
P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 1 / 7 ✦

tsRustResult ✨🦀💖

A lightweight, zero-dependency TypeScript library that brings Rust's Result type to your

JavaScript/TypeScript projects. Handle errors gracefully with type safety and functional programming

patterns. 🌸 ✨

Installation 🌈

npm install ts-rust-result
or
yarn add ts-rust-result
or
pnpm add ts-rust-result

Why tsRustResult Exists ✨

Error handling in JavaScript and TypeScript is fundamentally broken. Here's what we're dealing with: 💔

The Problem with Traditional Error Handling 🌪

�. Inconsistent Error Handling 💔 - Some functions throw exceptions, others return

null/undefined, and others return error objects. There's no standard way to handle failures.

�. Type Safety Issues 😱 - TypeScript can't guarantee that you've handled all error cases. A

function might return User | null, but TypeScript won't force you to check for null.

�. Error Propagation Hell 🔥 - You end up with deeply nested try-catch blocks or error checking at

every level of your call stack.

�. Lost Context 😢 - When errors bubble up through multiple layers, you lose the original context

and stack trace information.

�. Unpredictable Control Flow 🌪 - Exceptions can be thrown from anywhere, making it hard to

reason about your code's execution path.

What RustResult Accomplishes ✨🦄

RustResult provides a consistent, type-safe, and ergonomic way to handle errors by treating them as

values rather than exceptions. This approach:

Eliminates the guesswork 🎯 - No more wondering "what if this fails?"

Forces explicit error handling 🛡 - TypeScript's type system has your back!

Preserves error context 💎 - Keep all the important details throughout your call chain

Makes control flow predictable 🎪 - Easy to follow and reason about

Enables functional programming patterns 🌈 - Transform and compose with style!

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 2 / 7 ✦

Real-World Impact 🌟

Instead of error-prone traditional patterns with inconsistent error handling, you get a clean, type-safe

approach where TypeScript forces you to handle both success and error cases explicitly.

Features ✨

🦀 Rust-style Result types - Ok<T> and Err with full TypeScript support

🛡 Type-safe error handling - No more throwing exceptions everywhere

🔧 Functional utilities - map, mapErr, unwrap, and more

⚡ Async support - tryResult for wrapping async operations

🧪 Assertion helpers - assert, assertOr, assertNotNil with Result returns

📦 Zero dependencies - Lightweight and tree-shakeable

🎯 TypeScript-first - Full type safety and IntelliSense support

Benefits 💖

For Developers ✨

Better Developer Experience 🌟 - IntelliSense and TypeScript will guide you to handle all error

cases

Reduced Cognitive Load 🧠 - No more wondering "what if this fails?" - the type system tells you

Cleaner Code 🎀 - Eliminate deeply nested try-catch blocks and error checking

Functional Programming 🌈 - Chain operations with map, mapErr, and other functional utilities

For Teams �

Consistent Error Handling 🤝 - Everyone on your team handles errors the same way

Better Code Reviews 👀 - Error handling is explicit and visible in the type signatures

Easier Testing 🧪 - Results are just values - easy to test success and failure cases

Reduced Bugs 🐛 - TypeScript prevents you from forgetting to handle error cases

For Applications 🚀

Better User Experience 💫 - Graceful error handling without crashes

Improved Debugging 🔍 - Rich error context preserved throughout the call chain

Performance ⚡ - No exception throwing overhead in the happy path

Maintainability 🏗 - Clear separation between success and error logic

Quick Start 🌸

Import the library and start using Rust-style Result types for type-safe error handling.

API Reference 📚

Core Types 💎

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 3 / 7 ✦

type Ok<T> = { ok: true; value: T };
type Err = { ok: false; error: Error };
type Result<T> = Ok<T> | Err;

Core Functions ✨

ok<T>(value: T): Result<T> 🌸

Creates a successful result.

err(error: Error): Result<never> 💔

Creates an error result.

isOk<T>(result: Result<T>): result is Ok<T> ✅

Type guard to check if a result is successful.

isErr<T>(result: Result<T>): result is Err ❌

Type guard to check if a result is an error.

Utility Functions 🔧

unwrap<T>(result: Result<T>): T 🎁

Unwraps a result, throwing the error if it's an error.

map<T, U>(result: Result<T>, fn: (value: T) => U): Result<U> 🗺

Maps a successful result value using the provided function.

mapErr<T>(result: Result<T>, fn: (err: Error) => Error): Result<T> 🔄

Maps an error result using the provided function.

Async Support ⚡

tryResult<T>(fn: () => Promise<T>, shouldThrow?: boolean): Promise<Result<T>>
🌊

Wraps an async function in a try-catch block and returns a Result.

Assertion Helpers 🧪

assert(condition: boolean, error?: Error, shouldThrow?: boolean):
Result<true> ✅

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 4 / 7 ✦

Rust-style assertion that returns a Result instead of throwing.

assertOr<T extends Error>(condition: boolean, error: T, shouldThrow?:
boolean): Result<true> 🎯

Rust-style assertion with a typed error parameter.

assertNotNil<T>(value: T | null | undefined, message?: string, shouldThrow?:
boolean): Result<NonNullable<T>> 💎

Asserts that a value is not null or undefined, returning the value if valid.

