix filled with zeros. The created matrix can have one or * multiple dimensions. * @param size The size of each dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with zeros */ zeros( size?: number | number[] | BigNumber | BigNumber[], format?: string ): MathCollection /** * @param m The x dimension of the matrix * @param n The y dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with zeros */ zeros( m: number | BigNumber, n: number | BigNumber, format?: string ): MathCollection /** * @param m The x dimension of the matrix * @param n The y dimension of the matrix * @param p The z dimension of the matrix * @param format The matrix storage format * @returns A matrix filled with zeros */ zeros( m: number | BigNumber, n: number | BigNumber, p: number | BigNumber, format?: string ): MathCollection /** Actually zeros can take any number of dimensions before the ** optional format, not sure how to write that in TypeScript **/ /** * Calculate N-dimensional fourier transform * @param {Array | Matrix} arr An array or matrix * @return {Array | Matrix} N-dimensional fourier transformation of the array */ fft(arr: T): T /** * Calculate N-dimensional inverse fourier transform * @param {Array | Matrix} arr An array or matrix * @return {Array | Matrix} N-dimensional fourier transformation of the array */ ifft(arr: T): T /************************************************************************* * Probability functions ************************************************************************/ /** * Compute the number of ways of picking k unordered outcomes from n * possibilities. Combinations only takes integer arguments. The * following condition must be enforced: k <= n. * @param n Total number of objects in the set * @param k Number of objects in the subset * @returns Number of possible combinations */ combinations( n: T, k: number | BigNumber ): NoLiteralType /** * Compute the factorial of a value Factorial only supports an integer * value as argument. For matrices, the function is evaluated element * wise. * @param n An integer number * @returns The factorial of n */ factorial( n: T ): NoLiteralType /** * Compute the gamma function of a value using Lanczos approximation for * small values, and an extended Stirling approximation for large * values. * @param n A real or complex number * @returns The gamma of n */ gamma(n: T): NoLiteralType /** * Calculate the Kullback-Leibler (KL) divergence between two * distributions * @param q First vector * @param p Second vector * @returns Returns disance between q and p */ kldivergence(q: MathCollection, p: MathCollection): number /** * Compute the log gamma function of a value, using Lanczos approximation for numbers and Stirling series for complex numbers. * @param n A real or complex number * @returns The log gamma of `n` */ lgamma(n: T): NoLiteralType /** * Multinomial Coefficients compute the number of ways of picking a1, * a2, ..., ai unordered outcomes from n possibilities. multinomial * takes one array of integers as an argument. The following condition * must be enforced: every ai <= 0 * @param a Integer number of objects in the subset * @returns multinomial coefficent */ multinomial(a: T[]): NoLiteralType /** * Compute the number of ways of obtaining an ordered subset of k * elements from a set of n elements. Permutations only takes integer * arguments. The following condition must be enforced: k <= n. * @param n The number of objects in total * @param k The number of objects in the subset * @returns The number of permutations */ permutations( n: T, k?: number | BigNumber ): NoLiteralType /** * Random pick a value from a one dimensional array. Array element is * picked using a random function with uniform distribution. * @param array A one dimensional array * @param number An int or float * @param weights An array of ints or floats * @returns Returns a single random value from array when number is 1 or * undefined. Returns an array with the configured number of elements * when number is > 1. */ pickRandom(array: T[]): T pickRandom(array: T[], number: number): T[] pickRandom(array: T[], number: number, weights: number[]): T[] /** * Return a random number larger or equal to min and smaller than max * using a uniform distribution. * @param size If provided, an array or matrix with given size and * filled with random values is returned * @param min Minimum boundary for the random value, included * @param max Maximum boundary for the random value, excluded * @returns A random number */ random(min?: number, max?: number): number random(size: T, min?: number, max?: number): T /** * Return a random integer number larger or equal to min and smaller * than max using a uniform distribution. * @param size If provided, an array or matrix with given size and * filled with random values is returned * @param min Minimum boundary for the random value, included * @param max Maximum boundary for the random value, excluded * @returns A random number */ randomInt(min: number, max?: number): number randomInt(size: T, min?: number, max?: number): T /************************************************************************* * Relational functions ************************************************************************/ /** * Compare two values. Returns 1 when x > y, -1 when x < y, and 0 when x * == y. x and y are considered equal when the relative difference * between x and y is smaller than the configured epsilon. The function * cannot be used to compare values smaller than approximately 2.22e-16. * For matrices, the function is evaluated element wise. * @param x First value to compare * @param y Second value to compare * @returns Returns the result of the comparison: 1 when x > y, -1 when * x < y, and 0 when x == y. */ compare( x: MathType | string, y: MathType | string ): number | BigNumber | Fraction | MathCollection /** * Compare two values of any type in a deterministic, natural way. For * numeric values, the function works the same as math.compare. For * types of values that can’t be compared mathematically, the function * compares in a natural way. * @param x First value to compare * @param y Second value to compare * @returns Returns the result of the comparison: 1 when x > y, -1 when * x < y, and 0 when x == y. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any compareNatural(x: any, y: any): number /** * Compare two strings lexically. Comparison is case sensitive. Returns * 1 when x > y, -1 when x < y, and 0 when x == y. For matrices, the * function is evaluated element wise. * @param x First string to compare * @param y Second string to compare * @returns Returns the result of the comparison: 1 when x > y, -1 when * x < y, and 0 when x == y. */ compareText( x: string | MathCollection, y: string | MathCollection ): number | MathCollection /** * Test element wise whether two matrices are equal. The function * accepts both matrices and scalar values. * @param x First matrix to compare * @param y Second amtrix to compare * @returns Returns true when the input matrices have the same size and * each of their elements is equal. */ deepEqual(x: MathType, y: MathType): MathType /** * Test whether two values are equal. * * The function tests whether the relative difference between x and y is * smaller than the configured epsilon. The function cannot be used to * compare values smaller than approximately 2.22e-16. For matrices, the * function is evaluated element wise. In case of complex numbers, x.re * must equal y.re, and x.im must equal y.im. Values null and undefined * are compared strictly, thus null is only equal to null and nothing * else, and undefined is only equal to undefined and nothing else. * @param x First value to compare * @param y Second value to compare * @returns Returns true when the compared values are equal, else * returns false */ equal(x: MathType | string, y: MathType | string): boolean | MathCollection /** * Check equality of two strings. Comparison is case sensitive. For * matrices, the function is evaluated element wise. * @param x First string to compare * @param y Second string to compare * @returns Returns true if the values are equal, and false if not. */ equalText( x: string | MathCollection, y: string | MathCollection ): number | MathCollection /** * Test whether value x is larger than y. The function returns true when * x is larger than y and the relative difference between x and y is * larger than the configured epsilon. The function cannot be used to * compare values smaller than approximately 2.22e-16. For matrices, the * function is evaluated element wise. * @param x First value to compare * @param y Second value to vcompare * @returns Returns true when x is larger than y, else returns false */ larger(x: MathType | string, y: MathType | string): boolean | MathCollection /** * Test whether value x is larger or equal to y. The function returns * true when x is larger than y or the relative difference between x and * y is smaller than the configured epsilon. The function cannot be used * to compare values smaller than approximately 2.22e-16. For matrices, * the function is evaluated element wise. * @param x First value to compare * @param y Second value to vcompare * @returns Returns true when x is larger than or equal to y, else * returns false */ largerEq( x: MathType | string, y: MathType | string ): boolean | MathCollection /** * Test whether value x is smaller than y. The function returns true * when x is smaller than y and the relative difference between x and y * is smaller than the configured epsilon. The function cannot be used * to compare values smaller than approximately 2.22e-16. For matrices, * the function is evaluated element wise. * @param x First value to compare * @param y Second value to vcompare * @returns Returns true when x is smaller than y, else returns false */ smaller( x: MathType | string, y: MathType | string ): boolean | MathCollection /** * Test whether value x is smaller or equal to y. The function returns * true when x is smaller than y or the relative difference between x * and y is smaller than the configured epsilon. The function cannot be * used to compare values smaller than approximately 2.22e-16. For * matrices, the function is evaluated element wise. * @param x First value to compare * @param y Second value to vcompare * @returns Returns true when x is smaller than or equal to y, else * returns false */ smallerEq( x: MathType | string, y: MathType | string ): boolean | MathCollection /** * Test whether two values are unequal. The function tests whether the * relative difference between x and y is larger than the configured * epsilon. The function cannot be used to compare values smaller than * approximately 2.22e-16. For matrices, the function is evaluated * element wise. In case of complex numbers, x.re must unequal y.re, or * x.im must unequal y.im. Values null and undefined are compared * strictly, thus null is unequal with everything except null, and * undefined is unequal with everything except undefined. * @param x First value to compare * @param y Second value to vcompare * @returns Returns true when the compared values are unequal, else * returns false */ unequal( x: MathType | string, y: MathType | string ): boolean | MathCollection /************************************************************************* * Set functions ************************************************************************/ /** * Create the cartesian product of two (multi)sets. Multi-dimension * arrays will be converted to single-dimension arrays and the values * will be sorted in ascending order before the operation. * @param a1 A (multi)set * @param a2 A (multi)set * @returns The cartesian product of two (multi)sets */ setCartesian(a1: T, a2: MathCollection): T /** * Create the difference of two (multi)sets: every element of set1, that * is not the element of set2. Multi-dimension arrays will be converted * to single-dimension arrays before the operation * @param a1 A (multi)set * @param a2 A (multi)set * @returns The difference of two (multi)sets */ setDifference(a1: T, a2: MathCollection): T /** * Collect the distinct elements of a multiset. A multi-dimension array * will be converted to a single-dimension array before the operation. * @param a A multiset * @returns A set containing the distinct elements of the multiset */ setDistinct(a: T): T /** * Create the intersection of two (multi)sets. Multi-dimension arrays * will be converted to single-dimension arrays before the operation. * @param a1 A (multi)set * @param a2 A (multi)set * @returns The intersection of two (multi)sets */ setIntersect(a1: T, a2: MathCollection): T /** * Check whether a (multi)set is a subset of another (multi)set. (Every * element of set1 is the element of set2.) Multi-dimension arrays will * be converted to single-dimension arrays before the operation. * @param a1 A (multi)set * @param a2 A (multi)set * @returns True if a1 is subset of a2, else false */ setIsSubset(a1: MathCollection, a2: MathCollection): boolean /** * Count the multiplicity of an element in a multiset. A multi-dimension * array will be converted to a single-dimension array before the * operation. * @param e An element in the multiset * @param a A multiset * @returns The number of how many times the multiset contains the * element */ setMultiplicity(e: MathNumericType, a: MathCollection): number /** * Create the powerset of a (multi)set. (The powerset contains very * possible subsets of a (multi)set.) A multi-dimension array will be * converted to a single-dimension array before the operation. * @param a A multiset * @returns The powerset of the (multi)set */ setPowerset(a: T): T /** * Count the number of elements of a (multi)set. When a second parameter * is ‘true’, count only the unique values. A multi-dimension array will * be converted to a single-dimension array before the operation. * @param a A multiset * @returns The number of elements of the (multi)set */ setSize(a: MathCollection): number /** * Create the symmetric difference of two (multi)sets. Multi-dimension * arrays will be converted to single-dimension arrays before the * operation. * @param a1 A (multi)set * @param a2 A (multi)set * @returns The symmetric difference of two (multi)sets */ setSymDifference(a1: T, a2: MathCollection): T /** * Create the union of two (multi)sets. Multi-dimension arrays will be * converted to single-dimension arrays before the operation. * @param a1 A (multi)set * @param a2 A (multi)set * @returns The union of two (multi)sets */ setUnion(a1: T, a2: MathCollection): T /************************************************************************* * Signal functions ************************************************************************/ /** * Compute the transfer function of a zero-pole-gain model. * @param z Zeroes of the model * @param p Poles of the model * @param k Gain of the model * @returns The transfer function as array of numerator and denominator */ zpk2tf(z: T, p: T, k?: number): T /** * Calculates the frequency response of a filter given its numerator and denominator coefficients. * @param b The numerator polynomial of the filter * @param a The denominator polynomial of the filter * @param w The range of frequencies in which the response is to be calculated * @returns The frequency response * */ freqz(b: T, a: T, w?: number | T): { w: T; h: T } /************************************************************************* * Special functions ************************************************************************/ /** * Compute the erf function of a value using a rational Chebyshev * approximations for different intervals of x. * @param x A real number * @returns The erf of x */ erf(x: T): NoLiteralType /** * Compute the Riemann Zeta function of a value using an infinite series * and Riemann's Functional equation. * @param s A real, complex or BigNumber * @returns The Riemann Zeta of s */ zeta(s: T): T /************************************************************************* * Statistics functions ************************************************************************/ /** * Compute the median absolute deviation of a matrix or a list with * values. The median absolute deviation is defined as the median of the * absolute deviations from the median. * @param array A single matrix or multiple scalar values. * @returns The median absolute deviation */ // eslint-disable-next-line @typescript-eslint/no-explicit-any mad(array: MathCollection): any /** * Compute the maximum value of a matrix or a list with values. In case * of a multi dimensional array, the maximum of the flattened array will * be calculated. When dim is provided, the maximum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param args Multiple scalar values * @returns The maximum value */ max(...args: T[]): T /** * @param args Multiple scalar values * @returns The maximum value */ max(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @param dimension The maximum over the selected dimension * @returns The maximum value */ max( A: T[] | T[][], dimension?: number | BigNumber ): T /** * @param A A single matrix * @param dimension The maximum over the selected dimension * @returns The maximum value */ max(A: MathCollection, dimension?: number | BigNumber): MathScalarType /** * Compute the mean value of matrix or a list with values. In case of a * multi dimensional array, the mean of the flattened array will be * calculated. When dim is provided, the maximum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param args Multiple scalar values * @returns The mean of all values */ mean(...args: T[]): T /** * @param args Multiple scalar values * @returns The mean value */ mean(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @param dimension The mean over the selected dimension * @returns The mean value */ mean( A: T[] | T[][], dimension?: number | BigNumber ): T /** * @param A A single matrix * @param dimension The mean over the selected dimension * @returns The mean value */ mean(A: MathCollection, dimension?: number | BigNumber): MathScalarType /** * Compute the median of a matrix or a list with values. The values are * sorted and the middle value is returned. In case of an even number of * values, the average of the two middle values is returned. Supported * types of values are: Number, BigNumber, Unit In case of a (multi * dimensional) array or matrix, the median of all elements will be * calculated. * @param args Multiple scalar values * @returns The median value */ median(...args: T[]): T /** * @param args Multiple scalar values * @returns The median value */ median(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @returns The median value */ median(A: T[] | T[][]): T /** * @param A A single matrix * @returns The median value */ median(A: MathCollection): MathScalarType /** * Compute the minimum value of a matrix or a list of values. In case of * a multi dimensional array, the minimum of the flattened array will be * calculated. When dim is provided, the minimum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param args multiple scalar values * @returns The minimum value */ min(...args: T[]): T /** * @param args Multiple scalar values * @returns The minimum value */ min(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @param dimension The minimum over the selected dimension * @returns The minimum value */ min( A: T[] | T[][], dimension?: number | BigNumber ): T /** * @param A A single matrix * @param dimension The minimum over the selected dimension * @returns The minimum value */ min(A: MathCollection, dimension?: number | BigNumber): MathScalarType /** * Computes the mode of a set of numbers or a list with values(numbers * or characters). If there are more than one modes, it returns a list * of those values. * @param args Multiple scalar values * @returns The mode of all values */ mode(...args: T[]): T /** * @param args Multiple scalar values * @returns The mode of all values */ mode(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @returns The median value */ mode(A: T[] | T[][]): T /** * @param A A single matrix * @returns The mode of all values */ mode(A: MathCollection): MathScalarType /** * Compute the product of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the sum of all elements will be * calculated. * @param args Multiple scalar values * @returns The product of all values */ prod(...args: T[]): T /** * @param args Multiple scalar values * @returns The product of all values */ prod(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @returns The product of all values */ prod(A: T[] | T[][]): T /** * @param A A single matrix * @returns The product of all values */ prod(A: MathCollection): MathScalarType /** * Compute the prob order quantile of a matrix or a list with values. * The sequence is sorted and the middle value is returned. Supported * types of sequence values are: Number, BigNumber, Unit Supported types * of probability are: Number, BigNumber In case of a (multi * dimensional) array or matrix, the prob order quantile of all elements * will be calculated. * @param A A single matrix or array * @param probOrN prob is the order of the quantile, while N is the * amount of evenly distributed steps of probabilities; only one of * these options can be provided * @param sorted =false is data sorted in ascending order * @returns Quantile(s) */ quantileSeq( A: MathCollection, prob: number | BigNumber | MathArray, sorted?: boolean ): number | BigNumber | Unit | MathArray /** * Compute the standard deviation of a matrix or a list with values. The * standard deviations is defined as the square root of the variance: * std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or * matrix, the standard deviation over all elements will be calculated. * Optionally, the type of normalization can be specified as second * parameter. The parameter normalization can be one of the following * values: 'unbiased' (default) The sum of squared errors is divided by * (n - 1) 'uncorrected' The sum of squared errors is divided by n * 'biased' The sum of squared errors is divided by (n + 1) * @param args variadic argument of number to calculate standard deviation * @returns The standard deviation */ std(...args: T[]): T /** * @param args Multiple scalar values * @returns The standard deviation */ std(...args: MathScalarType[]): MathScalarType /** * Compute the standard deviation of a matrix or a list with values. The * standard deviations is defined as the square root of the variance: * std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or * matrix, the standard deviation over all elements will be calculated. * Optionally, the type of normalization can be specified as second * parameter. The parameter normalization can be one of the following * values: 'unbiased' (default) The sum of squared errors is divided by * (n - 1) 'uncorrected' The sum of squared errors is divided by n * 'biased' The sum of squared errors is divided by (n + 1) * @param array A single matrix to compute standard deviation. * @param dimension A dimension to calculate standard deviation * @param normalization Determines how to normalize the variance. Choose * ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value: * ‘unbiased’. * @returns The standard deviation array */ std( array: MathCollection, dimension?: number, normalization?: 'unbiased' | 'uncorrected' | 'biased' ): MathNumericType[] /** * Compute the standard deviation of a matrix or a list with values. The * standard deviations is defined as the square root of the variance: * std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or * matrix, the standard deviation over all elements will be calculated. * Optionally, the type of normalization can be specified as second * parameter. The parameter normalization can be one of the following * values: 'unbiased' (default) The sum of squared errors is divided by * (n - 1) 'uncorrected' The sum of squared errors is divided by n * 'biased' The sum of squared errors is divided by (n + 1) * @param array A single matrix or multiple scalar values * @param normalization Determines how to normalize the variance. Choose * ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value: * ‘unbiased’. * @returns The standard deviation */ std( array: MathCollection, normalization: 'unbiased' | 'uncorrected' | 'biased' ): MathNumericType /** * Compute the sum of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the sum of all elements will be * calculated. * @param args A single matrix or multiple scalar values * @returns The sum of all values */ sum(...args: T[]): T /** * @param args Multiple scalar values * @returns The sum of all values */ sum(...args: MathScalarType[]): MathScalarType /** * @param A A single matrix * @param dimension The sum over the selected dimension * @returns The sum of all values */ sum( A: T[] | T[][], dimension?: number | BigNumber ): T /** * @param A A single matrix * @param dimension The sum over the selected dimension * @returns The sum of all values */ sum(A: MathCollection, dimension?: number | BigNumber): MathScalarType /** * Count the number of elements of a matrix, array or string. * @param x A matrix, array or string. * @returns The number of members passed in parameters */ count(x: MathCollection | string): number /** * Compute the cumulative sum of a matrix or a list with values. * In case of a (multi dimensional) array or matrix, the cumulative sums * along a specified dimension (defaulting to the first) will be calculated. * @param args A single matrix or multiple scalar values * @returns The cumulative sums of the the values. */ cumsum(...args: MathType[]): MathType[] /** * @param array A single matrix * @param dim The dimension along which to sum (defaults to 0) * @returns The cumulative sums along the given dimension */ cumsum(array: MathCollection, dim?: number): MathCollection /** * Compute the variance of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the variance over all elements * will be calculated. Optionally, the type of normalization can be * specified as second parameter. The parameter normalization can be one * of the following values: 'unbiased' (default) The sum of squared * errors is divided by (n - 1) 'uncorrected' The sum of squared errors * is divided by n 'biased' The sum of squared errors is divided by (n + * 1) Note that older browser may not like the variable name var. In * that case, the function can be called as math['var'](...) instead of * math.variance(...). * @param args A single matrix or multiple scalar values * @returns The variance */ variance(...args: MathNumericType[]): MathNumericType /** * Compute the variance of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the variance over all elements * will be calculated. Optionally, the type of normalization can be * specified as second parameter. The parameter normalization can be one * of the following values: 'unbiased' (default) The sum of squared * errors is divided by (n - 1) 'uncorrected' The sum of squared errors * is divided by n 'biased' The sum of squared errors is divided by (n + * 1) Note that older browser may not like the variable name var. In * that case, the function can be called as math['var'](...) instead of * math.variance(...). * @param array A matrix to compute variance. * @param dimension A dimension to compute variance on * @param normalization normalization Determines how to normalize the * variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. * Default value: ‘unbiased’. * @returns variance matrix. */ variance( array: MathCollection, dimension?: number, normalization?: 'unbiased' | 'uncorrected' | 'biased' ): MathNumericType[] /** * @param array A single matrix * @param normalization normalization Determines how to normalize the * variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. * Default value: ‘unbiased’. * @returns The variance */ variance( array: MathCollection, normalization: 'unbiased' | 'uncorrected' | 'biased' ): MathNumericType /** * Calculate the correlation coefficient between two matrix. * @param {Array | Matrix} x The first array or matrix to compute correlation coefficient * @param {Array | Matrix} y The second array or matrix to compute correlation coefficient * @returns correlation coefficient */ corr(x: MathCollection, y: MathCollection): MathType /************************************************************************* * String functions ************************************************************************/ /** * Format a value of any type into a string. * @param value The value to be formatted * @param options An object with formatting options. * @param callback A custom formatting function, invoked for all numeric * elements in value, for example all elements of a matrix, or the real * and imaginary parts of a complex number. This callback can be used to * override the built-in numeric notation with any type of formatting. * Function callback is called with value as parameter and must return a * string. * @see http://mathjs.org/docs/reference/functions/format.html * @returns The formatted value */ format( // eslint-disable-next-line @typescript-eslint/no-explicit-any value: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any options?: FormatOptions | number | ((item: any) => string), // eslint-disable-next-line @typescript-eslint/no-explicit-any callback?: (value: any) => string ): string /** * Interpolate values into a string template. * @param template A string containing variable placeholders. * @param values An object containing variables which will be filled in * in the template. * @param precision Number of digits to format numbers. If not provided, * the value will not be rounded. * @param options Formatting options, or the number of digits to format * numbers. See function math.format for a description of all options. * @returns Interpolated string */ print( template: string, // eslint-disable-next-line @typescript-eslint/no-explicit-any values: any, precision?: number, options?: number | object ): void /************************************************************************* * Trigonometry functions ************************************************************************/ /** * Calculate the inverse cosine of a value. * @param x Function input * @returns The arc cosine of x */ acos(x: number): number | Complex acos(x: T): T /** * Calculate the hyperbolic arccos of a value, defined as acosh(x) = * ln(sqrt(x^2 - 1) + x). * @param x Function input * @returns The hyperbolic arccosine of x */ acosh(x: number): number | Complex acosh(x: T): T /** * Calculate the inverse cotangent of a value. * @param x Function input * @returns The arc cotangent of x */ acot(x: number): number acot(x: T): T /** * Calculate the hyperbolic arccotangent of a value, defined as acoth(x) * = (ln((x+1)/x) + ln(x/(x-1))) / 2. * @param x Function input * @returns The hyperbolic arccotangent of x */ acoth(x: number): number acoth(x: T): T /** * Calculate the inverse cosecant of a value. * @param x Function input * @returns The arc cosecant of x */ acsc(x: number): number | Complex acsc(x: T): T /** * Calculate the hyperbolic arccosecant of a value, defined as acsch(x) * = ln(1/x + sqrt(1/x^2 + 1)). * @param x Function input * @returns The hyperbolic arccosecant of x */ acsch(x: number): number acsch(x: T): T /** * Calculate the inverse secant of a value. * @param x Function input * @returns The arc secant of x */ asec(x: number): number | Complex asec(x: T): T /** * Calculate the hyperbolic arcsecant of a value, defined as asech(x) = * ln(sqrt(1/x^2 - 1) + 1/x). * @param x Function input * @returns The hyperbolic arcsecant of x */ asech(x: number): number | Complex asech(x: T): T /** * Calculate the inverse sine of a value. * @param x Function input * @returns The arc sine of x */ asin(x: number): number | Complex asin(x: T): T /** * Calculate the hyperbolic arcsine of a value, defined as asinh(x) = * ln(x + sqrt(x^2 + 1)). * @param x Function input * @returns The hyperbolic arcsine of x */ asinh(x: T): T /** * Calculate the inverse tangent of a value. * @param x Function input * @returns The arc tangent of x */ atan(x: T): T /** * Calculate the inverse tangent function with two arguments, y/x. By * providing two arguments, the right quadrant of the computed angle can * be determined. For matrices, the function is evaluated element wise. * @param x Function input * @returns Four quadrant inverse tangent */ atan2(y: T, x: T): T /** * Calculate the hyperbolic arctangent of a value, defined as atanh(x) = * ln((1 + x)/(1 - x)) / 2. * @param x Function input * @returns The hyperbolic arctangent of x */ atanh(x: number): number | Complex atanh(x: T): T /** * Calculate the cosine of a value. * @param x Function input * @returns The cosine of x */ cos(x: number | Unit): number cos(x: T): T /** * Calculate the hyperbolic cosine of a value, defined as cosh(x) = 1/2 * * (exp(x) + exp(-x)). * @param x Function input * @returns The hyperbolic cosine of x */ cosh(x: number | Unit): number cosh(x: T): T /** * Calculate the cotangent of a value. cot(x) is defined as 1 / tan(x). * @param x Function input * @returns The cotangent of x */ cot(x: number | Unit): number cot(x: T): T /** * Calculate the hyperbolic cotangent of a value, defined as coth(x) = 1 * / tanh(x). * @param x Function input * @returns The hyperbolic cotangent of x */ coth(x: number | Unit): number coth(x: T): T /** * Calculate the cosecant of a value, defined as csc(x) = 1/sin(x). * @param x Function input * @returns The cosecant hof x */ csc(x: number | Unit): number csc(x: T): T /** * Calculate the hyperbolic cosecant of a value, defined as csch(x) = 1 * / sinh(x). * @param x Function input * @returns The hyperbolic cosecant of x */ csch(x: number | Unit): number csch(x: T): T /** * Calculate the secant of a value, defined as sec(x) = 1/cos(x). * @param x Function input * @returns The secant of x */ sec(x: number | Unit): number sec(x: T): T /** * Calculate the hyperbolic secant of a value, defined as sech(x) = 1 / * cosh(x). * @param x Function input * @returns The hyperbolic secant of x */ sech(x: number | Unit): number sech(x: T): T /** * Calculate the sine of a value. * @param x Function input * @returns The sine of x */ sin(x: number | Unit): number sin(x: T): T /** * Calculate the hyperbolic sine of a value, defined as sinh(x) = 1/2 * * (exp(x) - exp(-x)). * @param x Function input * @returns The hyperbolic sine of x */ sinh(x: number | Unit): number sinh(x: T): T /** * Calculate the tangent of a value. tan(x) is equal to sin(x) / cos(x). * @param x Function input * @returns The tangent of x */ tan(x: number | Unit): number tan(x: T): T /** * Calculate the hyperbolic tangent of a value, defined as tanh(x) = * (exp(2 * x) - 1) / (exp(2 * x) + 1). * @param x Function input * @returns The hyperbolic tangent of x */ tanh(x: number | Unit): number tanh(x: T): T /************************************************************************* * Unit functions ************************************************************************/ /** * Change the unit of a value. For matrices, the function is evaluated * element wise. * @param x The unit to be converted. * @param unit New unit. Can be a string like "cm" or a unit without * value. * @returns Value with changed, fixed unit */ to(x: Unit | MathCollection, unit: Unit | string): Unit | MathCollection /************************************************************************* * Utils ************************************************************************/ isNumber(x: unknown): x is number isBigNumber(x: unknown): x is BigNumber isComplex(x: unknown): x is Complex isFraction(x: unknown): x is Fraction isUnit(x: unknown): x is Unit isString(x: unknown): x is string isArray: ArrayConstructor['isArray'] isMatrix(x: unknown): x is Matrix // eslint-disable-next-line @typescript-eslint/no-explicit-any isCollection(x: unknown): x is Matrix | any[] isDenseMatrix(x: unknown): x is Matrix isSparseMatrix(x: unknown): x is Matrix isRange(x: unknown): boolean isIndex(x: unknown): x is Index isBoolean(x: unknown): x is boolean isResultSet(x: unknown): boolean isHelp(x: unknown): x is Help isFunction(x: unknown): boolean isDate(x: unknown): x is Date isRegExp(x: unknown): x is RegExp isObject(x: unknown): boolean isNull(x: unknown): x is null isUndefined(x: unknown): x is undefined isAccessorNode(x: unknown): x is AccessorNode isArrayNode(x: unknown): x is ArrayNode isAssignmentNode(x: unknown): x is AssignmentNode isBlockNode(x: unknown): x is BlockNode isConditionalNode(x: unknown): x is ConditionalNode isConstantNode(x: unknown): x is ConstantNode isFunctionAssignmentNode(x: unknown): x is FunctionAssignmentNode isFunctionNode(x: unknown): x is FunctionNode isIndexNode(x: unknown): x is IndexNode isNode(x: unknown): x is MathNode isObjectNode(x: unknown): x is ObjectNode isOperatorNode( x: unknown ): x is OperatorNode isParenthesisNode(x: unknown): x is ParenthesisNode isRangeNode(x: unknown): x is RangeNode isRelationalNode(x: unknown): x is RelationalNode isSymbolNode(x: unknown): x is SymbolNode isChain(x: unknown): x is MathJsChain /************************************************************************* * Functions -> Utils ************************************************************************/ /** * Clone an object. * @param x Object to be cloned * @returns A clone of object x */ // eslint-disable-next-line @typescript-eslint/no-explicit-any clone(x: TType): TType /** * Test whether a value is an numeric value. In case of a string, * true is returned if the string contains a numeric value. * @param x Value to be tested * @returns Returns true when x is a number, BigNumber, Fraction, Boolean, or a String containing number. * Returns false for other types. * Throws an error in case of unknown types. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any hasNumericValue(x: any): boolean | boolean[] /** * Test whether a value is an integer number. The function supports * number, BigNumber, and Fraction. The function is evaluated * element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x contains a numeric, integer value. * Throws an error in case of an unknown data type. */ isInteger(x: number | BigNumber | Fraction | MathCollection): boolean /** * Test whether a value is NaN (not a number). The function supports * types number, BigNumber, Fraction, Unit and Complex. The function is * evaluated element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is NaN. Throws an error in case of an * unknown data type. */ isNaN(x: number | BigNumber | Fraction | MathCollection | Unit): boolean /** * Test whether a value is negative: smaller than zero. The function * supports types number, BigNumber, Fraction, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is larger than zero. Throws an error in * case of an unknown data type. */ isNegative( x: number | BigNumber | Fraction | MathCollection | Unit ): boolean /** * Test whether a value is an numeric value. The function is evaluated * element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is a number, BigNumber, Fraction, or * boolean. Returns false for other types. Throws an error in case of * unknown types. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any isNumeric(x: any): x is number | BigNumber | Fraction | boolean /** * Test whether a value is positive: larger than zero. The function * supports types number, BigNumber, Fraction, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is larger than zero. Throws an error in * case of an unknown data type. */ isPositive( x: number | BigNumber | Fraction | MathCollection | Unit ): boolean /** * Test whether a value is prime: has no divisors other than itself and * one. The function supports type number, bignumber. The function is * evaluated element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is larger than zero. Throws an error in * case of an unknown data type. */ isPrime(x: number | BigNumber | MathCollection): boolean /** * Test whether a value is zero. The function can check for zero for * types number, BigNumber, Fraction, Complex, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. * @param x Value to be tested * @returns Returns true when x is zero. Throws an error in case of an * unknown data type. */ isZero(x: MathType): boolean /** * Determine the type of a variable. * @param x The variable for which to test the type * @returns Returns the name of the type. Primitive types are lower * case, non-primitive types are upper-camel-case. For example ‘number’, * ‘string’, ‘Array’, ‘Date’. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any typeOf(x: any): string /** * Import functions from an object or a module * To avoid errors when using one of the imported functions extend module like this: * * @example * // imported_math_functions.ts * declare module 'mathjs' { * interface MathJsStatic { * hello(a: number): number; * } * } * * @param object An object with functions to be imported. * @param options An object with import options. */ import(object: ImportObject | ImportObject[], options?: ImportOptions): void } /************************************************************************* * Factory and Dependencies ************************************************************************/ interface FactoryDependencies { create: ( factories: FactoryFunctionMap, config?: ConfigOptions ) => MathJsStatic factory: ( name: string, dependencies: TDeps, create: ( injected: Pick> ) => T, // eslint-disable-next-line @typescript-eslint/no-explicit-any meta?: any ) => FactoryFunction all: FactoryFunctionMap typedDependencies: FactoryFunctionMap ResultSetDependencies: FactoryFunctionMap BigNumberDependencies: FactoryFunctionMap ComplexDependencies: FactoryFunctionMap FractionDependencies: FactoryFunctionMap RangeDependencies: FactoryFunctionMap MatrixDependencies: FactoryFunctionMap DenseMatrixDependencies: FactoryFunctionMap cloneDependencies: FactoryFunctionMap isIntegerDependencies: FactoryFunctionMap isNegativeDependencies: FactoryFunctionMap isNumericDependencies: FactoryFunctionMap hasNumericValueDependencies: FactoryFunctionMap isPositiveDependencies: FactoryFunctionMap isZeroDependencies: FactoryFunctionMap isNaNDependencies: FactoryFunctionMap typeOfDependencies: FactoryFunctionMap typeofDependencies: FactoryFunctionMap equalScalarDependencies: FactoryFunctionMap SparseMatrixDependencies: FactoryFunctionMap numberDependencies: FactoryFunctionMap stringDependencies: FactoryFunctionMap booleanDependencies: FactoryFunctionMap bignumberDependencies: FactoryFunctionMap complexDependencies: FactoryFunctionMap fractionDependencies: FactoryFunctionMap matrixDependencies: FactoryFunctionMap splitUnitDependencies: FactoryFunctionMap unaryMinusDependencies: FactoryFunctionMap unaryPlusDependencies: FactoryFunctionMap absDependencies: FactoryFunctionMap applyDependencies: FactoryFunctionMap addScalarDependencies: FactoryFunctionMap cbrtDependencies: FactoryFunctionMap ceilDependencies: FactoryFunctionMap cubeDependencies: FactoryFunctionMap expDependencies: FactoryFunctionMap expm1Dependencies: FactoryFunctionMap fixDependencies: FactoryFunctionMap floorDependencies: FactoryFunctionMap gcdDependencies: FactoryFunctionMap lcmDependencies: FactoryFunctionMap log10Dependencies: FactoryFunctionMap log2Dependencies: FactoryFunctionMap modDependencies: FactoryFunctionMap multiplyScalarDependencies: FactoryFunctionMap multiplyDependencies: FactoryFunctionMap nthRootDependencies: FactoryFunctionMap signDependencies: FactoryFunctionMap sqrtDependencies: FactoryFunctionMap squareDependencies: FactoryFunctionMap subtractDependencies: FactoryFunctionMap xgcdDependencies: FactoryFunctionMap dotMultiplyDependencies: FactoryFunctionMap bitAndDependencies: FactoryFunctionMap bitNotDependencies: FactoryFunctionMap bitOrDependencies: FactoryFunctionMap bitXorDependencies: FactoryFunctionMap argDependencies: FactoryFunctionMap conjDependencies: FactoryFunctionMap imDependencies: FactoryFunctionMap reDependencies: FactoryFunctionMap notDependencies: FactoryFunctionMap orDependencies: FactoryFunctionMap xorDependencies: FactoryFunctionMap concatDependencies: FactoryFunctionMap columnDependencies: FactoryFunctionMap crossDependencies: FactoryFunctionMap diagDependencies: FactoryFunctionMap eyeDependencies: FactoryFunctionMap filterDependencies: FactoryFunctionMap flattenDependencies: FactoryFunctionMap forEachDependencies: FactoryFunctionMap getMatrixDataTypeDependencies: FactoryFunctionMap identityDependencies: FactoryFunctionMap kronDependencies: FactoryFunctionMap mapDependencies: FactoryFunctionMap onesDependencies: FactoryFunctionMap rangeDependencies: FactoryFunctionMap reshapeDependencies: FactoryFunctionMap resizeDependencies: FactoryFunctionMap rowDependencies: FactoryFunctionMap sizeDependencies: FactoryFunctionMap squeezeDependencies: FactoryFunctionMap subsetDependencies: FactoryFunctionMap transposeDependencies: FactoryFunctionMap ctransposeDependencies: FactoryFunctionMap zerosDependencies: FactoryFunctionMap erfDependencies: FactoryFunctionMap modeDependencies: FactoryFunctionMap prodDependencies: FactoryFunctionMap formatDependencies: FactoryFunctionMap printDependencies: FactoryFunctionMap toDependencies: FactoryFunctionMap isPrimeDependencies: FactoryFunctionMap numericDependencies: FactoryFunctionMap divideScalarDependencies: FactoryFunctionMap powDependencies: FactoryFunctionMap roundDependencies: FactoryFunctionMap logDependencies: FactoryFunctionMap log1pDependencies: FactoryFunctionMap nthRootsDependencies: FactoryFunctionMap dotPowDependencies: FactoryFunctionMap dotDivideDependencies: FactoryFunctionMap lsolveDependencies: FactoryFunctionMap usolveDependencies: FactoryFunctionMap leftShiftDependencies: FactoryFunctionMap rightArithShiftDependencies: FactoryFunctionMap rightLogShiftDependencies: FactoryFunctionMap andDependencies: FactoryFunctionMap compareDependencies: FactoryFunctionMap compareNaturalDependencies: FactoryFunctionMap compareTextDependencies: FactoryFunctionMap equalDependencies: FactoryFunctionMap equalTextDependencies: FactoryFunctionMap smallerDependencies: FactoryFunctionMap smallerEqDependencies: FactoryFunctionMap largerDependencies: FactoryFunctionMap largerEqDependencies: FactoryFunctionMap deepEqualDependencies: FactoryFunctionMap unequalDependencies: FactoryFunctionMap partitionSelectDependencies: FactoryFunctionMap sortDependencies: FactoryFunctionMap maxDependencies: FactoryFunctionMap minDependencies: FactoryFunctionMap ImmutableDenseMatrixDependencies: FactoryFunctionMap IndexDependencies: FactoryFunctionMap FibonacciHeapDependencies: FactoryFunctionMap SpaDependencies: FactoryFunctionMap UnitDependencies: FactoryFunctionMap unitDependencies: FactoryFunctionMap sparseDependencies: FactoryFunctionMap createUnitDependencies: FactoryFunctionMap acosDependencies: FactoryFunctionMap acoshDependencies: FactoryFunctionMap acotDependencies: FactoryFunctionMap acothDependencies: FactoryFunctionMap acscDependencies: FactoryFunctionMap acschDependencies: FactoryFunctionMap asecDependencies: FactoryFunctionMap asechDependencies: FactoryFunctionMap asinDependencies: FactoryFunctionMap asinhDependencies: FactoryFunctionMap atanDependencies: FactoryFunctionMap atan2Dependencies: FactoryFunctionMap atanhDependencies: FactoryFunctionMap cosDependencies: FactoryFunctionMap coshDependencies: FactoryFunctionMap cotDependencies: FactoryFunctionMap cothDependencies: FactoryFunctionMap cscDependencies: FactoryFunctionMap cschDependencies: FactoryFunctionMap secDependencies: FactoryFunctionMap sechDependencies: FactoryFunctionMap sinDependencies: FactoryFunctionMap sinhDependencies: FactoryFunctionMap tanDependencies: FactoryFunctionMap tanhDependencies: FactoryFunctionMap setCartesianDependencies: FactoryFunctionMap setDifferenceDependencies: FactoryFunctionMap setDistinctDependencies: FactoryFunctionMap setIntersectDependencies: FactoryFunctionMap setIsSubsetDependencies: FactoryFunctionMap setMultiplicityDependencies: FactoryFunctionMap setPowersetDependencies: FactoryFunctionMap setSizeDependencies: FactoryFunctionMap setSymDifferenceDependencies: FactoryFunctionMap setUnionDependencies: FactoryFunctionMap zpk2tfDependencies: FactoryFunctionMap freqzDependencies: FactoryFunctionMap addDependencies: FactoryFunctionMap hypotDependencies: FactoryFunctionMap normDependencies: FactoryFunctionMap dotDependencies: FactoryFunctionMap traceDependencies: FactoryFunctionMap indexDependencies: FactoryFunctionMap NodeDependencies: FactoryFunctionMap AccessorNodeDependencies: FactoryFunctionMap ArrayNodeDependencies: FactoryFunctionMap AssignmentNodeDependencies: FactoryFunctionMap BlockNodeDependencies: FactoryFunctionMap ConditionalNodeDependencies: FactoryFunctionMap ConstantNodeDependencies: FactoryFunctionMap FunctionAssignmentNodeDependencies: FactoryFunctionMap IndexNodeDependencies: FactoryFunctionMap ObjectNodeDependencies: FactoryFunctionMap OperatorNodeDependencies: FactoryFunctionMap ParenthesisNodeDependencies: FactoryFunctionMap RangeNodeDependencies: FactoryFunctionMap