| 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119 |
31x
194x
194x
193x
194x
194x
194x
194x
884x
617x
617x
6x
3x
3x
611x
608x
617x
52x
366x
52x
366x
999x
99x
999x
52x
52x
99x
52x
57x
57x
1x
3x
56x
453x
453x
1066x
31x
| /*
* Copyright (c) AXA Shared Services Spain S.A.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
const { NeuralNetwork } = require('brain.js');
/**
* Classifier using Brain.js Neural Network
*/
class BinaryNeuralNetworkClassifier {
/**
* Constructor of the class.
* @param {Object} settings Settings for the instance.
*/
constructor(settings) {
this.settings = settings || {};
if (!this.settings.config) {
this.settings.config = {
activation: 'leaky-relu',
hiddenLayers: [],
learningRate: 0.1,
errorThresh: 0.0005,
};
}
this.totalTimeout = this.settings.totalTimeout || 2 * 60 * 1000;
this.labelTimeout = this.settings.labelTimeout;
this.labels = [];
this.classifierMap = {};
}
/**
* If a trainer does not exists for a label, create it.
* @param {*} label
*/
addTrainer(label) {
if (!this.classifierMap[label]) {
this.labels.push(label);
if (this.labelTimeout && this.labelTimeout > 0) {
if (this.totalTimeout && this.totalTimeout > 0) {
const partialTimeout = this.totalTimeout / this.labels.length;
this.settings.config.timeout = Math.min(
this.totalTimeout,
partialTimeout
);
}
} else if (this.totalTimeout && this.totalTimeout > 0) {
this.settings.config.timeout = this.totalTimeout / this.labels.length;
}
this.classifierMap[label] = new NeuralNetwork(this.settings.config);
}
}
/**
* Train the classifier given a dataset.
* @param {Object} dataset Dataset with features and outputs.
*/
async trainBatch(dataset) {
const datasetMap = {};
dataset.forEach(item => this.addTrainer(item.output));
dataset.forEach(item => {
this.labels.forEach(label => {
if (!datasetMap[label]) {
datasetMap[label] = [];
}
datasetMap[label].push({
input: item.input,
output: [item.output === label ? 1 : 0],
});
});
});
const promises = [];
Object.keys(datasetMap).forEach(label => {
promises.push(this.classifierMap[label].trainAsync(datasetMap[label]));
});
return Promise.all(promises);
}
/**
* Given a sample, return the classification.
* @param {Object} sample Input sample.
* @returns {Object} Classification output.
*/
classify(sample) {
const scores = [];
if (Object.keys(sample).length === 0) {
this.labels.forEach(label => {
scores.push({ label, value: 0.5 });
});
} else {
Object.keys(this.classifierMap).forEach(label => {
const score = this.classifierMap[label].run(sample);
scores.push({ label, value: score[0] });
});
}
return scores.sort((x, y) => y.value - x.value);
}
}
module.exports = BinaryNeuralNetworkClassifier;
|