
README.md 2025-01-07

1 / 17

🚀 MERN Project Generator CLI
Create production-ready MERN stack projects in seconds!

NPM Package Website mern-project-cli

Website https://devcli.vercel.app

TOTAL DOWNLOADS 2.3K

WEEKLY DOWNLOADS 24/WEEK
 Node.js PackageNode.js Package passingpassing

MERN Project Generator CLI is a powerful tool designed to simplify the process of setting up a complete,
production-ready MERN stack project in seconds.

This tool eliminates the need for manual configurations, boilerplate code copying, and repetitive tasks,
allowing developers to start building their apps right away with best practices in place. Perfect for both
beginners and experienced developers, it saves time and ensures a solid project foundation.

✨ Features
One Command Setup: Generate both frontend and backend with a single command
Industry-Standard Structure: Pre-configured folder structure following best practices
Create frontend with shadcn and vite, a new React project with either Shadcn UI + Tailwind CSS or
just Vite + Tailwind CSS using a single command.
Instant MongoDB Integration: Connect to MongoDB with zero configuration
Generate Mongoose Schema: Generate Mongoose Schema with just one command
Development Ready: Hot-reloading enabled for both frontend and backend
Pre-configured Environment: .env.example files included with sensible defaults
Git Ready: Initialized Git repository with proper .gitignore files

📑 Index
Requirements
Installation
Commands

1. devcli create
2. devcli mongodb-connect
3. devcli mongoose-schema
4. devcli add-redux
5. devcli create-frontend <project_name>
6. devcli init-dockerfiles
7. devcli add-eslint
8. devcli add-jwt-auth

https://www.npmjs.com/package/mern-project-cli
https://devcli.vercel.app/
https://github.com/manishraj27/mern-project-cli/actions/workflows/npm-publish.yml

README.md 2025-01-07

2 / 17

Complete User Journey Example
Future Enhancements
Contribute
License
Support the project

⚡ Requirements
Before you begin, ensure your system meets these requirements:

Node.js: Version 14.x or higher
npm: Version 6.x or higher
MongoDB: Local or remote installation

📦 Installation
Install the CLI tool globally to use it from anywhere in your system:

npm install -g mern-project-cli

To check installation version:

devcli --version

🛠 Commands

1. Create MERN Project

devcli create <your_project_name>

What This Command Does:

1. 📁 Creates Project Structure:

The generated project follows the MVC (Model-View-Controller) pattern, a battle-tested architecture that
separates your application into three main components:

your-project-name/
├── backend/
│ ├── controllers/ # Handle business logicdocumentation
│ ├── db/ # Database configuration
│ ├── middlewares/ # Custom middleware functionsdocumentation
│ ├── models/ # MongoDB Schema model
│ ├── routes/ # API route definitions

README.md 2025-01-07

3 / 17

│ ├── utils/ # Helper functionsdocumentation
│ ├── .env.example # Environment variables template
│ ├── .gitignore # Git ignore rules
│ ├── constants.js # Application constants
│ ├── package.json # Dependencies and scripts
│ ├── README.md # Backend documentation
│ └── server.js # Server entry point
└── frontend/
 ├── public/ # Static files
 ├── src/ # React source code
 │ ├── components/ # React components
 │ ├── pages/ # Page components
 │ ├── utils/ # Helper functions
 │ └── App.js # Root component
 ├── .env.example # Frontend environment template
 └── package.json # Frontend dependencies

2. Installs Dependencies:

Backend: Express, Mongoose, CORS, dotenv, nodemon.
Frontend: React, React Router, Axios, Other Create React App dependencies.

After Creation:

Start Backend Development:

cd your-project-name/backend

npm run dev # Start development server with nodemon

Start Frontend Development:

cd your-project-name/frontend

npm start # Start React App

Option:

devcli create my_project --next

README.md 2025-01-07

4 / 17

2. Connect MongoDB

Create database as your_project_name_db

devcli mongodb-connect

Or with custom database name

devcli mongodb-connect --project custom-name

Options:

-p, --project <name>: Specify custom database name
No options: Uses project folder name as database name

What This Command Does:

1. Creates Database Connection:

Generates connection.js in the db folder
Sets up Mongoose connection with error handling
Configures connection string based on environment variables

2. Updates Server Configuration:

Adds database connection import to server.js
Sets up connection status logging

Usage Examples:

Using project name
devcli mongodb-connect

Using custom database name
devcli mongodb-connect --project custom_name

Generated Files:

// db/connection.js
require('dotenv').config();
const mongoose = require('mongoose');

const dburl = process.env.DB_URL || 'mongodb://localhost:27017/your_db_name';

