All files / lib/nlp nlp-manager.js

85.76% Statements 271/316
76.62% Branches 118/154
87.76% Functions 43/49
85.76% Lines 271/316
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734                                              31x 31x 31x 31x 31x 31x 31x 31x 31x 31x                                               139x 139x 139x 139x 139x 139x 139x 139x 139x 139x 139x 56x   139x 138x   139x 138x   139x 139x   139x 139x   139x     304x 139x               135x 135x 163x 163x 149x   163x 160x                                 304x 285x   19x 19x                     210x                           14x 14x 12x   2x   14x                 11x                     1x                           115x                 327x             1x 1x 1x 3x 3x 3x 2x   3x   1x                   296x 296x 2x   296x 1x   295x 295x 1x   294x 294x 108x   294x 294x 294x       294x 6x                     4x 4x 2x   4x 1x   3x 3x 1x   2x                       323x                       1x                   28x 2x   26x   28x   43x 43x 43x 42x                         598x 598x 598x 6x 6x   598x 598x 598x 1x   597x                 309x 309x 309x 1x 1x   309x 309x       307x 307x 18x     18x   289x                 38x 102x 31x     7x                     3x 3x 3x 1x 1x   3x 1x   3x 3x       1x                           307x 307x 307x 307x 288x 288x 288x   307x             307x 307x 307x 307x 307x         307x 307x                                                     307x 307x       307x 283x       283x         6x       307x         277x 277x 277x   30x 30x 30x   307x         307x 307x 452x   307x 307x 307x 18x 18x   307x 9x 20x   9x 9x   9x       307x 307x             7x 7x 7x 7x 7x                                                                                                 11x   11x 11x 11x 11x 11x 11x 11x 11x 11x 11x   11x 11x 11x     11x   11x 11x 11x 11x 11x   518x 518x           11x 11x 11x 11x 11x 518x 518x   2914x   2914x 10960x   2914x     11x 11x 11x 11x                     4x 4x 4x 4x 4x 4x 4x 4x 4x 4x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 6x 17x         6x 6x 6x 17x   21x 235x 235x     6x 6x 6x 6x   6x       4x               3x 3x               10x 10x 10x               7x 7x 7x 7x       31x  
/*
 * Copyright (c) AXA Shared Services Spain S.A.
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */
 
const fs = require('fs');
const Handlebars = require('handlebars');
const { Language } = require('../language');
const { NerManager } = require('../ner');
const { SentimentManager } = require('../sentiment');
const NlpUtil = require('./nlp-util');
const NlpClassifier = require('./nlp-classifier');
const NlgManager = require('../nlg/nlg-manager');
const NlpExcelReader = require('./nlp-excel-reader');
const { SlotManager } = require('../slot');
 
/**
 * Class for the NLP Manager.
 * The NLP manager is the one that is able to manage several classifiers,
 * to have multilanguage, and also is the responsible of the NER (Named Entity
 * Recognition).
 *
 * Understanding NER:
 *
 * You can have several entities defined, each one with multilanguage and
 * several texts for each option. Example
 * Entity   Option           English                  Spanish
 * FOOD     Burguer          Burguer, Hamburguer      Hamburguesa
 * FOOD     Salad            Salad                    Ensalada
 * FOOD     Pizza            Pizza                    Pizza
 *
 */
class NlpManager {
  /**
   * Constructor of the class.
   * @param {Object} settings Settings for the NLP Manager.
   */
  constructor(settings) {
    this.settings = settings || {};
    this.guesser = new Language();
    this.nerManager = new NerManager(this.settings.ner);
    this.sentiment = new SentimentManager();
    this.languages = [];
    this.languageNames = {};
    this.classifiers = {};
    this.slotManager = new SlotManager();
    this.intentDomains = {};
    this.media = '';
    if (this.settings.languages) {
      this.addLanguage(this.settings.languages);
    }
    if (this.settings.fullSearchWhenGuessed === undefined) {
      this.settings.fullSearchWhenGuessed = false;
    }
    if (this.settings.useNlg === undefined) {
      this.settings.useNlg = true;
    }
    Eif (this.settings.useNeural === undefined) {
      this.settings.useNeural = true;
    }
    Eif (this.settings.useLRC === undefined) {
      this.settings.useLRC = true;
    }
    this.processTransformer =
      typeof this.settings.processTransformer === 'function'
        ? this.settings.processTransformer
        : _ => _;
    this.nlgManager = new NlgManager();
  }
 
