All files / lib/classifiers bayes-classifier.js

95% Statements 19/20
100% Branches 6/6
83.33% Functions 5/6
95% Lines 19/20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84                                              30x 30x                                     13x 13x   13x   13x 105x 43x 43x 134x   43x 43x     13x 13x                       5x 5x 13x 13x               30x  
/*
 * Copyright (c) AXA Shared Services Spain S.A.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
 
const Classifier = require('./classifier');
const { Mathops } = require('../math');
 
/**
 * Class for a Bayes Classifier.
 */
class BayesClassifier extends Classifier {
  setSmoothing(newSmoothing) {
    this.smoothing = newSmoothing;
  }
 
  /**
   * Calculate the probability of a class (label) given an observation.
   *
   * @param {Vector} observation Observation vector.
   * @param {String} label Label of the class.
   * @returns {Number} Value of probability of class.
   * @memberof BayesClassifier
   */
  getProbabilityOfClass(observation, label) {
    const smoothing = this.smoothing || 1.0;
    let probability = 0;
 
    const classTotal = this.observations[label].length;
 
    observation.forEach((feature, index) => {
      if (feature) {
        let count = 0;
        this.observations[label].forEach(classObservation => {
          count += classObservation[index];
        });
        const value = count || smoothing;
        probability += Math.log(value / classTotal);
      }
    });
    probability = (classTotal / this.observationCount) * Math.exp(probability);
    return probability;
  }
 
  /**
   * Given an observation and an array for inserting the results,
   * it calculates the score of the observation for each of the classifications
   * and fills the array with the result objects.
   * @param {Object} srcObservation Source observation.
   * @param {Object[]} classifications Array of classifications.
   * @memberof BayesClassifier
   */
  classifyObservation(srcObservation, classifications) {
    const observation = Mathops.asVector(srcObservation);
    Object.keys(this.observations).forEach(label => {
      const value = this.getProbabilityOfClass(observation, label);
      classifications.push({
        label,
        value,
      });
    });
  }
}
 
module.exports = BayesClassifier;