README.md 2025-01-07

5 / 17

mongoose
 .connect(dburl)
 .then(() => console.log('Connected to DB Successfully'))
 .catch((err) => console.log(err.message));

3. Generate Mongoose Schema

Create mongoose schema for your backend.

devcli devcli mongoose-schema <schema-name> <fieldName:fieldType
fieldName:fieldType ...>

Usage Example

devcli mongoose-schema User name:String email:String password:String

This will create a User.js file with a Mongoose schema inside the models/ directory:

//models/User.js
import mongoose from 'mongoose';

const UserSchema = new mongoose.Schema({
 name: { type: String, required: true },
 email: { type: String, required: true },
 password: { type: String, required: true },
});

const User = mongoose.model('User', UserSchema);
export default User;

Explanation:

The mongoose-schema command takes a model name (User) and field definitions (name:String, email:String,
password:String), generating a Mongoose model file in the models/ folder.

4. Add Redux

Set up Redux in your project or add new Redux slices.

Initialize Redux

devcli add-redux --init

README.md 2025-01-07

6 / 17

What does this command do:

Sets up Redux store configuration
Creates necessary store files and directories
Installs required dependencies (@reduxjs/toolkit and react-redux)
Creates hooks for easier Redux usage

Create Redux Slice

devcli add-redux --slice <sliceName> --actions="action1,action2" --
state="field1:type,field2:type"

Options:

--slice: Name of the slice to create
--actions: Comma-separated list of actions for the slice
--state: Initial state fields with types (string, boolean, array)

Usage Example:

devcli add-redux --slice user --actions="login,logout" --
state="username:string,isLoggedIn:boolean"

This creates:

A new slice file in src/store/slices
Boilerplate for specified actions
Initial state with typed fields
Automatic integration with the Redux store

Example Generated Redux Slice

When you run the command:

devcli add-redux --slice user --actions="login,logout" --
state="username:string,isLoggedIn:boolean"

It generates the following slice in src/store/slices/userSlice.js:

import { createSlice } from '@reduxjs/toolkit';

const initialState = {

README.md 2025-01-07

7 / 17

 username: '',
 isLoggedIn: false,
};

const userSlice = createSlice({
 name: 'user',
 initialState,
 reducers: {
 login: (state, action) => {
 // Implement login logic here
 },
 logout: (state, action) => {
 // Implement logout logic here
 },
 },
});

export const { login, logout } = userSlice.actions;
export default userSlice.reducer;

5. Create Frontend Project

Create a new React project with either Shadcn UI + Tailwind CSS or just Vite + Tailwind CSS using a single
command.

Create project with Shadcn UI
devcli create-frontend <project_name> --shadcn

Create project with Vite + Tailwind CSS
devcli create-frontend <project_name> --vite

Features

With --shadcn flag:

Creates a Vite + React project
Installs and configures Tailwind CSS
Sets up Shadcn UI with New York style and Zinc color scheme
Configures project structure with best practices
Adds initial button component as example
Sets up path aliases for better imports
Includes all necessary configuration files

With --vite flag:

Creates a basic Vite + React project
Installs and configures Tailwind CSS
Sets up minimal project structure

README.md 2025-01-07

8 / 17

Includes starter template with modern styling

Options

--shadcn: Include Shadcn UI setup with Tailwind CSS
--vite: Create basic Vite project with Tailwind CSS only

Usage Examples

Create a new React project with Shadcn UI
devcli create-frontend my-app --shadcn

Create a new React project with just Vite + Tailwind
devcli create-frontend my-app --vite

Navigate to project
cd my-app

Start development server
npm run dev

Generated Project Structure with --shadcn

your-project/
├── src/
│ ├── components/
│ │ └── ui/
│ │ └── button.jsx
│ ├── lib/
│ │ └── utils.js
│ ├── App.jsx
│ └── index.css
├── jsconfig.json
├── tailwind.config.js
├── vite.config.js
└── components.json

After Creation with --shadcn

Add more Shadcn components using:

npx shadcn@latest add <component-name>

Available components can be found at shadcn/ui components
Customize theme in tailwind.config.js

https://ui.shadcn.com/docs/components

README.md 2025-01-07

9 / 17

Add your own components in src/components

6. Initialize Docker Files

Generate Dockerfiles for both backend and frontend, along with a docker-compose.yml file for your MERN
stack project.

devcli init-dockerfiles

What This Command Does:

1. Creates Backend Dockerfile:

Uses Node.js 20 Alpine image
Sets up working directory
Installs dependencies
Configures for development mode
Exposes port 5000

2. Creates Frontend Dockerfile:

Uses Node.js 20 Alpine image
Sets up working directory
Installs dependencies
Exposes port 3000
Configures for development mode