  /**
   * Adds a language or several languages to the NLP Manager.
   * @param {String[]} srcLocales Locales to be added.
   */
  addLanguage(srcLocales) {
    const locales = Array.isArray(srcLocales) ? srcLocales : [srcLocales];
    locales.forEach(locale => {
      const truncated = NlpUtil.getTruncatedLocale(locale);
      if (!this.languages.includes(truncated)) {
        this.languages.push(truncated);
      }
      if (!this.classifiers[truncated]) {
        this.classifiers[truncated] = new NlpClassifier({
          language: truncated,
          classifier: this.settings.classifier,
          neuralClassifier: this.settings.neuralClassifier,
          useNeural: this.settings.useNeural,
          useLRC: this.settings.useLRC,
        });
      }
    });
  }
 
  /**
   * Given a text, try to guess the language, over the languages used for the NLP.
   * @param {String} utterance Text to be guessed.
   * @returns {String} ISO2 locale of the language, or undefined if not found.
   */
  guessLanguage(utterance) {
    if (this.languages.length === 1) {
      return this.languages[0];
    }
    const guess = this.guesser.guess(utterance, this.languages, 1);
    return guess && guess.length > 0 ? guess[0].alpha2 : undefined;
  }
 
  /**
   * Add new texts for an option of an entity for the given languages.
   * @param {String} entityName Name of the entity.
   * @param {String} optionName Name of the option.
   * @param {String[]} languages Languages for adding the texts.
   * @param {String[]} texts Texts to be added.
   */
  addNamedEntityText(entityName, optionName, languages, texts) {
    return this.nerManager.addNamedEntityText(
      entityName,
      optionName,
      languages,
      texts
    );
  }
 
  /**
   * Adds a new regex named entity
   * @param {String} entityName Name of the entity.
   * @param {RegEx} regex Regular expression
   */
  addRegexEntity(entityName, languages, regex) {
    const entity = this.nerManager.addNamedEntity(entityName, 'regex');
    if (typeof regex === 'string') {
      entity.addStrRegex(languages, regex);
    } else {
      entity.addRegex(languages, regex);
    }
    return entity;
  }
 
  /**
   * Adds a new trim named entity.
   * @param {String} entityName Name of the entity.
   * @returns {Object} New Trim Named Entity instance.
   */
  addTrimEntity(entityName) {
    return this.nerManager.addNamedEntity(entityName, 'trim');
  }
 
  /**
   * Remove texts from an option of an entity for the given languages.
   * @param {String} entityName Name of the entity.
   * @param {String} optionName Name of the option.
   * @param {String[]} languages Languages for adding the texts.
   * @param {String[]} texts Texts tobe added.
   */
  removeNamedEntityText(entityName, optionName, languages, texts) {
    return this.nerManager.removeNamedEntityText(
      entityName,
      optionName,
      languages,
      texts
    );
  }
 
  /**
   * Assign an intent to a domain.
   * @param {String} intent Intent to be assigned.
   * @param {String} domain Domain to include the intent.
   */
  assignDomain(intent, domain) {
    this.intentDomains[intent] = domain;
  }
 
  /**
   * Returns the domain of a given intent.
   * @param {String} intent Intent name.
   * @returns {String} Domain of the intent.
   */
  getIntentDomain(intent) {
    return this.intentDomains[intent];
  }
 
  /**
   * Get an object with the intents of each domain.
   */
  getDomains() {
    const keys = Object.keys(this.intentDomains);
    const result = {};
    for (let i = 0, l = keys.length; i < l; i += 1) {
      const intent = keys[i];
      const domain = this.intentDomains[intent];
      if (!result[domain]) {
        result[domain] = [];
      }
      result[domain].push(intent);
    }
    return result;
  }
 
