All files / lib/classifiers binary-neural-network-classifier.js

91.67% Statements 33/36
70.83% Branches 17/24
100% Functions 10/10
91.18% Lines 31/34
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113                                              30x                     188x 188x 187x             188x 188x 188x 188x               297x 83x 83x               83x 83x   83x                 36x 292x 36x 292x 811x 78x   811x           36x 36x 78x   36x                 47x 47x 109x 109x   70x       30x  
/*
 * Copyright (c) AXA Shared Services Spain S.A.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
 
const { NeuralNetwork } = require('brain.js');
 
/**
 * Classifier using Brain.js Neural Network
 */
class BinaryNeuralNetworkClassifier {
  /**
   * Constructor of the class.
   * @param {Object} settings Settings for the instance.
   */
  constructor(settings) {
    this.settings = settings || {};
    if (!this.settings.config) {
      this.settings.config = {
        activation: 'leaky-relu',
        hiddenLayers: [],
        learningRate: 0.1,
        errorThresh: 0.0005,
      };
    }
    this.totalTimeout = this.settings.totalTimeout || 2 * 60 * 1000;
    this.labelTimeout = this.settings.labelTimeout;
    this.labels = [];
    this.classifierMap = {};
  }
 
  /**
   * If a trainer does not exists for a label, create it.
   * @param {*} label
   */
  addTrainer(label) {
    if (!this.classifierMap[label]) {
      this.labels.push(label);
      Iif (this.labelTimeout && this.labelTimeout > 0) {
        if (this.totalTimeout && this.totalTimeout > 0) {
          const partialTimeout = this.totalTimeout / this.labels.length;
          this.settings.config.timeout = Math.min(
            this.totalTimeout,
            partialTimeout
          );
        }
      } else Eif (this.totalTimeout && this.totalTimeout > 0) {
        this.settings.config.timeout = this.totalTimeout / this.labels.length;
      }
      this.classifierMap[label] = new NeuralNetwork(this.settings.config);
    }
  }
 
  /**
   * Train the classifier given a dataset.
   * @param {Object} dataset Dataset with features and outputs.
   */
  async trainBatch(dataset) {
    const datasetMap = {};
    dataset.forEach(item => this.addTrainer(item.output));
    dataset.forEach(item => {
      this.labels.forEach(label => {
        if (!datasetMap[label]) {
          datasetMap[label] = [];
        }
        datasetMap[label].push({
          input: item.input,
          output: [item.output === label ? 1 : 0],
        });
      });
    });
    const promises = [];
    Object.keys(datasetMap).forEach(label => {
      promises.push(this.classifierMap[label].train(datasetMap[label]));
    });
    return Promise.all(promises);
  }
 
  /**
   * Given a sample, return the classification.
   * @param {Object} sample Input sample.
   * @returns {Object} Classification output.
   */
  classify(sample) {
    const scores = [];
    Object.keys(this.classifierMap).forEach(label => {
      const score = this.classifierMap[label].run(sample);
      scores.push({ label, value: score[0] });
    });
    return scores.sort((x, y) => y.value - x.value);
  }
}
 
module.exports = BinaryNeuralNetworkClassifier;