3. Generates docker-compose.yml:

Configures services for backend, frontend, and MongoDB
Sets up proper networking between services
Configures volumes for development
Sets environment variables
Establishes service dependencies

Requirements:

Project must have backend and frontend directories in root
Docker must be installed on your system

Generated Files:

your-project/
├── backend/
│ ├── Dockerfile
│ └── .dockerignore
├── frontend/
│ ├── Dockerfile

README.md 2025-01-07

10 / 17

│ └── .dockerignore
└── docker-compose.yml

Usage:

Navigate to your project root
cd your-project

Generate Docker files
devcli init-dockerfiles

Start the containerized application
docker-compose up

This will start your application with:

Backend running on http://localhost:5000
Frontend running on http://localhost:3000
MongoDB running on port 27017

7. Add ESLint and Prettierrc

Initialize ESLint in the specified directory (frontend, backend, or the current directory) to ensure consistent
code quality with tailored configurations based on the project type.

devcli add-eslint [directory] # Set up ESLint in the specified directory
(defaults to current directory)

What This Command Does:

Automatically Detects Project Type: Determines if the project is a React, Vue, TypeScript, Node.js, or
plain JavaScript application.
Configures ESLint: Creates a .eslintrc.json file specific to the detected environment (e.g., browser
for React, Node.js for backend).
Installs Dependencies: Automatically installs ESLint, Prettier, and their necessary plugins as
development dependencies in the specified directory.
Supports Multiple File Extensions: Handles various file types based on the project structure.

Example Usage

To set up ESLint in the backend directory:

devcli add-eslint backend

README.md 2025-01-07

11 / 17

To set up ESLint in the frontend directory:

devcli add-eslint frontend

To set up ESLint in the current directory (default):

devcli add-eslint

Example Generated ESLint Configuration

This command generates a basic ESLint configuration file (.eslintrc.json) that looks like this:

For Backend Directory:

{
 "env": {
 "browser": false,
 "node": true,
 "es2021": true
 },
 "extends": ["eslint:recommended", "plugin:prettier/recommended"],
 "parserOptions": {
 "ecmaVersion": 12
 },
 "rules": {}
}

For Frontend Directory:

{
 "env": {
 "browser": true,
 "node": false,
 "es2021": true
 },
 "extends": [
 "eslint:recommended",
 "plugin:react/recommended",
 "plugin:prettier/recommended"
],
 "parserOptions": {
 "ecmaVersion": 12,
 "ecmaFeatures": {
 "jsx": true
 }
 },

README.md 2025-01-07

12 / 17

 "rules": {}
}

For Arbitrary Folders (Defaulting to Node):

{
 "env": {
 "browser": false,
 "node": true,
 "es2021": true
 },
 "extends": ["eslint:recommended", "plugin:prettier/recommended"],
 "parserOptions": {
 "ecmaVersion": 12
 },
 "rules": {}
}

Benefits

Automates Setup: Saves time by automating the ESLint configuration process based on project type.
Ensures Consistency: Helps maintain consistent linting rules across backend and frontend codebases.
Supports Arbitrary Setup: Allows for easy ESLint configuration in any directory, defaulting to Node.js
environment.

8. Add JWT Authetication and Authorization

Here is the content for the 8th command, "Add JWT Authentication":

8. Add JWT Authentication and Authorization

Add JWT authentication boilerplate to your backend project.

devcli add-jwt-auth

What This Command Does:

1. Creates Necessary Directories:

controllers/authController.js
middlewares/authMiddleware.js
models/userModel.js
routes/authRoutes.js

2. Generates Authentication Logic:

authController.js - Handles user registration and login with JWT token generation.

README.md 2025-01-07

13 / 17

authMiddleware.js - Implements middleware to authenticate and authorize requests using
JWT tokens.
userModel.js - Defines a Mongoose schema for the User model.
authRoutes.js - Defines API routes for authentication, including register, login, and a protected
route.

3. Installs Required Dependencies:

bcryptjs - For password hashing
jsonwebtoken - For generating and verifying JWT tokens

4. Integrates Authentication Routes:

Adds the authentication routes to the server.js file.

5. Provides Next Steps:

Update the .env file with a secure JWT_SECRET.
Start the server and test the authentication routes:

POST /api/auth/register: Register a new user
POST /api/auth/login: Log in and get the JWT token
GET /api/auth/protected: Access the protected route with the JWT token

Usage:

1. Run the command in your project's backend directory:

devcli add-jwt-auth

2. Update the .env file in the backend directory with a secure JWT_SECRET.

3. Start the server and test the authentication routes.

Generated Files:

backend/
├── controllers/
│ └── authController.js
├── middlewares/
│ └── authMiddleware.js
├── models/
│ └── userModel.js
├── routes/
│ └── authRoutes.js

The generated files implement the following functionality:

1. authController.js: Handles user registration and login, generating JWT tokens.