  /**
   * Adds a new utterance associated to an intent for the given locale.
   * @param {String} srcLocale Locale of the language.
   * @param {String} utterance Text of the utterance.
   * @param {String} intent Intent name.
   */
  addDocument(srcLocale, utterance, intent) {
    let locale = NlpUtil.getTruncatedLocale(srcLocale);
    if (!locale) {
      locale = this.guessLanguage(utterance);
    }
    if (!locale) {
      throw new Error('Locale must be defined');
    }
    const classifier = this.classifiers[locale];
    if (!classifier) {
      throw new Error(`Classifier not found for locale ${locale}`);
    }
    classifier.add(utterance, intent);
    if (this.getIntentDomain(intent) === undefined) {
      this.assignDomain(intent, 'default');
    }
    const entities = this.nerManager.getEntitiesFromUtterance(utterance);
    this.slotManager.addBatch(intent, entities);
    const optionalUtterance = this.nerManager.generateNamedEntityUtterance(
      utterance,
      locale
    );
    if (optionalUtterance) {
      classifier.add(optionalUtterance, intent);
    }
  }
 
  /**
   * Removes an utterance associated to an intent for the given locale.
   * @param {String} srcLocale Locale of the language.
   * @param {String} utterance Text of the utterance.
   * @param {String} intent Intent name.
   */
  removeDocument(srcLocale, utterance, intent) {
    let locale = NlpUtil.getTruncatedLocale(srcLocale);
    if (!locale) {
      locale = this.guessLanguage(utterance);
    }
    if (!locale) {
      throw new Error('Locale must be defined');
    }
    const classifier = this.classifiers[locale];
    if (!classifier) {
      throw new Error(`Classifier not found for locale ${locale}`);
    }
    classifier.remove(utterance, intent);
  }
 
  /**
   * Adds an answer for a locale and intent.
   * @param {String} locale Locale of the intent.
   * @param {String} intent Intent name.
   * @param {String} answer Text of the answer.
   * @param {String} condition Condition to be evaluated.
   * @param {String} media url to be added (link to follow, ...).
   */
  addAnswer(locale, intent, answer, condition, media) {
    this.nlgManager.addAnswer(locale, intent, answer, condition, media);
  }
 
  /**
   * Remove and answer from a locale and intent.
   * @param {String} locale Locale of the intent.
   * @param {String} intent Intent name.
   * @param {String} answer Text of the answer.
   * @param {String} condition Condition to be evaluated.
   * @param {String} media url to be added (link to follow, ...).
   */
  removeAnswer(locale, intent, answer, condition, media) {
    this.nlgManager.removeAnswer(locale, intent, answer, condition, media);
  }
 
  /**
   * Train the classifiers for the provided locales. If no locale is
   * provided, then retrain all the classifiers.
   * @param {String[]} locale List of locales for being retrained.
   */
  async train(locale) {
    let languages;
    if (locale) {
      languages = Array.isArray(locale) ? locale : [locale];
    } else {
      ({ languages } = this);
    }
    return Promise.all(
      languages.map(async language => {
        const truncated = NlpUtil.getTruncatedLocale(language);
        const classifier = this.classifiers[truncated];
        if (classifier) {
          await classifier.train();
        }
      })
    );
  }
 
  /**
   * Given an utterance and a locale, try to classify the utterance into one intent.
   * @param {String} srcLocale Locale of the text. If not provided,
   *                           the locale is guessed.
   * @param {String} srcUtterance Text to be classified
   */
  classify(srcLocale, srcUtterance) {
    let utterance = srcUtterance;
    let locale = srcLocale;
    if (!utterance) {
      utterance = srcLocale;
      locale = this.guessLanguage(utterance);
    }
    const truncated = NlpUtil.getTruncatedLocale(locale);
    const classifier = this.classifiers[truncated];
    if (!classifier) {
      return undefined;
    }
    return classifier.getClassifications(utterance);
  }
 
  /**
   * Gets the sentiment of an utterance.
   * @param {String} srcLocale Locale of the text. If not provided, is guessed.
   * @param {Promise.String} srcUtterance Texto to analyze the sentiment.
   */
  getSentiment(srcLocale, srcUtterance) {
    let utterance = srcUtterance;
    let locale = srcLocale;
    if (!utterance) {
      utterance = srcLocale;
      locale = this.guessLanguage(utterance);
    }
    const truncated = NlpUtil.getTruncatedLocale(locale);
    return this.sentiment.process(truncated, utterance);
  }
 
  getAnswer(locale, intent, context, media) {
    const answer = this.nlgManager.findAnswer(locale, intent, context, media);
    if (answer && answer.response) {
      Iif (answer.media) {
        return `${answer.response} - ${answer.media}`; // to improve
      }
      return answer.response;
    }
    return undefined;
  }
 