RelationalNodeDependencies: FactoryFunctionMap SymbolNodeDependencies: FactoryFunctionMap FunctionNodeDependencies: FactoryFunctionMap parseDependencies: FactoryFunctionMap compileDependencies: FactoryFunctionMap evaluateDependencies: FactoryFunctionMap evalDependencies: FactoryFunctionMap ParserDependencies: FactoryFunctionMap parserDependencies: FactoryFunctionMap lupDependencies: FactoryFunctionMap qrDependencies: FactoryFunctionMap sluDependencies: FactoryFunctionMap lusolveDependencies: FactoryFunctionMap HelpDependencies: FactoryFunctionMap ChainDependencies: FactoryFunctionMap helpDependencies: FactoryFunctionMap chainDependencies: FactoryFunctionMap detDependencies: FactoryFunctionMap invDependencies: FactoryFunctionMap expmDependencies: FactoryFunctionMap sqrtmDependencies: FactoryFunctionMap sylvesterDependencies: FactoryFunctionMap schurDependencies: FactoryFunctionMap lyapDependencies: FactoryFunctionMap divideDependencies: FactoryFunctionMap distanceDependencies: FactoryFunctionMap intersectDependencies: FactoryFunctionMap sumDependencies: FactoryFunctionMap meanDependencies: FactoryFunctionMap medianDependencies: FactoryFunctionMap madDependencies: FactoryFunctionMap varianceDependencies: FactoryFunctionMap varDependencies: FactoryFunctionMap quantileSeqDependencies: FactoryFunctionMap stdDependencies: FactoryFunctionMap combinationsDependencies: FactoryFunctionMap gammaDependencies: FactoryFunctionMap factorialDependencies: FactoryFunctionMap kldivergenceDependencies: FactoryFunctionMap multinomialDependencies: FactoryFunctionMap permutationsDependencies: FactoryFunctionMap pickRandomDependencies: FactoryFunctionMap randomDependencies: FactoryFunctionMap randomIntDependencies: FactoryFunctionMap stirlingS2Dependencies: FactoryFunctionMap bellNumbersDependencies: FactoryFunctionMap catalanDependencies: FactoryFunctionMap compositionDependencies: FactoryFunctionMap simplifyDependencies: FactoryFunctionMap derivativeDependencies: FactoryFunctionMap rationalizeDependencies: FactoryFunctionMap reviverDependencies: FactoryFunctionMap eDependencies: FactoryFunctionMap EDependencies: FactoryFunctionMap falseDependencies: FactoryFunctionMap iDependencies: FactoryFunctionMap InfinityDependencies: FactoryFunctionMap LN10Dependencies: FactoryFunctionMap LN2Dependencies: FactoryFunctionMap LOG10EDependencies: FactoryFunctionMap LOG2EDependencies: FactoryFunctionMap NaNDependencies: FactoryFunctionMap nullDependencies: FactoryFunctionMap phiDependencies: FactoryFunctionMap piDependencies: FactoryFunctionMap PIDependencies: FactoryFunctionMap SQRT1_2Dependencies: FactoryFunctionMap SQRT2Dependencies: FactoryFunctionMap tauDependencies: FactoryFunctionMap trueDependencies: FactoryFunctionMap versionDependencies: FactoryFunctionMap atomicMassDependencies: FactoryFunctionMap avogadroDependencies: FactoryFunctionMap bohrMagnetonDependencies: FactoryFunctionMap bohrRadiusDependencies: FactoryFunctionMap boltzmannDependencies: FactoryFunctionMap classicalElectronRadiusDependencies: FactoryFunctionMap conductanceQuantumDependencies: FactoryFunctionMap coulombDependencies: FactoryFunctionMap deuteronMassDependencies: FactoryFunctionMap efimovFactorDependencies: FactoryFunctionMap electricConstantDependencies: FactoryFunctionMap electronMassDependencies: FactoryFunctionMap elementaryChargeDependencies: FactoryFunctionMap faradayDependencies: FactoryFunctionMap fermiCouplingDependencies: FactoryFunctionMap fineStructureDependencies: FactoryFunctionMap firstRadiationDependencies: FactoryFunctionMap gasConstantDependencies: FactoryFunctionMap gravitationConstantDependencies: FactoryFunctionMap gravityDependencies: FactoryFunctionMap hartreeEnergyDependencies: FactoryFunctionMap inverseConductanceQuantumDependencies: FactoryFunctionMap klitzingDependencies: FactoryFunctionMap loschmidtDependencies: FactoryFunctionMap magneticConstantDependencies: FactoryFunctionMap magneticFluxQuantumDependencies: FactoryFunctionMap molarMassDependencies: FactoryFunctionMap molarMassC12Dependencies: FactoryFunctionMap molarPlanckConstantDependencies: FactoryFunctionMap molarVolumeDependencies: FactoryFunctionMap neutronMassDependencies: FactoryFunctionMap nuclearMagnetonDependencies: FactoryFunctionMap planckChargeDependencies: FactoryFunctionMap planckConstantDependencies: FactoryFunctionMap planckLengthDependencies: FactoryFunctionMap planckMassDependencies: FactoryFunctionMap planckTemperatureDependencies: FactoryFunctionMap planckTimeDependencies: FactoryFunctionMap protonMassDependencies: FactoryFunctionMap quantumOfCirculationDependencies: FactoryFunctionMap reducedPlanckConstantDependencies: FactoryFunctionMap rydbergDependencies: FactoryFunctionMap sackurTetrodeDependencies: FactoryFunctionMap secondRadiationDependencies: FactoryFunctionMap speedOfLightDependencies: FactoryFunctionMap stefanBoltzmannDependencies: FactoryFunctionMap thomsonCrossSectionDependencies: FactoryFunctionMap vacuumImpedanceDependencies: FactoryFunctionMap weakMixingAngleDependencies: FactoryFunctionMap wienDisplacementDependencies: FactoryFunctionMap applyTransformDependencies: FactoryFunctionMap columnTransformDependencies: FactoryFunctionMap filterTransformDependencies: FactoryFunctionMap forEachTransformDependencies: FactoryFunctionMap indexTransformDependencies: FactoryFunctionMap mapTransformDependencies: FactoryFunctionMap maxTransformDependencies: FactoryFunctionMap meanTransformDependencies: FactoryFunctionMap minTransformDependencies: FactoryFunctionMap rangeTransformDependencies: FactoryFunctionMap rowTransformDependencies: FactoryFunctionMap subsetTransformDependencies: FactoryFunctionMap concatTransformDependencies: FactoryFunctionMap stdTransformDependencies: FactoryFunctionMap sumTransformDependencies: FactoryFunctionMap varianceTransformDependencies: FactoryFunctionMap } interface Matrix { type: string storage(): string datatype(): string create(data: MathArray, datatype?: string): void density(): number // eslint-disable-next-line @typescript-eslint/no-explicit-any subset(index: Index, replacement?: any, defaultValue?: any): Matrix apply( dim: number, callback: (array: MathCollection) => number ): MathCollection // eslint-disable-next-line @typescript-eslint/no-explicit-any get(index: number[]): any // eslint-disable-next-line @typescript-eslint/no-explicit-any set(index: number[], value: any, defaultValue?: number | string): Matrix resize(size: MathCollection, defaultValue?: number | string): Matrix clone(): Matrix size(): number[] map( // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (a: any, b: number[], c: Matrix) => any, skipZeros?: boolean ): Matrix forEach( // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (a: any, b: number[], c: Matrix) => void, skipZeros?: boolean ): void toArray(): MathArray valueOf(): MathArray // eslint-disable-next-line @typescript-eslint/no-explicit-any format(options?: FormatOptions | number | ((value: any) => string)): string toString(): string // eslint-disable-next-line @typescript-eslint/no-explicit-any toJSON(): any // eslint-disable-next-line @typescript-eslint/no-explicit-any diagonal(k?: number | BigNumber): any[] swapRows(i: number, j: number): Matrix } interface MatrixCtor { new (): Matrix } // eslint-disable-next-line @typescript-eslint/no-empty-interface interface BigNumber extends Decimal {} interface Fraction { s: number n: number d: number } interface Complex { re: number im: number clone(): Complex equals(other: Complex): boolean format(precision?: number): string fromJSON(json: object): Complex fromPolar(polar: object): Complex fromPolar(r: number, phi: number): Complex toJSON(): object toPolar(): PolarCoordinates toString(): string compare(a: Complex, b: Complex): number } interface PolarCoordinates { r: number phi: number } interface MathJSON { mathjs?: string value: number unit: string fixPrefix?: boolean } interface UnitComponent { power: number prefix: string unit: { name: string base: { dimensions: number[] key: string } prefixes: Record value: number offset: number dimensions: number[] } } interface UnitPrefix { name: string value: number scientific: boolean } interface Unit { valueOf(): string clone(): Unit // eslint-disable-next-line @typescript-eslint/no-explicit-any hasBase(base: any): boolean equalBase(unit: Unit): boolean equals(unit: Unit): boolean multiply(unit: Unit): Unit divide(unit: Unit): Unit | number pow(unit: Unit): Unit abs(unit: Unit): Unit to(unit: string): Unit toNumber(unit?: string): number toNumeric(unit?: string): number | Fraction | BigNumber toSI(): Unit toString(): string toJSON(): MathJSON formatUnits(): string format(options: FormatOptions): string simplify(): Unit splitUnit(parts: ReadonlyArray): Unit[] units: UnitComponent[] dimensions: number[] value: number fixPrefix: boolean skipAutomaticSimplification: true } interface CreateUnitOptions { prefixes?: 'none' | 'short' | 'long' | 'binary_short' | 'binary_long' aliases?: string[] offset?: number override?: boolean } type SimplifyContext = Partial< Record< OperatorNodeFn, { trivial: boolean total: boolean commutative: boolean associative: boolean } > > interface SimplifyOptions { /** A boolean which is `true` by default. */ exactFractions?: boolean /** * When `exactFractions` is true, a fraction will be returned only * when both numerator and denominator are smaller than `fractionsLimit`. * Default value is 10000. */ fractionsLimit?: number /** A boolean which is `false` by default. */ consoleDebug?: boolean /** * gives properties of each operator, which determine what simplifications * are allowed. Properties are commutative, associative, total (whether * the operation is defined for all arguments), and trivial (whether * the operation applied to a single argument leaves that argument * unchanged). */ context?: SimplifyContext } type SimplifyRule = | { l: string r: string repeat?: boolean assuming?: SimplifyContext imposeContext?: SimplifyContext } | { s: string repeat?: boolean assuming?: SimplifyContext imposeContext?: SimplifyContext } | string | ((node: MathNode) => MathNode) interface Simplify { (expr: MathNode | string): MathNode ( expr: MathNode | string, rules: SimplifyRule[], scope?: object, options?: SimplifyOptions ): MathNode ( expr: MathNode | string, scope: object, options?: SimplifyOptions ): MathNode rules: SimplifyRule[] } interface UnitDefinition { definition?: string | Unit prefixes?: string offset?: number aliases?: string[] baseName?: string } // eslint-disable-next-line @typescript-eslint/no-empty-interface interface Index {} interface EvalFunction { // eslint-disable-next-line @typescript-eslint/no-explicit-any evaluate(scope?: any): any } interface MathNode { isNode: true comment: string type: string isUpdateNode?: boolean /** * Create a shallow clone of the node. The node itself is cloned, its * childs are not cloned. */ clone(): this /** * Create a deep clone of the node. Both the node as well as all its * childs are cloned recursively. */ cloneDeep(): this /** * Compile an expression into optimized JavaScript code. compile returns * an object with a function evaluate([scope]) to evaluate. Example: */ compile(): EvalFunction /** * Compile and eval an expression, this is the equivalent of doing * node.compile().evaluate(scope). Example: */ // eslint-disable-next-line @typescript-eslint/no-explicit-any evaluate(expr?: any): any /** * Test whether this node equals an other node. Does a deep comparison * of the values of both nodes. */ equals(other: MathNode): boolean /** * * Filter nodes in an expression tree. The callback function is called * as callback(node: MathNode, path: string, parent: MathNode) : boolean * for every node in the tree, and must return a boolean. The function * filter returns an array with nodes for which the test returned true. * Parameter path is a string containing a relative JSON Path. * * Example: * * ``` * var node = math.parse('x^2 + x/4 + 3*y'); * var filtered = node.filter(function (node) { * return node.isSymbolMathNode && node.name == 'x'; * }); * // returns an array with two entries: two SymbolMathNodes 'x' * ``` * * The callback function is called as callback(node: MathNode, path: * string, parent: MathNode) : boolean for every node in the tree, and * must return a boolean. The function filter returns an array with * nodes for which the test returned true. Parameter path is a string * containing a relative JSON Path. * @return Returns an array with nodes for which test returned true */ filter( // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (node: MathNode, path: string, parent: MathNode) => any ): MathNode[] /** * [forEach description] */ forEach( // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (node: MathNode, path: string, parent: MathNode) => void ): void /** * Transform a node. Creates a new MathNode having it’s child's be the * results of calling the provided callback function for each of the * child's of the original node. The callback function is called as * `callback(child: MathNode, path: string, parent: MathNode)` and must * return a MathNode. Parameter path is a string containing a relative * JSON Path. * * * See also transform, which is a recursive version of map. */ map( callback: (node: MathNode, path: string, parent: MathNode) => MathNode ): MathNode /** * Get a HTML representation of the parsed expression. */ toHTML(options?: object): string /** * Get a string representation of the parsed expression. This is not * exactly the same as the original input. */ toString(options?: object): string /** * Get a LaTeX representation of the expression. */ toTex(options?: object): string /** * Recursively transform an expression tree via a transform function. * Similar to Array.map, but recursively executed on all nodes in the * expression tree. The callback function is a mapping function * accepting a node, and returning a replacement for the node or the * original node. Function callback is called as callback(node: * MathNode, path: string, parent: MathNode) for every node in the tree, * and must return a MathNode. Parameter path is a string containing a * relative JSON Path. * * For example, to replace all nodes of type SymbolMathNode having name * ‘x’ with a ConstantMathNode with value 3: * ```js * var node = math.parse('x^2 + 5*x'); * var transformed = node.transform(function (node, path, parent) { * if (node.SymbolMathNode && node.name == 'x') { * return new math.expression.node.ConstantMathNode(3); * } * else { * return node; * } * }); * transformed.toString(); // returns '(3 ^ 2) + (5 * 3)' * ``` */ transform( callback: (node: this, path: string, parent: MathNode) => TResult ): TResult /** * `traverse(callback)` * * Recursively traverse all nodes in a node tree. Executes given * callback for this node and each of its child nodes. Similar to * Array.forEach, except recursive. The callback function is a mapping * function accepting a node, and returning a replacement for the node * or the original node. Function callback is called as callback(node: * MathNode, path: string, parent: MathNode) for every node in the tree. * Parameter path is a string containing a relative JSON Path. Example: * * ``` * var node = math.parse('3 * x + 2'); * node.traverse(function (node, path, parent) { * switch (node.type) { * case 'OperatorMathNode': console.log(node.type, node.op); break; * case 'ConstantMathNode': console.log(node.type, node.value); break; * case 'SymbolMathNode': console.log(node.type, node.name); break; * default: console.log(node.type); * } * }); * // outputs: * // OperatorMathNode + * // OperatorMathNode * * // ConstantMathNode 3 * // SymbolMathNode x * // ConstantMathNode 2 * ``` */ traverse( callback: (node: MathNode, path: string, parent: MathNode) => void ): void } interface Parser { // eslint-disable-next-line @typescript-eslint/no-explicit-any evaluate(expr: string | string[]): any // eslint-disable-next-line @typescript-eslint/no-explicit-any get(variable: string): any // eslint-disable-next-line @typescript-eslint/no-explicit-any getAll(): { [key: string]: any } // eslint-disable-next-line @typescript-eslint/no-explicit-any set: (variable: string, value: any) => void clear: () => void } interface Distribution { // eslint-disable-next-line @typescript-eslint/no-explicit-any random(size: any, min?: any, max?: any): any // eslint-disable-next-line @typescript-eslint/no-explicit-any randomInt(min: any, max?: any): any // eslint-disable-next-line @typescript-eslint/no-explicit-any pickRandom(array: any): any } interface FormatOptions { /** * Number notation. Choose from: 'fixed' Always use regular number * notation. For example '123.40' and '14000000' 'exponential' Always * use exponential notation. For example '1.234e+2' and '1.4e+7' 'auto' * (default) Regular number notation for numbers having an absolute * value between lower and upper bounds, and uses exponential notation * elsewhere. Lower bound is included, upper bound is excluded. For * example '123.4' and '1.4e7'. */ notation?: 'fixed' | 'exponential' | 'engineering' | 'auto' /** * A number between 0 and 16 to round the digits of the number. In case * of notations 'exponential' and 'auto', precision defines the total * number of significant digits returned and is undefined by default. In * case of notation 'fixed', precision defines the number of significant * digits after the decimal point, and is 0 by default. */ precision?: number /** * Exponent determining the lower boundary for formatting a value with * an exponent when notation='auto. Default value is -3. */ lowerExp?: number /** * Exponent determining the upper boundary for formatting a value with * an exponent when notation='auto. Default value is 5. */ upperExp?: number /** * Available values: 'ratio' (default) or 'decimal'. For example * format(fraction(1, 3)) will output '1/3' when 'ratio' is configured, * and will output 0.