README.md 2025-01-07

14 / 17

2. authMiddleware.js: Middleware to authenticate and authorize requests using JWT tokens.
3. userModel.js: Mongoose schema and model for the User.
4. authRoutes.js: API routes for authentication, including register, login, and a protected route.

After running this command, you can start using the authentication system in your backend application.

📖 Complete User Journey Example
Let's create a blog application from scratch:

Step 1: Install CLI globally
npm install -g mern-project-cli

Step 2: Create new project
devcli create my-blog-app

Step 3: Set up backend
cd my-blog-app/backend
npm run dev

Step 4: Set up frontend (new terminal)
cd ../frontend
npm start

Step 5: Connect MongoDB (optional)
cd ../backend
devcli mongodb-connect

Step 6: Generate Mongoose Scheama (optional)
devcli mongoose-schema Blog name:String category:String

Step 7: Set up Redux
cd ../frontend
devcli add-redux --init

Step 8: Set up Es-lint and prettierrc
cd ../backend
devcli add-eslint

cd ../frontend
devcli add-eslint
Step 9: Create blog slice for Redux
devcli add-redux --slice blog --actions="addPost,deletePost,updatePost" --
state="posts:array,loading:boolean"

Step 10: Add jwt authetication
cd ..backend
devcli add-jwt-auth

🎉 Congratulations! Your blog application structure is ready with:
- Backend running on `http://localhost:5000`

README.md 2025-01-07

15 / 17

- Frontend running on `http://localhost:3000`
- MongoDB connected and ready to use

⚙ Environment Configuration

Backend (.env)

Server Configuration
PORT=5000

Database Configuration
DB_URI=mongodb://localhost:27017/your_db_name

Frontend (.env)

API Configuration
REACT_APP_API_URL=http://localhost:5000

🔧 Available Commands

CLI Commands

Project Setup

npm install -g mern-project-cli # Install CLI globally
devcli --version # Check CLI version
devcli create <project-name> # Create new MERN project

OR [Create frontend with shadcn+tailwind/ vite+tailwind]

devcli create-frontend <project-name> --shadcn # shadcn-frontend
devcli create-frontend <project-name> --vite # vite-frontend

Backend CLI Commands

Database Connection
devcli mongodb-connect # Connect MongoDB
using project name
devcli mongodb-connect -p custom-name # Connect with
custom database name

README.md 2025-01-07

16 / 17

Schema Generation
devcli mongoose-schema <schema-name> <fieldName:fieldType ...> # Generate
Mongoose schema
Example: devcli mongoose-schema User name:String email:String password:String

Frontend CLI Commands

Redux Setup
devcli add-redux --init # Initialize
Redux in frontend
devcli add-redux --slice <name> --actions="action1,action2" --
state="field1:type,field2:type" #Create Slice
Example: devcli add-redux --slice user --actions="login,logout" --
state="username:string,isLoggedIn:boolean"

Docker CLI Commands

Docker Configuration
devcli init-dockerfiles # Generate Dockerfiles and docker-compose.yml

Development Commands

Backend Development

cd backend # Navigate to backend directory
npm install # Install dependencies
npm run dev # Start with auto-reload (development)
npm start # Start without auto-reload (production)

Frontend Development

cd frontend # Navigate to frontend directory
npm install # Install dependencies
npm start # Start development server

Docker Development

docker-compose up # Start all services (backend, frontend, mongodb)
docker-compose down # Stop all services

README.md 2025-01-07

17 / 17

docker-compose up --build # Rebuild and start all services

🔮 Future Enhancements
1. Code Generation More Code-Snippets

🤝 Contribute to the Project
We welcome and appreciate contributions to MERN Project Generator CLI! If you’d like to help improve this
tool, feel free to do so.

📄 License
This project is licensed under the MIT License - see the LICENSE file for details.

🌟 Support the Project
If you find this tool helpful, please consider:

Giving it a star on GitHub
View on NPM mern-project-cli
Sharing it with your fellow developers
Contributing to its development

🌟 Build with ❤ by Manish Raj

Portfolio • GitHub • LinkedIn • Twitter

https://github.com/manishraj27/mern-project-cli?tab=MIT-1-ov-file
https://github.com/manishraj27/mern-project-cli
https://www.npmjs.com/package/mern-project-cli
https://manishraj.me/
https://github.com/manishraj27
https://www.linkedin.com/in/manishraj27
https://x.com/manish_rraaj