  /**
   * Indicates if all the classifications has exactly 0.5 score.
   * @param {Object[]} classifications Array of classifications.
   * @returns {boolean} True if all classifications score is 0.5.
   */
  isEqualClassification(classifications) {
    for (let i = 0; i < classifications.length; i += 1) {
      if (classifications[i].value !== 0.5) {
        return false;
      }
    }
    return true;
  }
 
  /**
   * Process to extract entities from an utterance.
   * @param {string} srcLocale Locale of the utterance, optional.
   * @param {string} srcUtterance Text of the utterance.
   * @param {string[]} whitelist Optional whitelist of entity names.
   * @returns {Object[]} Array of entities.
   */
  async extractEntities(srcLocale, srcUtterance, whitelist) {
    let utterance = srcUtterance;
    let locale = srcLocale;
    if (!utterance) {
      utterance = locale;
      locale = this.guessLanguage(utterance);
    }
    if (!this.languages.includes(NlpUtil.getTruncatedLocale(locale))) {
      locale = this.guessLanguage(utterance);
    }
    const truncated = NlpUtil.getTruncatedLocale(locale);
    return this.nerManager.findEntities(utterance, truncated, whitelist);
  }
 
  describeLanguage(locale, name) {
    this.languageNames[locale] = { locale, name };
  }
 
  /**
   * Process an utterance for full classify and analyze. If the locale is
   * not provided, then it will be guessed.
   * Classify the utterance and extract entities from it, returning an
   * object with all the information available.
   * Also calculates the sentiment of the utterance, if possible.
   * @param {String} srcLocale Language locale of the utterance.
   * @param {String} srcUtterance Text of the utterance.
   * @param {Promise.Object} Promise srcContext Context for finding answers.
   */
  async process(srcLocale, srcUtterance, srcContext) {
    let utterance = srcUtterance;
    let locale = srcLocale;
    let languageGuessed = false;
    if (!utterance) {
      utterance = locale;
      locale = this.guessLanguage(utterance);
      languageGuessed = true;
    }
    Iif (!this.languages.includes(NlpUtil.getTruncatedLocale(locale))) {
      locale = this.guessLanguage(utterance);
      languageGuessed = true;
      if (!locale) {
        [locale] = this.languages;
      }
    }
    const truncated = NlpUtil.getTruncatedLocale(locale);
    const result = {};
    result.locale = locale;
    result.localeIso2 = truncated;
    result.language = (
      this.languageNames[locale] ||
      this.guesser.languagesAlpha2[result.localeIso2] ||
      {}
    ).name;
    result.utterance = utterance;
    Iif (languageGuessed && this.settings.fullSearchWhenGuessed) {
      let bestScore;
      let bestClassification;
      this.languages.forEach(language => {
        const classification = this.classify(language, utterance);
        if (classification && classification.length > 0) {
          if (bestScore === undefined || classification[0].value > bestScore) {
            bestScore = classification[0].value;
            bestClassification = classification;
          }
        }
      });
      const optionalUtterance = await this.nerManager.generateEntityUtterance(
        utterance,
        truncated
      );
      this.languages.forEach(language => {
        const classification = this.classify(language, optionalUtterance);
        if (classification && classification.length > 0) {
          if (bestScore === undefined || classification[0].value > bestScore) {
            bestScore = classification[0].value;
            bestClassification = classification;
          }
        }
      });
      result.classification = bestClassification;
    } else {
      result.classification = this.classify(truncated, utterance);
      const optionalUtterance = await this.nerManager.generateEntityUtterance(
        utterance,
        truncated
      );
      if (optionalUtterance !== utterance) {
        const optionalClassification = this.classify(
          truncated,
          optionalUtterance
        );
        if (
          optionalClassification &&
          optionalClassification.length > 0 &&
          optionalClassification[0].value > result.classification[0].value
        ) {
          result.classification = optionalClassification;
        }
      }
    }
    if (
      !result.classification ||
      result.classification.length === 0 ||
      this.isEqualClassification(result.classification)
    ) {
      result.intent = 'None';
      result.domain = 'default';
      result.score = 1;
    } else {
      result.intent = result.classification[0].label;
      result.domain = this.getIntentDomain(result.intent);
      result.score = result.classification[0].value;
    }
    result.entities = await this.nerManager.findEntities(
      utterance,
      truncated,
      this.slotManager.getIntentEntityNames(result.intent)
    );
    const context = srcContext || {};
    result.entities.forEach(entity => {
      context[entity.entity] = entity.option || entity.utteranceText;
    });
    result.sentiment = await this.getSentiment(truncated, utterance);
    const answer = this.getAnswer(truncated, result.intent, context);
    if (answer) {
      result.srcAnswer = answer;
      result.answer = Handlebars.compile(answer)(context);
    }
    if (this.slotManager.process(result, context)) {
      result.entities.forEach(entity => {
        context[entity.entity] = entity.option || entity.utteranceText;
      });
      Eif (result.srcAnswer) {
        result.answer = Handlebars.compile(result.srcAnswer)(context);
      }
      Iif (result.media) {
        result.media = result.media; // to improve
      }
    }
    context.slotFill = result.slotFill;
    return this.processTransformer(result);
  }
 