(3) when 'decimal' is configured. */ fraction?: string } interface Help { toString(): string toJSON(): string } interface ConfigOptions { epsilon?: number matrix?: 'Matrix' | 'Array' number?: 'number' | 'BigNumber' | 'Fraction' precision?: number predictable?: boolean randomSeed?: string | null } interface MathJsChain { // eslint-disable-next-line @typescript-eslint/no-explicit-any done(): TValue /************************************************************************* * Construction functions ************************************************************************/ /** * Create a BigNumber, which can store numbers with arbitrary precision. * When a matrix is provided, all elements will be converted to * BigNumber. */ bignumber( this: MathJsChain< number | string | Fraction | BigNumber | Unit | boolean | null > ): MathJsChain bignumber(this: MathJsChain): MathJsChain /** * Create a boolean or convert a string or number to a boolean. In case * of a number, true is returned for non-zero numbers, and false in case * of zero. Strings can be 'true' or 'false', or can contain a number. * When value is a matrix, all elements will be converted to boolean. */ boolean( this: MathJsChain ): MathJsChain boolean(this: MathJsChain): MathJsChain /** * Create a complex value or convert a value to a complex value. * @param im Argument specifying the imaginary part of the complex * number */ complex( this: MathJsChain, im?: number ): MathJsChain complex(this: MathJsChain): MathJsChain /** * Create a user-defined unit and register it with the Unit type. * @param definition Definition of the unit in terms of existing units. * For example, ‘0.514444444 m / s’. * @param options (optional) An object containing any of the following * properties:
- prefixes {string} “none”, “short”, “long”, * “binary_short”, or “binary_long”. The default is “none”.
- * aliases {Array} Array of strings. Example: [‘knots’, ‘kt’, * ‘kts’]
- offset {Numeric} An offset to apply when converting from * the unit. For example, the offset for celsius is 273.15. Default is * 0. */ createUnit( this: MathJsChain, definition?: string | UnitDefinition | Unit, options?: CreateUnitOptions ): MathJsChain /** * Create a user-defined unit and register it with the Unit type. * @param options (optional) An object containing any of the following * properties:
- prefixes {string} “none”, “short”, “long”, * “binary_short”, or “binary_long”. The default is “none”.
- * aliases {Array} Array of strings. Example: [‘knots’, ‘kt’, * ‘kts’]
- offset {Numeric} An offset to apply when converting from * the unit. For example, the offset for celsius is 273.15. Default is * 0. */ createUnit( this: MathJsChain>, options?: CreateUnitOptions ): MathJsChain /** * Create a fraction convert a value to a fraction. * @param denominator Argument specifying the denominator of the * fraction */ fraction( this: MathJsChain< number | string | BigNumber | Unit | Fraction | FractionDefinition >, denominator?: number ): MathJsChain fraction(this: MathJsChain): MathJsChain /** * Create an index. An Index can store ranges having start, step, and * end for multiple dimensions. Matrix.get, Matrix.set, and math.subset * accept an Index as input. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any index(this: MathJsChain): MathJsChain /** * Create a Matrix. The function creates a new math.type.Matrix object * from an Array. A Matrix has utility functions to manipulate the data * in the matrix, like getting the size and getting or setting values in * the matrix. Supported storage formats are 'dense' and 'sparse'. */ matrix( this: MathJsChain, format?: 'sparse' | 'dense', dataType?: string ): MathJsChain /** * Create a number or convert a string, boolean, or unit to a number. * When value is a matrix, all elements will be converted to number. * @param valuelessUnit A valueless unit, used to convert a unit to a * number */ number( this: MathJsChain< string | number | BigNumber | Fraction | boolean | Unit | null >, valuelessUnit?: Unit | string ): MathJsChain number( this: MathJsChain, valuelessUnit?: Unit | string ): MathJsChain /** * Create a Sparse Matrix. The function creates a new math.type.Matrix * object from an Array. A Matrix has utility functions to manipulate * the data in the matrix, like getting the size and getting or setting * values in the matrix. * @param dataType Sparse Matrix data type */ sparse( this: MathJsChain, dataType?: string ): MathJsChain /** * Split a unit in an array of units whose sum is equal to the original * unit. * @param parts An array of strings or valueless units */ splitUnit(this: MathJsChain, parts: Unit[]): MathJsChain /** * Create a string or convert any object into a string. Elements of * Arrays and Matrices are processed element wise. */ string( this: MathJsChain ): MathJsChain string(this: MathJsChain): MathJsChain /** * Create a unit. Depending on the passed arguments, the function will * create and return a new math.type.Unit object. When a matrix is * provided, all elements will be converted to units. * @param unit The unit to be created */ unit(this: MathJsChain, unit?: string): MathJsChain unit(this: MathJsChain, unit?: string): MathJsChain unit(this: MathJsChain, unit?: string): MathJsChain /************************************************************************* * Expression functions ************************************************************************/ /** * Parse and compile an expression. Returns a an object with a function * evaluate([scope]) to evaluate the compiled expression. */ compile(this: MathJsChain): MathJsChain // TODO properly type this /** * Evaluate an expression. * @param scope Scope to read/write variables */ evaluate( this: MathJsChain, scope?: object // eslint-disable-next-line @typescript-eslint/no-explicit-any ): MathJsChain evaluate( this: MathJsChain, scope?: object // eslint-disable-next-line @typescript-eslint/no-explicit-any ): MathJsChain /** * Retrieve help on a function or data type. Help files are retrieved * from the documentation in math.expression.docs. */ help(this: MathJsChain): MathJsChain /** * @param options Available options: nodes - a set of custome nodes */ parse( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any options?: any ): MathJsChain /** * Parse an expression. Returns a node tree, which can be evaluated by * invoking node.evaluate(); * @param options Available options: nodes - a set of custome nodes */ parse( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any options?: any ): MathJsChain /** * Replaces variable nodes with their scoped values * @param scope Scope to read/write variables */ resolve( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any scope?: Record ): MathJsChain resolve( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any scope?: Record ): MathJsChain /************************************************************************* * Algebra functions ************************************************************************/ /** * @param variable The variable over which to differentiate * @param options There is one option available, simplify, which is true * by default. When false, output will not be simplified. */ derivative( this: MathJsChain, variable: MathNode | string, options?: { simplify: boolean } ): MathJsChain /** * Solves the linear equation system by forwards substitution. Matrix * must be a lower triangular matrix. * @param b A column vector with the b values */ lsolve(this: MathJsChain, b: MathCollection): MathJsChain lsolve( this: MathJsChain, b: MathCollection ): MathJsChain /** * Calculate the Matrix LU decomposition with partial pivoting. Matrix A * is decomposed in two matrices (L, U) and a row permutation vector p * where A[p,:] = L * U */ lup(this: MathJsChain): MathJsChain /** * Solves the linear system A * x = b where A is an [n x n] matrix and b * is a [n] column vector. * @param b Column Vector * @param order The Symbolic Ordering and Analysis order, see slu for * details. Matrix must be a SparseMatrix * @param threshold Partial pivoting threshold (1 for partial pivoting), * see slu for details. Matrix must be a SparseMatrix. */ lusolve( this: MathJsChain, b: MathCollection, order?: number, threshold?: number ): MathJsChain lusolve( this: MathJsChain, b: MathCollection, order?: number, threshold?: number ): MathJsChain lusolve( this: MathJsChain, b: MathCollection ): MathJsChain /** * Calculate the Matrix QR decomposition. Matrix A is decomposed in two * matrices (Q, R) where Q is an orthogonal matrix and R is an upper * triangular matrix. */ qr(this: MathJsChain): MathJsChain /** * Transform a rationalizable expression in a rational fraction. If * rational fraction is one variable polynomial then converts the * numerator and denominator in canonical form, with decreasing * exponents, returning the coefficients of numerator. * @param optional scope of expression or true for already evaluated * rational expression at input * @param detailed optional True if return an object, false if return * expression node (default) */ rationalize( this: MathJsChain, optional?: object | boolean, detailed?: boolean ): MathJsChain /** * Simplify an expression tree. * @param rules A list of rules are applied to an expression, repeating * over the list until no further changes are made. It’s possible to * pass a custom set of rules to the function as second argument. A rule * can be specified as an object, string, or function. * @param scope Scope to variables * @param options Options to configure the behavior of simplify */ simplify( this: MathJsChain, rules?: SimplifyRule[], scope?: Map | object, options?: SimplifyOptions ): MathJsChain simplifyConstant( this: MathJsChain, options?: SimplifyOptions ): MathJsChain simplifyCore( this: MathJsChain, options?: SimplifyOptions ): MathJsChain /** * Calculate the Sparse Matrix LU decomposition with full pivoting. * Sparse Matrix A is decomposed in two matrices (L, U) and two * permutation vectors (pinv, q) where P * A * Q = L * U * @param order The Symbolic Ordering and Analysis order: 0 - Natural * ordering, no permutation vector q is returned 1 - Matrix must be * square, symbolic ordering and analisis is performed on M = A + A' 2 - * Symbolic ordering and analysis is performed on M = A' * A. Dense * columns from A' are dropped, A recreated from A'. This is appropriate * for LU factorization of non-symmetric matrices. 3 - Symbolic ordering * and analysis is performed on M = A' * A. This is best used for LU * factorization is matrix M has no dense rows. A dense row is a row * with more than 10*sqr(columns) entries. * @param threshold Partial pivoting threshold (1 for partial pivoting) */ slu( this: MathJsChain, order: number, threshold: number ): MathJsChain /** * Solves the linear equation system by backward substitution. Matrix * must be an upper triangular matrix. U * x = b * @param b A column vector with the b values */ usolve(this: MathJsChain, b: MathCollection): MathJsChain usolve( this: MathJsChain, b: MathCollection ): MathJsChain /************************************************************************* * Arithmetic functions ************************************************************************/ /** * Calculate the absolute value of a number. For matrices, the function * is evaluated element wise. */ abs(this: MathJsChain): MathJsChain /** * Add two values, x + y. For matrices, the function is evaluated * element wise. * @param y Second value to add */ add(this: MathJsChain, y: T): MathJsChain add(this: MathJsChain, y: MathType): MathJsChain /** * Apply a function that maps an array to a scalar along a given axis of the * matrix or array. Returns a new matrix or array with one less dimension * than the input. * @param dim The dimension along which the callback is applied * @param callback The callback function that is applied. This Function should take an * array or 1-d matrix as an input and return a number. * @returns The residual matrix with the function applied over some dimension. */ apply( this: MathJsChain, dim: number, callback: (array: Array | Matrix) => number ): MathJsChain /** * Calculate the cubic root of a value. For matrices, the function is * evaluated element wise. * @param allRoots Optional, false by default. Only applicable when x is * a number or complex number. If true, all complex roots are returned, * if false (default) the principal root is returned. */ cbrt( this: MathJsChain, allRoots?: boolean ): MathJsChain // Rounding functions grouped for similarity /** * Round a value towards plus infinity If x is complex, both real and * imaginary part are rounded towards plus infinity. For matrices, the * function is evaluated element wise. * @param n Number of decimals Default value: 0. */ ceil( this: MathJsChain, n?: number | BigNumber | MathCollection ): MathJsChain /** * Round a value towards zero. For matrices, the function is evaluated * element wise. * @param n Number of decimals Default value: 0. */ fix( this: MathJsChain, n?: number | BigNumber | MathCollection ): MathJsChain /** * Round a value towards minus infinity. For matrices, the function is * evaluated element wise. * @param n Number of decimals Default value: 0. */ floor( this: MathJsChain, n?: number | BigNumber | MathCollection ): MathJsChain /** * Round a value towards the nearest integer. For matrices, the function * is evaluated element wise. * @param n Number of decimals Default value: 0. */ round( this: MathJsChain, n?: number | BigNumber | MathCollection ): MathJsChain // End of rounding group /** * Compute the cube of a value, x * x * x. For matrices, the function is * evaluated element wise. */ cube(this: MathJsChain): MathJsChain /** * Divide two values, x / y. To divide matrices, x is multiplied with * the inverse of y: x * inv(y). * @param y Denominator */ divide(this: MathJsChain, y: Unit): MathJsChain divide(this: MathJsChain, y: number): MathJsChain divide(this: MathJsChain, y: number): MathJsChain divide(this: MathJsChain, y: MathType): MathJsChain /** * Divide two matrices element wise. The function accepts both matrices * and scalar values. * @param y Denominator */ dotDivide( this: MathJsChain, y: MathType ): MathJsChain dotDivide( this: MathJsChain, y: T ): MathJsChain dotDivide(this: MathJsChain, y: MathType): MathJsChain dotDivide(this: MathJsChain, y: Unit): MathJsChain dotDivide( this: MathJsChain, y: MathNumericType ): MathJsChain /** * Multiply two matrices element wise. The function accepts both * matrices and scalar values. * @param y Right hand value */ dotMultiply( this: MathJsChain, y: MathType ): MathJsChain dotMultiply( this: MathJsChain, y: T ): MathJsChain dotMultiply(this: MathJsChain, y: MathType): MathJsChain dotMultiply(this: MathJsChain, y: Unit): MathJsChain dotMultiply( this: MathJsChain, y: MathNumericType ): MathJsChain /** * Calculates the power of x to y element wise. * @param y The exponent */ dotPow( this: MathJsChain, y: MathType ): MathJsChain /** * Calculate the exponent of a value. For matrices, the function is * evaluated element wise. */ exp( this: MathJsChain ): MathJsChain /** * Calculate the value of subtracting 1 from the exponential value. For * matrices, the function is evaluated element wise. */ expm1( this: MathJsChain ): MathJsChain /** * Calculate the greatest common divisor for two or more values or * arrays. For matrices, the function is evaluated element wise. */ gcd( this: MathJsChain, ...args: T[] ): MathJsChain /** * Calculate the hypotenusa of a list with values. The hypotenusa is * defined as: hypot(a, b, c, ...) = sqrt(a^2 + b^2 + c^2 + ...) For * matrix input, the hypotenusa is calculated for all values in the * matrix. */ hypot(this: MathJsChain): MathJsChain /** * Calculate the least common multiple for two or more values or arrays. * lcm is defined as: lcm(a, b) = abs(a * b) / gcd(a, b) For matrices, * the function is evaluated element wise. * @param b An integer number */ lcm( this: MathJsChain, b: T ): MathJsChain /** * Calculate the logarithm of a value. For matrices, the function is * evaluated element wise. * @param base Optional base for the logarithm. If not provided, the * natural logarithm of x is calculated. Default value: e. */ log( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain> /** * Calculate the 10-base of a value. This is the same as calculating * log(x, 10). For matrices, the function is evaluated element wise. */ log10( this: MathJsChain ): MathJsChain /** * Calculate the logarithm of a value+1. For matrices, the function is * evaluated element wise. */ log1p( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain log1p( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain log1p( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain log1p( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain log1p( this: MathJsChain, base?: number | BigNumber | Complex ): MathJsChain /** * Calculate the 2-base of a value. This is the same as calculating * log(x, 2). For matrices, the function is evaluated element wise. */ log2( this: MathJsChain ): MathJsChain /** * Calculates the modulus, the remainder of an integer division. For * matrices, the function is evaluated element wise. The modulus is * defined as: x - y * floor(x / y) * @see http://en.wikipedia.org/wiki/Modulo_operation. * @param y Divisor */ mod( this: MathJsChain, y: number | BigNumber | Fraction | MathCollection ): MathJsChain> /** * Multiply two values, x * y. The result is squeezed. For matrices, the * matrix product is calculated. * @param y The second value to multiply */ multiply( this: MathJsChain, y: MathType ): MathJsChain multiply(this: MathJsChain, y: Unit): MathJsChain multiply(this: MathJsChain, y: number): MathJsChain multiply(this: MathJsChain, y: MathType): MathJsChain /** * Calculate the norm of a number, vector or matrix. The second * parameter p is optional. If not provided, it defaults to 2. * @param p Vector space. Supported numbers include Infinity and * -Infinity. Supported strings are: 'inf', '-inf', and 'fro' (The * Frobenius norm) Default value: 2. */ norm( this: MathJsChain, p?: number | BigNumber | string ): MathJsChain /** * Calculate the nth root of a value. The principal nth root of a * positive real number A, is the positive real solution of the equation * x^root = A For matrices, the function is evaluated element wise. * @param root The root. Default value: 2. */ nthRoot( this: MathJsChain, root?: number | BigNumber ): MathJsChain /** * Calculates the power of x to y, x ^ y. Matrix exponentiation is * supported for square matrices x, and positive integer exponents y. * @param y The exponent */ pow( this: MathJsChain, y: number | BigNumber | Complex ): MathJsChain /** * Compute the sign of a value. The sign of a value x is: 1 when x > 1 * -1 when x < 0 0 when x == 0 For matrices, the function is evaluated * element wise. * @param x The number for which to determine the sign * @returns The sign of x */ sign(this: MathJsChain): MathJsChain /** * Calculate the square root of a value. For matrices, the function is * evaluated element wise. */ sqrt( this: MathJsChain ): MathJsChain /** * Compute the square of a value, x * x. For matrices, the function is * evaluated element wise. */ square(this: MathJsChain): MathJsChain /** * Subtract two values, x - y. For matrices, the function is evaluated * element wise. * @param y Value to subtract from x */ subtract(this: MathJsChain, y: T): MathJsChain /** * Inverse the sign of a value, apply a unary minus operation. For * matrices, the function is evaluated element wise. Boolean values and * strings will be converted to a number. For complex numbers, both real * and complex value are inverted. */ unaryMinus(this: MathJsChain): MathJsChain /** * Unary plus operation. Boolean values and strings will be converted to * a number, numeric values will be returned as is. For matrices, the * function is evaluated element wise. */ unaryPlus(this: MathJsChain): MathJsChain /** * Calculate the extended greatest common divisor for two values. See * http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm. * @param b An integer number */ xgcd( this: MathJsChain, b: number | BigNumber ): MathJsChain /** * Count the number of elements of a matrix, array or string. */ count(this: MathJsChain): MathJsChain count(this: MathJsChain): MathJsChain /** * Compute the sum of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the sum of all elements will be * calculated. */ sum( this: MathJsChain> ): MathJsChain sum(this: MathJsChain): MathJsChain /************************************************************************* * Bitwise functions ************************************************************************/ /** * Bitwise AND two values, x & y. For matrices, the function is * evaluated element wise. * @param y Second value to and */ bitAnd( this: MathJsChain, y: number | BigNumber | MathCollection ): MathJsChain> /** * Bitwise NOT value, ~x. For matrices, the function is evaluated * element wise. For units, the function is evaluated on the best prefix * base. */ bitNot( this: MathJsChain ): MathJsChain /** * Bitwise OR two values, x | y. For matrices, the function is evaluated * element wise. For units, the function is evaluated on the lowest * print base. * @param y Second value to or */ bitOr( this: MathJsChain, y: T ): MathJsChain /** * Bitwise XOR two values, x ^ y. For matrices, the function is * evaluated element wise. * @param y Second value to xor */ bitXor( this: MathJsChain, y: number | BigNumber | MathCollection ): MathJsChain> /** * Bitwise left logical shift of a value x by y number of bits, x << y. * For matrices, the function is evaluated element wise. For units, the * function is evaluated on the best prefix base. * @param y Amount of shifts */ leftShift( this: MathJsChain, y: number | BigNumber ): MathJsChain> /** * Bitwise right arithmetic shift of a value x by y number of bits, x >> * y. For matrices, the function is evaluated element wise. For units, * the function is evaluated on the best prefix base. * @param y Amount of shifts */ rightArithShift( this: MathJsChain, y: number | BigNumber ): MathJsChain> /** * Bitwise right logical shift of value x by y number of bits, x >>> y. * For matrices, the function is evaluated element wise. For units, the * function is evaluated on the best prefix base. * @param y Amount of shifts */ rightLogShift( this: MathJsChain, y: number ): MathJsChain> /************************************************************************* * Combinatorics functions ************************************************************************/ /** * The Bell Numbers count the number of partitions of a set. A partition * is a pairwise disjoint subset of S whose union is S. bellNumbers only * takes integer arguments. The following condition must be enforced: n * >= 0 */ bellNumbers(this: MathJsChain): MathJsChain bellNumbers(this: MathJsChain): MathJsChain /** * The Catalan Numbers enumerate combinatorial structures of many * different types. catalan only takes integer arguments. The following * condition must be enforced: n >= 0 */ catalan(this: MathJsChain): MathJsChain catalan(this: MathJsChain): MathJsChain /** * The composition counts of n into k parts. Composition only takes * integer arguments. The following condition must be enforced: k <= n. * @param k Number of objects in the subset */ composition( this: MathJsChain, k: number | BigNumber ): MathJsChain> /** * The Stirling numbers of the second kind, counts the number of ways to * partition a set of n labelled objects into k nonempty unlabelled * subsets. stirlingS2 only takes integer arguments. The following * condition must be enforced: k <= n. If n = k or k = 1, then s(n,k) = * 1 * @param k Number of objects in the subset */ stirlingS2( this: MathJsChain, k: number | BigNumber ): MathJsChain> /************************************************************************* * Complex functions ************************************************************************/ /** * Compute the argument of a complex value. For a complex number a + bi, * the argument is computed as atan2(b, a). For matrices, the function * is evaluated element wise. */ arg(this: MathJsChain): MathJsChain arg(this: MathJsChain): MathJsChain arg(this: MathJsChain): MathJsChain arg(this: MathJsChain): MathJsChain /** * Compute the complex conjugate of a complex value. If x = a+bi, the * complex conjugate of x is a - bi. For matrices, the function is * evaluated element wise. */ conj( this: MathJsChain ): MathJsChain> /** * Get the imaginary part of a complex number. For a complex number a + * bi, the function returns b. For matrices, the function is evaluated * element wise. */ im(this: MathJsChain): MathJsChain im(this: MathJsChain): MathJsChain im(this: MathJsChain): MathJsChain /** * Get the real part of a complex number. For a complex number a + bi, * the function returns a. For matrices, the function is evaluated * element wise. */ re(this: MathJsChain): MathJsChain re(this: MathJsChain): MathJsChain re(this: MathJsChain): MathJsChain /************************************************************************* * Geometry functions ************************************************************************/ /** * Calculates: The eucledian distance between two points in 2 and 3 * dimensional spaces. Distance between point and a line in 2 and 3 * dimensional spaces. Pairwise distance between a set of 2D or 3D * points NOTE: When substituting coefficients of a line(a, b and c), * use ax + by + c = 0 instead of ax + by = c For parametric equation of * a 3D line, x0, y0, z0, a, b, c are from: (x−x0, y−y0, z−z0) = t(a, b, * c) * @param y Coordinates of the second point */ distance( this: MathJsChain, y: MathCollection | object ): MathJsChain /** * Calculates the point of intersection of two lines in two or three * dimensions and of a line and a plane in three dimensions. The inputs * are in the form of arrays or 1 dimensional matrices. The line * intersection functions return null if the lines do not meet. Note: * Fill the plane coefficients as x + y + z = c and not as x + y + z + c * = 0. * @param x Co-ordinates of second end-point of first line * @param y Co-ordinates of first end-point of second line OR * Coefficients of the plane's equation * @param z Co-ordinates of second end-point of second line OR null if * the calculation is for line and plane */ intersect( this: MathJsChain, x: MathCollection, y: MathCollection, z?: MathCollection ): MathJsChain /************************************************************************* * Logical functions ************************************************************************/ /** * Logical and. Test whether two values are both defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param y Second value to and */ and( this: MathJsChain, y: number | BigNumber | Complex | Unit | MathCollection ): MathJsChain /** * Logical not. Flips boolean value of a given parameter. For matrices, * the function is evaluated element wise. */ not( this: MathJsChain ): MathJsChain /** * Logical or. Test if at least one value is defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param y Second value to or */ or( this: MathJsChain, y: number | BigNumber | Complex | Unit | MathCollection ): MathJsChain /** * Logical xor. Test whether one and only one value is defined with a * nonzero/nonempty value. For matrices, the function is evaluated * element wise. * @param y Second value to xor */ xor( this: MathJsChain, y: number | BigNumber | Complex | Unit | MathCollection ): MathJsChain /************************************************************************* * Matrix functions ************************************************************************/ /** * Concatenate two or more matrices. dim: number is a zero-based * dimension over which to concatenate the matrices. By default the last * dimension of the matrices. */ concat( this: MathJsChain> ): MathJsChain /** * Calculate the cross product for two vectors in three dimensional * space. The cross product of A = [a1, a2, a3] and B =[b1, b2, b3] is * defined as: cross(A, B) = [ a2 * b3 - a3 * b2, a3 * b1 - a1 * b3, a1 * * b2 - a2 * b1 ] * @param y Second vector */ cross( this: MathJsChain, y: MathCollection ): MathJsChain /** * Calculate the determinant of a matrix. */ det(this: MathJsChain): MathJsChain /** * Create a diagonal matrix or retrieve the diagonal of a matrix. When x * is a vector, a matrix with vector x on the diagonal will be returned. * When x is a two dimensional matrix, the matrixes kth diagonal will be * returned as vector. When k is positive, the values are placed on the * super diagonal. When k is negative, the values are placed on the sub * diagonal. * @param k The diagonal where the vector will be filled in or * retrieved. Default value: 0. * @param format The matrix storage format. Default value: 'dense'. */ diag( this: MathJsChain, format?: string ): MathJsChain diag( this: MathJsChain, k: number | BigNumber, format?: string ): MathJsChain /** * Calculate the dot product of two vectors. The dot product of A = [a1, * a2, a3, ..., an] and B = [b1, b2, b3, ..., bn] is defined as: dot(A, * B) = a1 * b1 + a2 * b2 + a3 * b3 + ... + an * bn * @param y Second vector */ dot( this: MathJsChain, y: MathCollection ): MathJsChain /** * Compute the matrix exponential, expm(A) = e^A. The matrix must be * square. Not to be confused with exp(a), which performs element-wise * exponentiation. The exponential is calculated using the Padé * approximant with scaling and squaring; see “Nineteen Dubious Ways to * Compute the Exponential of a Matrix,” by Moler and Van Loan. */ expm(this: MathJsChain): MathJsChain /** * Performs a real Schur decomposition of the real matrix A = UTU' where U is orthogonal * and T is upper quasi-triangular. * https://en.wikipedia.org/wiki/Schur_decomposition * @returns Object containing both matrix U and T of the Schur Decomposition A=UTU' */ schur(this: MathJsChain): SchurDecomposition /** * Solves the Continuous-time Lyapunov equation AP+PA'=Q for P, where Q is a positive semidefinite * matrix. * https://en.wikipedia.org/wiki/Lyapunov_equation * @param Q Matrix Q * @returns Matrix P solution to the Continuous-time Lyapunov equation AP+PA'=Q */ lyap( this: MathJsChain, Q: MathCollection ): MathJsChain /** * Create a 2-dimensional identity matrix with size m x n or n x n. The * matrix has ones on the diagonal and zeros elsewhere. * @param format The Matrix storage format */ identity( this: MathJsChain, format?: string ): MathJsChain /** * @param n The y dimension for the matrix * @param format The Matrix storage format */ identity( this: MathJsChain, n: number, format?: string ): MathJsChain /** * Filter the items in an array or one dimensional matrix. */ filter( this: MathJsChain, test: | (( // eslint-disable-next-line @typescript-eslint/no-explicit-any value: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any index: any, matrix: MathCollection | string[] ) => boolean) | RegExp ): MathJsChain /** * Flatten a multi dimensional matrix into a single dimensional matrix. */ flatten(x: MathJsChain): MathJsChain /** * Iterate over all elements of a matrix/array, and executes the given * callback function. */ forEach( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (value: any, index: any, matrix: T) => void ): void /** * Calculate the inverse of a square matrix. */ inv( this: MathJsChain ): MathJsChain> /** * Calculate the kronecker product of two matrices or vectors * @param y Second vector */ kron( this: MathJsChain, y: MathCollection ): MathJsChain /** * Iterate over all elements of a matrix/array, and executes the given * callback function. * @param callback The callback function is invoked with three * parameters: the value of the element, the index of the element, and * the Matrix/array being traversed. */ map( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any callback: (value: any, index: any, matrix: T) => MathType | string ): MathJsChain /** * Create a matrix filled with ones. The created matrix can have one or * multiple dimensions. * @param format The matrix storage format */ ones( this: MathJsChain, format?: string ): MathJsChain /** * Partition-based selection of an array or 1D matrix. Will find the kth * smallest value, and mutates the input array. Uses Quickselect. * @param k The kth smallest value to be retrieved; zero-based index * @param compare An optional comparator function. The function is * called as compare(a, b), and must return 1 when a > b, -1 when a < b, * and 0 when a == b. Default value: 'asc'. */ partitionSelect( this: MathJsChain, k: number, // eslint-disable-next-line @typescript-eslint/no-explicit-any compare?: 'asc' | 'desc' | ((a: any, b: any) => number) ): MathJsChain /** * Create an array from a range. By default, the range end is excluded. * This can be customized by providing an extra parameter includeEnd. * @param end End of the range, excluded by default, included when * parameter includeEnd=true * @param step Step size. Default value is 1. * @param includeEnd: Option to specify whether to include the end or * not. False by default */ range(this: MathJsChain, includeEnd?: boolean): MathJsChain range( this: MathJsChain, end: number | BigNumber, includeEnd?: boolean ): MathJsChain range( this: MathJsChain, end: number | BigNumber | Unit, step: number | BigNumber | Unit, includeEnd?: boolean ): MathJsChain /** * Reshape a multi dimensional array to fit the specified dimensions * @param sizes One dimensional array with integral sizes for each * dimension */ reshape( this: MathJsChain, sizes: number[] ): MathJsChain /** * Resize a matrix * @param size One dimensional array with numbers * @param defaultValue Zero by default, except in case of a string, in * that case defaultValue = ' ' Default value: 0. */ resize( this: MathJsChain, size: MathCollection, defaultValue?: number | string ): MathJsChain /** * Calculate the size of a matrix or scalar. */ size( this: MathJsChain< boolean | number | Complex | Unit | string | MathCollection > ): MathJsChain /** * Sort the items in a matrix * @param compare An optional _comparator function or name. The function * is called as compare(a, b), and must return 1 when a > b, -1 when a < * b, and 0 when a == b. Default value: ‘asc’ */ sort( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any compare: ((a: any, b: any) => number) | 'asc' | 'desc' | 'natural' ): MathJsChain /** * Calculate the principal square root of a square matrix. The principal * square root matrix X of another matrix A is such that X * X = A. */ sqrtm(A: MathJsChain): MathJsChain /** * Squeeze a matrix, remove inner and outer singleton dimensions from a * matrix. */ squeeze(x: MathJsChain): MathJsChain /** * Get or set a subset of a matrix or string. * @param index For each dimension, an index or list of indices to get or set * @param replacement An array, matrix, or scalar. If provided, the * subset is replaced with replacement. If not provided, the subset is * returned * @param defaultValue Default value, filled in on new entries when the * matrix is resized. If not provided, math.matrix elements will be left * undefined. Default value: undefined. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any subset( this: MathJsChain, index: Index, // eslint-disable-next-line @typescript-eslint/no-explicit-any replacement?: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any defaultValue?: any ): MathJsChain /** * Calculate the trace of a matrix: the sum of the elements on the main * diagonal of a square matrix. */ trace(this: MathJsChain): MathJsChain /** * Transpose a matrix. All values of the matrix are reflected over its * main diagonal. Only two dimensional matrices are supported. */ transpose(x: MathJsChain): MathJsChain /** * Create a matrix filled with zeros. The created matrix can have one or * multiple dimensions. * @param format The matrix storage format * @returns A matrix filled with zeros */ zeros( this: MathJsChain, format?: string ): MathJsChain /************************************************************************* * Probability functions ************************************************************************/ /** * Compute the number of ways of picking k unordered outcomes from n * possibilities. Combinations only takes integer arguments. The * following condition must be enforced: k <= n. * @param k Number of objects in the subset */ combinations( n: MathJsChain, k: number | BigNumber ): MathJsChain> /** * Compute the factorial of a value Factorial only supports an integer * value as argument. For matrices, the function is evaluated element * wise. */ factorial( n: MathJsChain ): MathJsChain> /** * Compute the gamma function of a value using Lanczos approximation for * small values, and an extended Stirling approximation for large * values. For matrices, the function is evaluated element wise. */ gamma( n: MathJsChain ): MathJsChain> /** * Calculate the Kullback-Leibler (KL) divergence between two * distributions * @param p Second vector */ kldivergence( this: MathJsChain, p: MathCollection ): MathJsChain /** * Multinomial Coefficients compute the number of ways of picking a1, * a2, ..., ai unordered outcomes from n possibilities. multinomial * takes one array of integers as an argument. The following condition * must be enforced: every ai <= 0 */ multinomial( a: MathJsChain ): MathJsChain> /** * Compute the number of ways of obtaining an ordered subset of k * elements from a set of n elements. Permutations only takes integer * arguments. The following condition must be enforced: k <= n. * @param k The number of objects in the subset */ permutations( n: MathJsChain, k?: number | BigNumber ): MathJsChain> /** * Random pick a value from a one dimensional array. Array element is * picked using a random function with uniform distribution. * @param number An int or float * @param weights An array of ints or floats */ pickRandom(this: MathJsChain): MathJsChain pickRandom(this: MathJsChain, number: number): MathJsChain pickRandom( this: MathJsChain, number: number, weights: number[] ): MathJsChain /** * Return a random number larger or equal to min and smaller than max * using a uniform distribution. * @param min Minimum boundary for the random value, included * @param max Maximum boundary for the random value, excluded */ random(this: MathJsChain, max?: number): MathJsChain // tslint:disable-next-line unified-signatures random( this: MathJsChain, min?: number, max?: number ): MathJsChain /** * Return a random integer number larger or equal to min and smaller * than max using a uniform distribution. * @param min Minimum boundary for the random value, included * @param max Maximum boundary for the random value, excluded */ randomInt( this: MathJsChain, max?: number ): MathJsChain randomInt( this: MathJsChain, max?: number ): MathJsChain // tslint:disable-next-line unified-signatures randomInt( this: MathJsChain, min: number, max: number ): MathJsChain /************************************************************************* * Relational functions ************************************************************************/ /** * Compare two values. Returns 1 when x > y, -1 when x < y, and 0 when x * == y. x and y are considered equal when the relative difference * between x and y is smaller than the configured epsilon. The function * cannot be used to compare values smaller than approximately 2.22e-16. * For matrices, the function is evaluated element wise. * @param y Second value to compare */ compare( this: MathJsChain, y: MathType | string ): MathJsChain /** * Compare two values of any type in a deterministic, natural way. For * numeric values, the function works the same as math.compare. For * types of values that can’t be compared mathematically, the function * compares in a natural way. * @param y Second value to compare */ // eslint-disable-next-line @typescript-eslint/no-explicit-any compareNatural(this: MathJsChain, y: any): MathJsChain /** * Compare two strings lexically. Comparison is case sensitive. Returns * 1 when x > y, -1 when x < y, and 0 when x == y. For matrices, the * function is evaluated element wise. * @param y Second string to compare */ compareText( this: MathJsChain, y: string | MathCollection ): MathJsChain /** * Test element wise whether two matrices are equal. The function * accepts both matrices and scalar values. * @param y Second amtrix to compare */ deepEqual(this: MathJsChain, y: MathType): MathJsChain /** * Test whether two values are equal. * * The function tests whether the relative difference between x and y is * smaller than the configured epsilon. The function cannot be used to * compare values smaller than approximately 2.22e-16. For matrices, the * function is evaluated element wise. In case of complex numbers, x.re * must equal y.re, and x.im must equal y.im. Values null and undefined * are compared strictly, thus null is only equal to null and nothing * else, and undefined is only equal to undefined and nothing else. * @param y Second value to compare */ equal( this: MathJsChain, y: MathType | string ): MathJsChain /** * Check equality of two strings. Comparison is case sensitive. For * matrices, the function is evaluated element wise. * @param y Second string to compare */ equalText( this: MathJsChain, y: string | MathCollection ): MathJsChain /** * Test whether value x is larger than y. The function returns true when * x is larger than y and the relative difference between x and y is * larger than the configured epsilon. The function cannot be used to * compare values smaller than approximately 2.22e-16. For matrices, the * function is evaluated element wise. * @param y Second value to compare */ larger( this: MathJsChain, y: MathType | string ): MathJsChain /** * Test whether value x is larger or equal to y. The function returns * true when x is larger than y or the relative difference between x and * y is smaller than the configured epsilon. The function cannot be used * to compare values smaller than approximately 2.22e-16. For matrices, * the function is evaluated element wise. * @param y Second value to vcompare */ largerEq( this: MathJsChain, y: MathType | string ): MathJsChain /** * Test whether value x is smaller than y. The function returns true * when x is smaller than y and the relative difference between x and y * is smaller than the configured epsilon. The function cannot be used * to compare values smaller than approximately 2.22e-16. For matrices, * the function is evaluated element wise. * @param y Second value to vcompare */ smaller( this: MathJsChain, y: MathType | string ): MathJsChain /** * Test whether value x is smaller or equal to y. The function returns * true when x is smaller than y or the relative difference between x * and y is smaller than the configured epsilon. The function cannot be * used to compare values smaller than approximately 2.22e-16. For * matrices, the function is evaluated element wise. * @param y Second value to compare */ smallerEq( this: MathJsChain, y: MathType | string ): MathJsChain /** * Test whether two values are unequal. The function tests whether the * relative difference between x and y is larger than the configured * epsilon. The function cannot be used to compare values smaller than * approximately 2.22e-16. For matrices, the function is evaluated * element wise. In case of complex numbers, x.re must unequal y.re, or * x.im must unequal y.im. Values null and undefined are compared * strictly, thus null is unequal with everything except null, and * undefined is unequal with everything except undefined. * @param y Second value to vcompare */ unequal( this: MathJsChain, y: MathType | string ): MathJsChain /************************************************************************* * Set functions ************************************************************************/ /** * Create the cartesian product of two (multi)sets. Multi-dimension * arrays will be converted to single-dimension arrays and the values * will be sorted in ascending order before the operation. * @param a2 A (multi)set */ setCartesian( this: MathJsChain, a2: MathCollection ): MathJsChain /** * Create the difference of two (multi)sets: every element of set1, that * is not the element of set2. Multi-dimension arrays will be converted * to single-dimension arrays before the operation * @param a2 A (multi)set */ setDifference( this: MathJsChain, a2: MathCollection ): MathJsChain /** * Collect the distinct elements of a multiset. A multi-dimension array * will be converted to a single-dimension array before the operation. */ setDistinct(a: MathJsChain): MathJsChain /** * Create the intersection of two (multi)sets. Multi-dimension arrays * will be converted to single-dimension arrays before the operation. * @param a2 A (multi)set */ setIntersect( this: MathJsChain, a2: MathCollection ): MathJsChain /** * Check whether a (multi)set is a subset of another (multi)set. (Every * element of set1 is the element of set2.) Multi-dimension arrays will * be converted to single-dimension arrays before the operation. * @param a2 A (multi)set */ setIsSubset( this: MathJsChain, a2: MathCollection ): MathJsChain /** * Count the multiplicity of an element in a multiset. A multi-dimension * array will be converted to a single-dimension array before the * operation. * @param a A multiset */ setMultiplicity( e: MathJsChain, a: MathCollection ): MathJsChain /** * Create the powerset of a (multi)set. (The powerset contains very * possible subsets of a (multi)set.) A multi-dimension array will be * converted to a single-dimension array before the operation. */ setPowerset(a: MathJsChain): MathJsChain /** * Count the number of elements of a (multi)set. When a second parameter * is ‘true’, count only the unique values. A multi-dimension array will * be converted to a single-dimension array before the operation. */ setSize(this: MathJsChain): MathJsChain /** * Create the symmetric difference of two (multi)sets. Multi-dimension * arrays will be converted to single-dimension arrays before the * operation. * @param a2 A (multi)set */ setSymDifference( this: MathJsChain, a2: MathCollection ): MathJsChain /** * Create the union of two (multi)sets. Multi-dimension arrays will be * converted to single-dimension arrays before the operation. * @param a2 A (multi)set */ setUnion( this: MathJsChain, a2: MathCollection ): MathJsChain /************************************************************************* * Signal functions ************************************************************************/ /** * Compute the transfer function of a zero-pole-gain model. */ zpk2tf( this: MathJsChain, // chained variable will be used as z p: T, k?: number ): MathJsChain /** * Calculates the frequency response of a filter given its numerator and denominator coefficients. */ freqz( this: MathJsChain, a: T, w?: T | number ): MathJsChain<{ w: T; h: T }> /************************************************************************* * Special functions ************************************************************************/ /** * Compute the erf function of a value using a rational Chebyshev * approximations for different intervals of x. */ erf( this: MathJsChain ): MathJsChain> /** * Compute the Riemann Zeta function of a value using an infinite series * and Riemann's Functional equation. */ zeta( this: MathJsChain ): MathJsChain /************************************************************************* * Statistics functions ************************************************************************/ /** * Compute the median absolute deviation of a matrix or a list with * values. The median absolute deviation is defined as the median of the * absolute deviations from the median. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any mad(this: MathJsChain): MathJsChain /** * Compute the maximum value of a matrix or a list with values. In case * of a multi dimensional array, the maximum of the flattened array will * be calculated. When dim is provided, the maximum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param dim The maximum over the selected dimension */ // eslint-disable-next-line @typescript-eslint/no-explicit-any max(this: MathJsChain, dim?: number): MathJsChain // eslint-disable-next-line @typescript-eslint/no-explicit-any max(this: MathJsChain, dim?: number): MathJsChain /** * Compute the mean value of matrix or a list with values. In case of a * multi dimensional array, the mean of the flattened array will be * calculated. When dim is provided, the maximum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param dim The mean over the selected dimension */ // eslint-disable-next-line @typescript-eslint/no-explicit-any mean(this: MathJsChain, dim?: number): MathJsChain // eslint-disable-next-line @typescript-eslint/no-explicit-any mean(this: MathJsChain, dim?: number): MathJsChain /** * Compute the median of a matrix or a list with values. The values are * sorted and the middle value is returned. In case of an even number of * values, the average of the two middle values is returned. Supported * types of values are: Number, BigNumber, Unit In case of a (multi * dimensional) array or matrix, the median of all elements will be * calculated. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any median(this: MathJsChain, dim?: number): MathJsChain // eslint-disable-next-line @typescript-eslint/no-explicit-any median(this: MathJsChain, dim?: number): MathJsChain /** * Compute the minimum value of a matrix or a list of values. In case of * a multi dimensional array, the minimum of the flattened array will be * calculated. When dim is provided, the minimum over the selected * dimension will be calculated. Parameter dim is zero-based. * @param dim The minimum over the selected dimension */ // eslint-disable-next-line @typescript-eslint/no-explicit-any min(this: MathJsChain): MathJsChain // eslint-disable-next-line @typescript-eslint/no-explicit-any min(this: MathJsChain, dim?: number): MathJsChain /** * Computes the mode of a set of numbers or a list with values(numbers * or characters). If there are more than one modes, it returns a list * of those values. */ mode(this: MathJsChain): MathJsChain /** * Compute the product of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the sum of all elements will be * calculated. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any prod(this: MathJsChain): MathJsChain /** * Compute the prob order quantile of a matrix or a list with values. * The sequence is sorted and the middle value is returned. Supported * types of sequence values are: Number, BigNumber, Unit Supported types * of probability are: Number, BigNumber In case of a (multi * dimensional) array or matrix, the prob order quantile of all elements * will be calculated. * @param probOrN prob is the order of the quantile, while N is the * amount of evenly distributed steps of probabilities; only one of * these options can be provided * @param sorted =false is data sorted in ascending order */ quantileSeq( A: MathJsChain, prob: number | BigNumber | MathArray, sorted?: boolean ): MathJsChain /** * Compute the standard deviation of a matrix or a list with values. The * standard deviations is defined as the square root of the variance: * std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or * matrix, the standard deviation over all elements will be calculated. * Optionally, the type of normalization can be specified as second * parameter. The parameter normalization can be one of the following * values: 'unbiased' (default) The sum of squared errors is divided by * (n - 1) 'uncorrected' The sum of squared errors is divided by n * 'biased' The sum of squared errors is divided by (n + 1) * @param dim A dimension to compute standard deviation. * @param normalization Determines how to normalize the variance. Choose * ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value: * ‘unbiased’. * @returns The standard deviation */ std( this: MathJsChain, dim?: number, normalization?: 'unbiased' | 'uncorrected' | 'biased' ): MathJsChain /** * Compute the standard deviation of a matrix or a list with values. The * standard deviations is defined as the square root of the variance: * std(A) = sqrt(variance(A)). In case of a (multi dimensional) array or * matrix, the standard deviation over all elements will be calculated. * Optionally, the type of normalization can be specified as second * parameter. The parameter normalization can be one of the following * values: 'unbiased' (default) The sum of squared errors is divided by * (n - 1) 'uncorrected' The sum of squared errors is divided by n * 'biased' The sum of squared errors is divided by (n + 1) * @param normalization Determines how to normalize the variance. Choose * ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. Default value: * ‘unbiased’. * @returns The standard deviation */ std( this: MathJsChain, dimension?: number, normalization?: 'unbiased' | 'uncorrected' | 'biased' ): MathJsChain /** * Compute the sum of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the sum of all elements will be * calculated. */ std( this: MathJsChain, normalization: 'unbiased' | 'uncorrected' | 'biased' ): MathJsChain /** * Compute the variance of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the variance over all elements * will be calculated. Optionally, the type of normalization can be * specified as second parameter. The parameter normalization can be one * of the following values: 'unbiased' (default) The sum of squared * errors is divided by (n - 1) 'uncorrected' The sum of squared errors * is divided by n 'biased' The sum of squared errors is divided by (n + * 1) Note that older browser may not like the variable name var. In * that case, the function can be called as math['var'](...) instead of * math.variance(...). * @param dim a dimension to compute variance. * @param normalization normalization Determines how to normalize the * variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. * Default value: ‘unbiased’. * @returns The variance */ variance( this: MathJsChain>> ): MathJsChain /** * Compute the variance of a matrix or a list with values. In case of a * (multi dimensional) array or matrix, the variance over all elements * will be calculated. Optionally, the type of normalization can be * specified as second parameter. The parameter normalization can be one * of the following values: 'unbiased' (default) The sum of squared * errors is divided by (n - 1) 'uncorrected' The sum of squared errors * is divided by n 'biased' The sum of squared errors is divided by (n + * 1) Note that older browser may not like the variable name var. In * that case, the function can be called as math['var'](...) instead of * math.variance(...). * @param normalization normalization Determines how to normalize the * variance. Choose ‘unbiased’ (default), ‘uncorrected’, or ‘biased’. * Default value: ‘unbiased’. * @returns The variance */ variance( this: MathJsChain, dimension?: number, normalization?: 'unbiased' | 'uncorrected' | 'biased' ): MathJsChain variance( this: MathJsChain, normalization: 'unbiased' | 'uncorrected' | 'biased' ): MathJsChain /************************************************************************* * String functions ************************************************************************/ /** * Format a value of any type into a string. * @param options An object with formatting options. * @param callback A custom formatting function, invoked for all numeric * elements in value, for example all elements of a matrix, or the real * and imaginary parts of a complex number. This callback can be used to * override the built-in numeric notation with any type of formatting. * Function callback is called with value as parameter and must return a * string. * @see http://mathjs.org/docs/reference/functions/format.html */ format( // eslint-disable-next-line @typescript-eslint/no-explicit-any this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any value: any, // eslint-disable-next-line @typescript-eslint/no-explicit-any options?: FormatOptions | number | ((item: any) => string), // eslint-disable-next-line @typescript-eslint/no-explicit-any callback?: (value: any) => string ): MathJsChain /** * Interpolate values into a string template. * @param values An object containing variables which will be filled in * in the template. * @param precision Number of digits to format numbers. If not provided, * the value will not be rounded. * @param options Formatting options, or the number of digits to format * numbers. See function math.format for a description of all options. */ print( this: MathJsChain, // eslint-disable-next-line @typescript-eslint/no-explicit-any values: any, precision?: number, options?: number | object ): MathJsChain /************************************************************************* * Trigonometry functions ************************************************************************/ /** * Calculate the inverse cosine of a value. For matrices, the function * is evaluated element wise. */ acos( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic arccos of a value, defined as acosh(x) = * ln(sqrt(x^2 - 1) + x). For matrices, the function is evaluated * element wise. */ acosh( this: MathJsChain ): MathJsChain /** * Calculate the inverse cotangent of a value. For matrices, the * function is evaluated element wise. */ acot( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic arccotangent of a value, defined as acoth(x) * = (ln((x+1)/x) + ln(x/(x-1))) / 2. For matrices, the function is * evaluated element wise. */ acoth( this: MathJsChain ): MathJsChain /** * Calculate the inverse cosecant of a value. For matrices, the function * is evaluated element wise. */ acsc( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic arccosecant of a value, defined as acsch(x) * = ln(1/x + sqrt(1/x^2 + 1)). For matrices, the function is evaluated * element wise. */ acsch( this: MathJsChain ): MathJsChain /** * Calculate the inverse secant of a value. For matrices, the function * is evaluated element wise. */ asec( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic arcsecant of a value, defined as asech(x) = * ln(sqrt(1/x^2 - 1) + 1/x). For matrices, the function is evaluated * element wise. */ asech( this: MathJsChain ): MathJsChain /** * Calculate the inverse sine of a value. For matrices, the function is * evaluated element wise. */ asin( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic arcsine of a value, defined as asinh(x) = * ln(x + sqrt(x^2 + 1)). For matrices, the function is evaluated * element wise. */ asinh( this: MathJsChain ): MathJsChain /** * Calculate the inverse tangent of a value. For matrices, the function * is evaluated element wise. */ atan( this: MathJsChain ): MathJsChain /** * Calculate the inverse tangent function with two arguments, y/x. By * providing two arguments, the right quadrant of the computed angle can * be determined. For matrices, the function is evaluated element wise. */ atan2( this: MathJsChain, x: number ): MathJsChain /** * Calculate the hyperbolic arctangent of a value, defined as atanh(x) = * ln((1 + x)/(1 - x)) / 2. For matrices, the function is evaluated * element wise. */ atanh( this: MathJsChain ): MathJsChain /** * Calculate the cosine of a value. For matrices, the function is * evaluated element wise. */ cos( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic cosine of a value, defined as cosh(x) = 1/2 * * (exp(x) + exp(-x)). For matrices, the function is evaluated element * wise. */ cosh( this: MathJsChain ): MathJsChain /** * Calculate the cotangent of a value. cot(x) is defined as 1 / tan(x). * For matrices, the function is evaluated element wise. */ cot( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic cotangent of a value, defined as coth(x) = 1 * / tanh(x). For matrices, the function is evaluated element wise. */ coth( this: MathJsChain ): MathJsChain /** * Calculate the cosecant of a value, defined as csc(x) = 1/sin(x). For * matrices, the function is evaluated element wise. */ csc( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic cosecant of a value, defined as csch(x) = 1 * / sinh(x). For matrices, the function is evaluated element wise. */ csch( this: MathJsChain ): MathJsChain /** * Calculate the secant of a value, defined as sec(x) = 1/cos(x). For * matrices, the function is evaluated element wise. */ sec( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic secant of a value, defined as sech(x) = 1 / * cosh(x). For matrices, the function is evaluated element wise. */ sech( this: MathJsChain ): MathJsChain /** * Calculate the sine of a value. For matrices, the function is * evaluated element wise. */ sin( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic sine of a value, defined as sinh(x) = 1/2 * * (exp(x) - exp(-x)). For matrices, the function is evaluated element * wise. */ sinh( this: MathJsChain ): MathJsChain /** * Calculate the tangent of a value. tan(x) is equal to sin(x) / cos(x). * For matrices, the function is evaluated element wise. */ tan( this: MathJsChain ): MathJsChain /** * Calculate the hyperbolic tangent of a value, defined as tanh(x) = * (exp(2 * x) - 1) / (exp(2 * x) + 1). For matrices, the function is * evaluated element wise. */ tanh( this: MathJsChain ): MathJsChain /************************************************************************* * Unit functions ************************************************************************/ /** * Change the unit of a value. For matrices, the function is evaluated * element wise. * @param unit New unit. Can be a string like "cm" or a unit without * value. */ to( this: MathJsChain, unit: Unit | string ): MathJsChain /************************************************************************* * Utils functions ************************************************************************/ /** * Clone an object. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any clone(this: MathJsChain): MathJsChain /** * Test whether a value is an integer number. The function supports * number, BigNumber, and Fraction. The function is evaluated * element-wise in case of Array or Matrix input. */ isInteger( this: MathJsChain ): MathJsChain /** * Test whether a value is NaN (not a number). The function supports * types number, BigNumber, Fraction, Unit and Complex. The function is * evaluated element-wise in case of Array or Matrix input. */ isNaN( this: MathJsChain ): MathJsChain /** * Test whether a value is negative: smaller than zero. The function * supports types number, BigNumber, Fraction, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. */ isNegative( this: MathJsChain ): MathJsChain /** * Test whether a value is an numeric value. The function is evaluated * element-wise in case of Array or Matrix input. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any isNumeric(this: MathJsChain): MathJsChain /** * Test whether a value is positive: larger than zero. The function * supports types number, BigNumber, Fraction, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. */ isPositive( this: MathJsChain ): MathJsChain /** * Test whether a value is prime: has no divisors other than itself and * one. The function supports type number, bignumber. The function is * evaluated element-wise in case of Array or Matrix input. */ isPrime( this: MathJsChain ): MathJsChain /** * Test whether a value is zero. The function can check for zero for * types number, BigNumber, Fraction, Complex, and Unit. The function is * evaluated element-wise in case of Array or Matrix input. */ isZero(this: MathJsChain): MathJsChain /** * Determine the type of a variable. */ // eslint-disable-next-line @typescript-eslint/no-explicit-any typeOf(this: MathJsChain): MathJsChain } interface ImportOptions { override?: boolean silent?: boolean wrap?: boolean } interface ImportObject { // eslint-disable-next-line @typescript-eslint/no-explicit-any [key: string]: any } }