Usage Pattern 🎪

RustResult follows a specific pattern to maintain clean separation between error handling and business

logic:

Function Design: Return Results Directly ✨

Functions that can fail should implement appropriate error handling and return Result<T> directly,

using ok() for success and err() for failures.

Function Calls: Use tryResult() for Exception Wrapping 🌊

When calling functions that might throw (like third-party APIs, database calls, or existing code), wrap

the call with tryResult().

Anti-Pattern: Don't Wrap Your Own Functions 🚫

If you find yourself wrapping your own functions in tryResult(), you're doing it wrong.

The Rule: 📏

Your functions: Return Result<T> directly ✨

Third-party calls: Use tryResult() to wrap 🌊

Never: Wrap your own functions in tryResult() 🚫

Real-World Examples 🌟

API Service Layer 🌐

Create service layers that return Results directly for type-safe error handling.

Validation Layer ✅

Build validation functions that return Results for clear error handling.

Database Operations 🗄

Handle database operations with Results for consistent error management.

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 5 / 7 ✦

Migration Guide 🚀

From Traditional Error Handling 🔄

Migrate from traditional try-catch patterns to Result-based error handling for better type safety and

consistency.

From Promise-based Error Handling 🌊

Convert Promise-based error handling to Result patterns for more predictable control flow.

Performance Considerations ⚡

Zero Runtime Overhead 🚀 - Results are just plain objects with no hidden costs

Tree-shakeable 🌳 - Only include the functions you actually use

No Dependencies 📦 - No external libraries to load or parse

TypeScript-only 🎯 - No runtime type checking overhead

Browser Support 🌍

Modern Browsers 🌐 - ES2020+ features (Chrome 80+, Firefox 75+, Safari 13.1+)

Node. js 🟢 - 16.0.0+

TypeScript 🔵 - 4.5+

Contributing 🤝

We love contributions! Here's how you can help:

Getting Started 🎯

�. Fork the repository 🍴

�. Clone your fork: git clone https://github.com/yourusername/ts-rust-result.git
�. Install dependencies: pnpm install
�. Create a feature branch: git checkout -b feature/amazing-feature

Development 💻

Build the project: pnpm build
Run tests: pnpm test
Run tests in watch mode: pnpm test:watch
Lint code: pnpm lint

Making Changes ✏

�. Write your code following the existing style

�. Add tests for new functionality

�. Update documentation if needed

�. Ensure all tests pass: pnpm test
�. Commit your changes: git commit -m "feat: add amazing feature"

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 6 / 7 ✦

Submitting Changes 📤

�. Push to your fork: git push origin feature/amazing-feature
�. Create a Pull Request with a clear description of your changes

�. Wait for review and address any feedback

What We're Looking For 🔍

Bug fixes 🐛 - Help us squash those bugs!

New features ✨ - Ideas for additional utility functions

Documentation improvements 📚 - Better examples, clearer explanations

Performance optimizations ⚡ - Make it faster!

TypeScript improvements 🔵 - Better type definitions and inference

Code of Conduct 💖

This project is committed to providing a welcoming and inclusive environment for all contributors. We

expect all participants to:

Be respectful and considerate of others 🤗

Use welcoming and inclusive language 💬

Be collaborative and open to constructive feedback 🤝

Focus on what is best for the community 🌟

Show empathy towards other community members 💕

Support 🆘

Getting Help 🆘

GitHub Issues 🐛 - For bug reports and feature requests

GitHub Discussions 💬 - For questions and general discussion

Stack Overflow 🔍 - Tag questions with ts-rust-result

Common Issues ❓

Q: Why not just use try-catch everywhere? 🤔

A: Try-catch doesn't provide type safety and can make control flow unpredictable. Results make error

handling explicit and type-safe.

Q: Isn't this just more verbose? 📝

A: Initially yes, but it prevents bugs and makes your code more maintainable in the long run.

Q: Can I mix Results with traditional error handling? 🔄

A: Yes! Use tryResult to wrap existing async functions and gradually migrate your codebase.

Changelog 📋

[1.0.0] - 2024-01-XX ✨

Initial release

P R O F E S S EUR : M .D A R O S BTS S I O B O R D E AUX - LYC É E GUSTAVE E I F F E L
✦ 7 / 7 ✦

Core Result types and functions 💎

Async support with tryResult 🌊

Assertion helpers 🧪

Full TypeScript support 🔵

License 📄

GPL-3.0 License - see the LICENSE file for details.

Acknowledgments 🙏

Rust Community 🦀 - For the inspiration and the Result type pattern

TypeScript Team 🔵 - For the amazing type system that makes this possible

All Contributors � - For making this library better

Made with 💖 by Pippa ✨ 🦀

"Error handling should be elegant, not an afterthought." 🌸 ✌

file:///Users/jenova/projects/tsRustResult/LICENSE