  /**
   * Clear the NLP Manger.
   */
  clear() {
    this.nerManager = new NerManager(this.settings.ner);
    this.languages = [];
    this.classifiers = {};
    this.slotManager.clear();
    this.nlgManager = new NlgManager();
  }
 
  /**
   * Deflate the brain.js object
   * @param {object} srcBrain Brain json object.
   */
  deflate(srcBrain) {
    const brain = srcBrain;
    brain.layers = brain.layers[1]['0'];
    const weights = [];
    Object.keys(brain.layers.weights).forEach(key => {
      weights.push(brain.layers.weights[key]);
    });
    brain.layers.weights = weights;
    return brain;
  }
 
  /**
   * Inflate the brain.js object
   * @param {object} features Features map.
   * @param {object} srcBrain Brain json object.
   */
  inflate(features, srcBrain) {
    const brain = srcBrain;
    const weights = {};
    const brainFeatures = {};
    let i = 0;
    Object.keys(features).forEach(key => {
      weights[key] = brain.layers.weights[i];
      brainFeatures[key] = {};
      i += 1;
    });
    const layers = [];
    layers.push(brainFeatures);
    const data = {};
    data['0'] = {};
    data['0'].bias = brain.layers.bias;
    data['0'].weights = weights;
    layers.push(data);
    brain.layers = layers;
    return brain;
  }
 
  /**
   * Load NLP manager information from a string.
   * @param {String|Object} data JSON string or object to load NLP manager information from.
   */
  import(data) {
    const clone = typeof data === 'string' ? JSON.parse(data) : data;
 
    this.settings = clone.settings;
    this.languages = clone.languages;
    this.nerManager.load(clone.nerManager);
    this.slotManager.load(clone.slotManager);
    this.intentDomains = clone.intentDomains || {};
    this.nlgManager.responses = clone.responses;
    for (let i = 0, l = clone.classifiers.length; i < l; i += 1) {
      const classifierClone = clone.classifiers[i];
      this.addLanguage(classifierClone.language);
      const classifier = this.classifiers[classifierClone.language];
 
      classifier.docs = classifierClone.docs;
      classifier.features = classifierClone.features;
      Iif (classifierClone.useLRC === undefined) {
        classifier.settings.useLRC = true;
      } else {
        classifier.settings.useLRC = !!classifierClone.useLRC;
      }
      classifier.settings.useNeural = !!classifierClone.useNeural;
      Eif (classifierClone.neuralClassifier) {
        const { neuralClassifier } = classifier.settings;
        neuralClassifier.settings = classifierClone.neuralClassifier.settings;
        Object.keys(classifierClone.neuralClassifier.classifierMap).forEach(
          label => {
            neuralClassifier.addTrainer(label);
            neuralClassifier.classifierMap[label].fromJSON(
              classifierClone.neuralClassifier.classifierMap[label]
            );
          }
        );
      }
      Eif (classifier.settings.useLRC) {
        const lrc = classifier.settings.classifier;
        const { logistic } = classifierClone;
        lrc.observations = {};
        Object.entries(logistic.observations).forEach(([label, matrix]) => {
          lrc.observations[label] = [];
          matrix.forEach((row, rowIndex) => {
            // Create a array filled with as many zeros as features
            const features = Array(classifier.features.length).fill(0);
            // Set the features for the positions stored with 1. The others remains as zero.
            row.forEach(featPosition => {
              features[featPosition] = 1;
            });
            lrc.observations[label][rowIndex] = features;
          });
        });
        lrc.labels = logistic.labels;
        lrc.classifications = logistic.classifications;
        lrc.observationCount = logistic.observationCount;
        lrc.theta = logistic.theta;
      }
    }
  }
 
  /**
   * Export NLP manager information as a string.
   * @param {Boolean} minified If true, the returned JSON will have no spacing or indentation.
   * @returns {String} NLP manager information as a JSON string.
   */
  export(minified = false) {
    const clone = {};
    clone.settings = this.settings;
    clone.languages = this.languages;
    clone.intentDomains = this.intentDomains;
    clone.nerManager = this.nerManager.save();
    clone.slotManager = this.slotManager.save();
    clone.classifiers = [];
    clone.responses = this.nlgManager.responses;
    Eif (this.languages && this.languages.length > 0) {
      this.languages.forEach(language => {
        const classifier = this.classifiers[language];
        const classifierClone = {};
        classifierClone.language = classifier.settings.language;
        classifierClone.docs = classifier.docs;
        classifierClone.features = classifier.features;
        classifierClone.logistic = {};
        const { logistic } = classifierClone;
        const lrc = classifier.settings.classifier;
        classifierClone.useLRC = classifier.settings.useLRC;
        classifierClone.useNeural = classifier.settings.useNeural;
        Eif (classifier.settings.neuralClassifier) {
          const { neuralClassifier } = classifier.settings;
          classifierClone.neuralClassifier = {};
          classifierClone.neuralClassifier.settings = neuralClassifier.settings;
          classifierClone.neuralClassifier.classifierMap = {};
          Object.keys(neuralClassifier.classifierMap).forEach(key => {
            classifierClone.neuralClassifier.classifierMap[
              key
            ] = neuralClassifier.classifierMap[key].toJSON();
          });
        }
        Eif (lrc) {
          logistic.observations = lrc.observations;
          Object.entries(lrc.observations).forEach(([label, matrix]) => {
            matrix.forEach((features, row) => {
              //  Store array of positions for the features equals to 1.
              logistic.observations[label][row] = features
                .map((feat, index) => (feat === 1 ? index : undefined))
                .filter(n => n);
            });
          });
          logistic.labels = lrc.labels;
          logistic.classifications = lrc.classifications;
          logistic.observationCount = lrc.observationCount;
          logistic.theta = lrc.theta;
        }
        clone.classifiers.push(classifierClone);
      });
    }
 
    return minified ? JSON.stringify(clone) : JSON.stringify(clone, null, 2);
  }
 
  /**
   * Save the NLP manager information into a file.
   * @param {String} srcFileName Filename for saving the NLP manager.
   */
  save(srcFileName) {
    const fileName = srcFileName || 'model.nlp';
    fs.writeFileSync(fileName, this.export(), 'utf8');
  }
 
  /**
   * Load the NLP manager information from a file.
   * @param {String} srcFilename Filename for loading the NLP manager.
   */
  load(srcFileName) {
    const fileName = srcFileName || 'model.nlp';
    const data = fs.readFileSync(fileName, 'utf8');
    this.import(data);
  }
 
  /**
   * Load the NLP manager information from an excel file.
   * @param {Sting} srcFileName File name of the excel.
   */
  loadExcel(srcFileName) {
    this.clear();
    const fileName = srcFileName || 'model.xls';
    const reader = new NlpExcelReader(this);
    reader.load(fileName);
  }
}
 
module.exports = NlpManager;